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Abstract

This paper introduces improvements to a now classical family of
image denoising methods through rather minimal changes to the way
derivatives are computed. In particular, we ask, and answer, the ques-
tion “How much can we improve the common denoising methods by
local, completely non-parametric modifications to image graphs?” We
present the concept of non-parametric characteristic graph represen-
tations of images and detail two such graph constructions. Their use
in image denoising is demonstrated within a regularization framework.
The results are compared with those of more traditional approaches
of Tikhonov, total variation and L1TV regularization. We show that
in some denoising scenarios our methods perform more favorably in
preserving intensity levels and geometric details of object boundaries.
They are particularly useful for denoising images with both smooth and
discontinuous intensity variations, preserving detail to the pixel level.
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1 Introduction

The methods of Mumford and Shah [16] and Rudin, Osher and Fatemi [19]
are two of a small handful of image processing methods introduced about
two decades ago which opened up the area of PDE and variational methods
in image processing. Since then, an enormous amount of work has followed,
inspired by their general approach.

A number of the most important approaches are special cases of

u∗ = arg min
u

(‖u − f‖q
q + α‖∇u‖p

p

)
, (1)

where f ∈ R
n is a noisy image of n pixels, 1 ≤ p, q < ∞ (typically), and u and

u∗ are candidate and optimal denoised images, respectively. The data fidelity
and regularization terms are weighted by the selection of a scalar α.

The popular H1 realization of (1) (p = 2, q = 2) was first implemented in
the work of Tikhonov (See [22]). The regularization enforces smoothness in u
and is equivalent to a finite-time application of the heat equation to the noisy
image. The net effect is to reduce all high-frequency content such as noise.
One undesirable feature is that sharp intensity boundaries are smoothed.

The total variation (TV) realization (1) (p = 1, q = 2), or ROF model [19],
gained rapid popularity from its ability to produce denoised images that retain
sharp intensity boundaries. While successful for visual presentation, there are
known side effects [20]. First, absolute intensity levels are altered. This is most
obvious for images of piecewise constant intensity. Second, intensity regions
of smooth variation become stair-stepped. Third, shapes in images are altered
by elimination of high boundary curvature, reducing object perimeter.

While (1) has been highly successful and ubiquitously applied in image
processing, the side effects arising from the regularization and choice of p are
problematic for many applications. Several approaches have been taken in or-
der to address these issues. Additional regularization based on object bound-
ary lengths was proposed by Mumford and Shah [16]. This approach requires
an additional functional weight parameter and assumes objects constrained by
minimal perimeters.

Another approach proposed a variable p. See [4] and the developments
in [13, 10, 5]. In this approach p is made a function of the gradient of the
image. While this adds to the analytic complexity of the functional, the stair-
stepping is reduced.

The L1TV approach (p = 1,q = 1), introduced in its continuous version
by Chan and Esedoḡlu in [8] after its initial discrete study by Alliney [3] and
Nikolova [18], does a much better job of contrast preservation. This particular
approach has generated continued interest; see for example [2, 15, 23].

Chartrand [9] has shown that solving the nonconvex optimization problem
for 0 < p < 1 yields improved results for shape and intensity preservation
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relative to TV. These results hold for images that can be represented sparsely
in the gradient, that is, piecewise constant intensities.

Recently, non-local means and diffusion geometric methods [6, 12, 21] have
generated significant improvements in denoising results by redefining what it
means to be a neighboring pixel. It is to the effect of image graph modifications
that we now turn.

One way to view all the denoising methods is as operators on graphs where
the values at vertices are pixel intensities and the edge weights are a function of
some metric. Let G0 denote the graph in which each pixel is connected to four
neighbors (up, down, left, right). We will denote the fully connected graph,

with n(n−1)
2

edges connecting the n pixels, by G0. In the classical denoising
case, the discrete version of (1) leads to p-Laplacian flows on G0. In the case of
non-local means, edge weights might be taken to be 1

k
, where k is the number

of nearest neighbors. The nearest neighbors are determined by considering
distances in the space of pixel neighborhoods. This leads to a completely
different graph which is non-local with respect to the natural metric suggested
by the x-y image distance.

In this paper we take a different approach and ask how much improvement
can be gained through very simple, even rather minimal perturbations to G0.
We introduce a new method modifying the classical image graph G0 through
non-parametric decimation of the graph. This generates a subgraph K ⊂ G0 on
which we can use many of the classical and less classical denoising methods.
The results show a marked improvement with respect to edge preservation,
contrast preservation, and staircasing.

A critical point is that we are not examining what is the best we can do
through a cleverly weighted subgraph of G, but rather what can be done using
graphs K close to the usual graph G0. Accordingly, we compare our results
to classical methods applied to images implicitly using G0, not the various
subgraphs of G that the newer methods use.

Viewed another way, we simply remove edges from G0 that connect distant
pixels (but we do this in a non-parametric way) while the newer methods
completely redefine what it means to be close (but in a parametric way). That
our graph modifications are completely non-parametric, accomplished with no
input other than the measured image, is an attractive feature that reduces the
number of parameters that must be chosen to denoise an image.

Finally, we mention that because our goal is not to create the best denoising
algorithm, but rather see what can be gained by minimal perturbation to rather
classical methods, we do not consider various uses of sparse methods (but see
for example [1]).
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2 Approach

Consider the discretized image gradient of (1). Let ui,j be the image intensity
at image pixel location (i, j). A standard forward difference gradient approxi-
mation is

|∇ui,j| ≡
√

(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2. (2)

The first (second) difference term in (2) is the vertical (horizontal) gradient.
We impose the Neumann boundary condition ∇ui,j = 0 if either i or j causes
ui,j to fall outside of the image.

This gradient can be represented as an operation on the graph G0 =
(V0, E0) with vertex set V0 = {vi,j} corresponding to all image pixels, and
edge set E0 = {ek} containing all pixel pairs that share a pixel edge (not a
graph edge). We note that vi,j is a graph vertex, while ui,j = u(vi,j) is the image
intensity at location {i, j}. This graph has been called the grid graph [7] and is
recognized as that of a fully connected Von Neumann neighborhood (see [17]).
Quite simply, G0 is the fully-connected nearest (geographic) neighbor graph in
the 2-d image space. Figure 1(b) illustrates G0 for a small sample image. For
image applications, we consider the weighted graph with edge weights given
by wk = |ui1,j1 − ui2,j2| for each edge ek = (vi1,j1, vi2,j2), the absolute value of
the image intensity difference associated with the vertex pair connected by the
edge.

The denoising problem is now represented as

u∗ = arg min
u

(‖u − f‖q
q + α‖∇K u‖p

p

)
. (3)

where the gradient operator is applied to a graph K with weights W . The
fundamental graph, K = G0, is the one typically applied. We will consider
subgraphs K = {V = V0, E ⊂ E0} ⊂ G0 which we consider to be characteristic
of images for denoising purposes. In the next section we will detail two such
graphs.

The optimization problem described in (3) is nice: it is convex for (1 ≤
p, q ≤ ∞). Though the regularization term suffers from a degeneracy yielding
a null space with dimension equal to the number of connected components of
the graph, the data fidelity term keeps the functional coercive.

In practice, the gradient computation is carried out over the fundamental
graph G0 with imposed zero edge weights that effectively define the subgraph
of interest. More precisely,

‖∇K u‖p
p =

∑
wk∈W

|wk|p. (4)
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Note in particular that we are using the anisotropic version1 of (3) here: this is
the only version that makes sense on the graph – we do not have differences in
the x and y directions at every node in the reduced graph K unless the graph
is the complete graph G0.

We utilize the Lagged-Diffusivity method for solving (3) together with an
application of the discrepancy principle for choosing the constant α [24]. We
choose this approach for its general applicability to p > 0, q > 0, though
we limit our presentation to three typical scenarios: Tikhonov regularization
(H1) [22] where (p, q) = (2, 2); total variation regularization (TV ) [19] where
(p, q) = (1, 2); and (L1TV ) [8] where (p, q) = (1, 1). Lezoray, et al. [14] present
a general method for solving (3) on graphs of arbitrary topology. They also
present a variety of results for color image denoising using the fundamental
graph G0. Their focus is on computational aspects of very general discrete
graph-based denoising. Our main objective is the construction and appli-
cation of characteristic graphs that are natural choices for image processing
applications.

3 Characteristic Graphs

In this section we present two new characteristic image graphs, detail how they
are constructed, and briefly discuss our expectations in denoising applications.
An example of each graph is shown in Figure 1 as computed from a simple
example image.

Figure 1: Left to right: A simple noisy test image; and the corresponding three
characteristic graphs: the full graph or grid graph G0, the truncated Kruskal
algorithm graph with next-nearest neighbor edge extension K1, and the vertex
inclusion graph, K2.

In particular, our subgraphs are defined by features that are perturbations
from the standard local graph structure. They have the following properties.

1In the case of G = G0, the isotropic version is given by
∑

i((u
i
x)2 + (ui

y)2)p/2 instead of
the anisotropic analog given by

∑
i(|ui

x|p + |ui
y|p)
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1. A graph should preserve spatial information. Distinct image regions
should only be able to influence each other through neighbor pixel paths
through the graph. By choosing graphs as subgraphs of G0 this require-
ment is automatically met.

2. A graph should naturally detect image intensity content. In image re-
gions of relatively small intensity variation, the graph should be highly
connected. Conversely, graphs should have few or no edges corresponding
to neighboring pixels with a large difference in intensity.

3. Graph construction should be non-parametric utilizing only the image
intensity information without relying on user judgement or prior infor-
mation.

These subgraph properties are intended to inspire nonparametric extensions
to local denoising methods posed as in (1).

3.1 K1: Truncated-Kruskal Graph

We introduce a graph K1 based on Kruskal’s algorithm for constructing a
minimum spanning tree of an arbitrary graph[11]. The tree construction is
prematurely terminated when all vertices are included and then additional
graph edges are included to improve graph density.

1. Begin with an empty graph V = {} and E = {}.
2. Add to E the edge of minimum weight in E0 that does not create a cycle

in (V, E). Add the corresponding vertices to V that are not already in
V .

3. Repeat step 2 until V = V0.

4. Find the edge of minumum weight in E0 that does not create a cycle in
(V, E). Set wcut equal to the corresponding edge weight.

5. To each vertex of degree 1 add to E the associated edge from E0 that (a)
has smallest weight, (b) is not already in E, and (c) if the edge weight
is less than wcut.

The first four steps of the algorithm retain the time complexity of Kruskal’s
algorithm, O(|E| log |V |). The last step requires a O(|E| log |E|) sorting step
to determine the minimum weight edge connected to each vertex. Due to the
special structure of the grid graph derived from the image, we know that |E|
is bounded from above by 4|V |, so this complexity is equivalent to that of
Kruskal’s algorithm.
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The characteristic graph K1 will attempt to prevent graph connections
across pixel neighbors of significantly different intensities. The density may be
low relative to the grid graph G0, and the connectivity even in regions of like
intensity may be circuitous or lacking. The third image in Figure 1 illustrates
these properties. Note the somewhat circuitous graph paths one must often
take to traverse from one pixel to its neighbor even if the intensities are similar.
The best graph property is the absence of any graph edges that would connect
object regions to background regions. It can be reasonably expected that this
intensity discontinuity discrimination will be fairly robust to noise.

3.2 K2: Vertex Inclusion Graph

We also introduce the Vertex Inclusion Graph K2 in order to address the
potential drawbacks of K1, low density and significant dis-connectivity. K2 is
constructed by including all edges of weight less than or equal to a cutoff value
non-parametrically determined from a vertex inclusion condition.

1. Begin with an empty graph V = {} and E = {}.
2. Add the edge of smallest weight from E0 to E that is not already in E,

and the corresponding vertices from V0 to V that are not already in V .

3. Repeat step 2 until V = V0.

4. Add all edges from E0 to E that are of equal weight to the largest edge
weight in E.

Graph K2, like graph K1 can be disconnected across image intensity disconti-
nuities. Also, we expect a significant number of graph edges in regions where
the intensity variations are governed by noise. These properties are evident
in the fourth image of Figure 1. Note both the absence of edges that cross
the object-background boundary and the high graph density relative to K1.
For very noisy images or images with salt and pepper noise, K2 can produce
a nearly fully connected graph K2 ∼ G0. In these cases, there is no expected
advantage to using K2. Like the construction of K1, this approach has log-
arithmic time complexity of O(|E| log |E|) due to sorting the edges by edge
weight.

3.3 Discussion on Parametrization

These graphs are considered to be characteristic representations of images be-
cause they satisfy, in our estimation, the criteria given at the beginning of
this section. One might argue that these graph constructions contain hidden
parameters. For example, why did we choose to add edges only to leaf vertices
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in forming K1? And, why did we specify only second nearest neighbors in-
stead of, say, third nearest? Parameters such as these are of a different nature
than more intrusive and application specific parameters such as edge weight
thresholding, graph density thresholding, and local graph construction based
on prior assumptions. We contend that our choices are related primarily to
the desired structure of the graphs independent of the consitituent intensity
distributions of the images from which they are derived. Our graphs are in-
tended for very general application because they capture spatial and intensity
connectivity for a large class of images.

4 Results

We now present some specific image denoising results on several test images.
The approach is to illustrate how the use of characteristic image graphs can
provide improved intensity level and geometric content preservation relative to
standard local methods.

Figure 2 shows denoising results for a simple image of piecewise constant
intensities and several geometric features. The images at top are the clean
image, a noisy image with additive Gaussian noise of σ = 0.3, and the color
scale for all images in the figure. The clean image contains four overlapping
objects at intensity values (1, 2, 3, 4) on a background of intensity zero. Nine
denoised images are shown in the lower part of the figure, corresponding to
the realizations of the three regularization scenarios (L1TV , TV , H1) applied
using the three graphs (G0, K1, K2).

The piecewise constant intensities in this test image suggest the beneficial
use of total variation based denoising. The standard result (TV -G0) attains
relatively sharp boundaries and improved noise suppression over H1-G0. One
residual effect is intensity stairstepping, seen as dark green areas bordering
intensity transition regions. There is also some geometric information loss
in regions of high curvature (small features), observed as boundary definition
loss (a) between the dark green rectangle and the blue circle and (b) of the
bottom of light blue triangle below the magenta circle. The use of our char-
acteristic graphs alleviates these problems. Both TV -K1 and TV -K2 nearly
eliminate stairstepping and are much better at preserving the geometry of the
original objects in the image. For this test image, L1TV denoising produces
very similar results to those of the corresponding TV results. Close exami-
nation reveals a greater degree of regional stairstepping with K1 over K2, as
expected. It is also interesting to note how well H1 methods perform using
the graphs K1 and K2. Because these characteristic graphs were able to define
lengthy connected stretches of object boundaries, a heat kernel smoothing ap-
proach is fairly successful in regional smoothing with significant sharp intensity
boundary preservation.
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Finally, we consider object intensity level recovery for the three TV based
denoising methods. How accurate are the object intensities in denoised im-
ages? Table 1 lists the recovered pixel value mean and standard deviation over
same the regions defined by the noiseless image. We find that intensity values
are more accurately recovered using K1 or K2, especially for the highest and
lowest values where G0 based methods are expected to fail. No method accu-
rately recovers the intensity level of the smallest object feature at intensity 1.
The characteristic graph based methods show noticeably smaller variances in
intensity. This is due to their ability to significantly reduce stairstepping in
intensity discontinuity regions.

G0 K1 K2

0.042(0.079) 0.003(0.028) 0.002(0.018)

0.669(0.264) 0.564(0.099) 0.515(0.116)

1.985(0.170) 2.036(0.055) 2.037(0.017)

2.957(0.110) 2.992(0.051) 3.007(0.073)

3.948(0.088) 3.994(0.023) 3.992(0.007)

Table 1: Intensity preservation comparison for TV denoising examples in Fig-
ure 2. The intensities in the noiseless figure are the integer values (0, 1, 2, 3, 4).
This table gives the recovered pixel value mean and standard deviation over
same the regions defined by the noiseless image.

Figure 3 shows denoising results for an image of piecewise smooth intensity
variation with sharp boundaries. The images at top are the clean image, a
noisy image with additive Gaussian noise of σ = 0.16, and the color scale for
all images in the figure. The clean image contains a Gaussian bump with a
sign change across a sinusoidal boundary. The intensity difference across the
boundary approaches 2 near the image center and is much less than 2 near the
left and right image boundary. Nine denoised images are shown in the lower
part of the figure, corresponding to the realizations of the three regularization
scenarios (L1TV , TV , H1) applied using the three graphs (G0, K1, K2).

This test image illustrates the dilemma of how to choose an appropri-
ate regularization scenario when the image intensity is known to have both
smooth variations and sharp discontinuities. An H1-G0 approach may denoise
well and retain smooth intensity variations, but at the cost of blurring dis-
continuities. A TV -G0 approach will perform much better at preserving the
discontinuities, but will compromise the smoothly varying features, especially
in the presence of noise. Our approach is to apply H1-K2 which does an excel-
lent job of preserving both image features. The denoised image is everywhere
smoothly varying except across a well-defined sharp discontinuity boundary.
The TV -K2 and L1TV -K2 approaches have even better intensity discontinuity
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Figure 2: Denoising results for a simple image of piecewise constant intensities
and several geometric features.

preservation but at the cost of regional intensity stairstepping. The K1 graph
based results also show excellent intensity discontinuity preservation, though
the image intensities show a large degree of regional stairstepping.
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Figure 3: Denoising results for an image of piecewise smooth intensity variation
with sharp boundaries.

Figure 4 shows denoising results for an image of piecewise smooth intensity
variation with sharp boundaries and high curvature geometric features. The
images at top are the clean image, a noisy image with additive Gaussian noise
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of σ = 0.12, and the color scale for all images in the figure. The clean image
contains a Gaussian bump with a unit jump within a star-shaped region. The
star region has features of single pixel width. Nine denoised images are shown
in the lower part of the figure, corresponding to the realizations of the three
regularization scenarios (L1TV , TV , H1) applied using the three graphs (G0,
K1, K2).

This test image is similar to the previous image in that the intensities are
smoothly varying except across some discontinuous boundary features. How-
ever, the object now has very narrow features. We would like to preserve (a)
smooth intensity variation, (b) sharp intensity discontinuities, and (c) geomet-
ric features at all length scales. The standard H1-G0 approach succeeds only
at the first. The TV -G0 approach succeeds only at the second. The L1TV -
G0 approach also preserves sharp intensity discontinuities, but dramatically
fails to preserve the geometry and small length scales. Our H1-K2 approach
succeeds on all points. The other denoising results are shown for comparison,
though it is notable that the K1 and K2 graph methods are very good at
preserving geometric information in this particular low noise example.

Figure 5 shows denoising results for the same images as in Figure 4 but
with a larger noise amplitude (σ = 0.4). The images at top are the clean
image, a noisy image, and the color scale for all images in the figure. Nine
denoised images are shown in the lower part of the figure, corresponding to
the realizations of the three regularization scenarios (L1TV , TV , H1) applied
using the three graphs (G0, K1, K2).

Under these higher noise conditions, the standard G0 based methods per-
form similarly to the previous case (Figure 4) but with greater object distor-
tion, both in loss of small length scale features and object boundary preserva-
tion. The K2 based results show somewhat improved object boundary preser-
vation but are qualitatively similar to the G0 results. This is because the K2
graph becomes nearly complete in the presence of noise of standard deviation
comparable to half the size of the actual intensity discontinuity. The K1 based
methods do a better job of object boundary preservation because the graph
construction is more robust to noise. The TV -K1 and L1TV -K1 results show
the best object/background discrimination including some of the small length
scale features.

Figure 6 shows denoising results for a silhouette image with objects con-
taining a variety of length scales. The images at top are the clean image, a
noisy image with additive Gaussian noise of σ = 0.15, and the color scale for all
images in the figure. The clean image contains a binary image of berries and
branches with important length scales from one to 20 pixels. Nine denoised
images are shown in the lower part of the figure, corresponding to the realiza-
tions of the three regularization scenarios (L1TV , TV , H1) applied using the
three graphs (G0, K1, K2).
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Figure 4: Denoising results for an image of piecewise smooth intensity varia-
tion with sharp boundaries and high curvature geometric features – low noise
realization.

The TV based results illustrate the improved sharpness of the bound-
ary representation with K1 and K2 over the typical G0. Once again this
is a consequence of K1 and K2 having few graph connections across the ob-
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Figure 5: Denoising results for an image of piecewise smooth intensity varia-
tion with sharp boundaries and high curvature geometric features– high noise
realization.

ject/background boundary. The contrast retention is better as well, the differ-
ences between the pixel mean values between object and background for each
case are: G0, 0.935; K1, 0.979; K2, 0.981. The feature retention with L1TV is
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better using K1 or K2 relative to G0; note the disappearance of the narrow-
est braches in L1TV -G0. It is worth noting that both K1 and K2 graphs are
not completely disconnected across all object/background boundaries. This is
most evident in examining H1-K1 and H1-K2, in which the areas of boundary
crossings are seen by the yellowish diffusion “clouds”.

Figure 7 shows denoising results for the same images as in Figure 6 but
with a larger noise amplitude (σ = 0.40). The images at top are the clean
image, a noisy image, and the color scale for all images in the figure. Nine
denoised images are shown in the lower part of the figure, corresponding to
the realizations of the three regularization scenarios (L1TV , TV , H1) applied
using the three graphs (G0, K1, K2).

In this higher noise example we observe that the K2 based results are similar
to the G0 based results, again due to the high connectedness of K2 in high
noise situations. In these cases, there is good object feature recovery for the
largest length scales (berries and large branch) and noticeably worse recovery
for the smallest length scales (small branches). The small length scale loss is
most pronounced in the L1TV cases. However, the K1 based results, while
similar in other respects, show better recovery of the geometry of small length
scale features relative to the G0 and K2 counterparts. This is a consequence
of the K1 graph construction being more robust to image noise.

5 Discussion

The characteristic graphs K1 and K2 are especially useful for denoising images
of piecewise smooth content. They help to preserve intensity levels because
intensity jumps are not penalized if they are large relative to a characteristic
weight determined by an appropriate construction algorithm. They also help
to preserve object boundary shape details for much the same reason. Intensity
jump boundaries have zero penalty regardless of length or curvature. Object
details can be preserved down to the pixel level. Even in the non-ideal case,
where noise has allowed graph construction algorithms to build links across
intensity discontinuities, these links are sparse relative to a full graph imple-
mentation and still serve to reduce distortion effects.

Our characteristic graphs will fail to produce significantly improved results
in some cases. If images are very noisy, are corrupted by salt and pepper noise,
or contain intensity isolated pixels, then we expect the characteristic K2 graph
to be nearly as dense as the full G0 graph. This simply means that the image
information needed to construct a good subgraph, K2 ⊂ G0, is lacking. The K1
graph construction is more robust to image noise, but no graph construction
method presented here is expected to perform well when noise amplitude is
comparable to discontinuous intensity jumps within the true image. We note
that our results are not expected to be inferior to methods that employ G0.
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Figure 6: Denoising results for a silhouette image with objects containing a
variety of length scales – low noise realization.

The use of characteristic image subgraphs is general to PDE-based methods
for image processing. We have defined here example graphs and demonstrated
their potential using some simple denoising examples. Clear extensions are
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Figure 7: Denoising results for a silhouette image with objects containing a
variety of length scales – high noise realization.

applications to segmentation and texture extraction.

We have focused exclusively on non-parametric modifications to (1). Other
important graphs are certainly possible that make use of (problem-dependent)
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parameters. Some examples include graphs that achieve a certain density or
connectivity, or user-defined graph construction cutoff values. We also note
that there are certain possible parametric modifications to the denoising pro-
cedure. For example, one is tempted to employ a variable α procedure in
which the characteristic graph is updated as α is incrementally raised from
some low value to a final value. This may help to reduce graph connectivity
across boundaries significantly obscured by noise.

6 Conclusion

We have defined two characteristic image graphs, the truncated Kruskal graph
K1 and the vertex inclusion graph K2 as nonparametric extensions to local
PDE image denoising methods. We have demonstrated their use by applica-
tion to several simple test images. Comparisons were made with standard TV ,
L1TV , and H1 denoising methods. Our characteristic graph based denoising
methods demonstrate (a) improved contrast preservation, (b) improved ge-
ometric feature recovery even down to the pixel level, and (c) simultaneous
recovery of smooth intensity variation and discontinuous intensity jumps. The
characteristic graph constructions are stable and predictable with respect to
noise type and amplitude. The K2 graph closely approximates the full mesh
graph G0 in cases of very high noise or corruption by salt and pepper noise.
The K1 graph remains relatively sparsely connected in all noise situations but
may fail to be meaningful when noise amplitude is comparable to image feature
intensity differences.
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[8] T. F. Chan and S. Esedoḡlu, Aspects of total variation regularized L1

function approximation, SIAM J. Appl. Math., 65 (2005), pp. 1817–1837.

[9] R. Chartrand, Nonconvex regularization for shape preservation, in
IEEE International Conference on Image Processing (ICIP), 2007.

[10] Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth
functionals in image restoration, SIAM Journal of Applied Mathematics,
66 (2006), pp. 1383–1406.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, The MIT Press, second ed., 2002.

[12] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image
denoising by sparse 3D transform-domain collaborative filtering, IEEE
Transactions on Image Processing, vol. 16, no. 8, August 2007.

[13] S. E. Levine, An adaptive variational model for image decomposition, in
Energy Minimization Methods in Computer Vision and Pattern Recog-
nition, no. 3757 in Lecture Notes in Computer Science, Springer, 2005,
pp. 382–397.

[14] O. Lezoray, A. Elmoataz, and S. Bougleux, Graph regularization
for color and image processing, Compter Vision and Image Understanding,
107 (2007).



2560 T. J. Asaki, K. R. Vixie, M. Sottile and P. Cherapanov

[15] S. P. Morgan and K. R. Vixie, L1TV computes the flat norm for
boundaries, Abstract and Applied Analysis, 2007 (2007), pp. Article ID
45153, 14 pages. doi:10.1155/2007/45153.

[16] D. Mumford and J. Shah, Optimal approximations by piecewise
smooth functions and associated variational problems, Communications
on Pure and Applied Mathematics, 42 (1989).

[17] J. V. Neumann and A. W. Burks, Theory of self-reproducing au-
tomata, University of Illinois Press, 1966.

[18] M. Nikolova, Minimizers of cost-functions involving nonsmooth data-
fidelity terms, SIAM J. Numer. Anal., 40 (2003), pp. 965–994.

[19] L. Rudin, S. Osher, and D. Fatemi, Nonlinear total variation based
noise removal algorithms, Physica D, 60 (1992).

[20] D. Strong and T. Chan, Edge-preserving and scale-dependent proper-
ties of total variation regularization, Inverse Problems, 19 (2003).

[21] A.D. Szlam, M. Maggioni, R.R. Coifman Regularization on graphs
with function adapted diffusion processes, Journal of Machine Learning
Research, 9: 1711–1739, 2008.

[22] A. N. Tikhonov and V. Y. Arsenin, Solutions of ill-posed problems,
Winston, 1977.

[23] K. R. Vixie, Some properties of minimizers for the Chan-Esedoḡlu L1TV
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