On a Fixed Point Iteration Procedure

Bahmann Yousefi and Gholam Reza Moghimi

Department of Mathematics, Payame Noor University
P.O. Box: 19395-3697, Tehran, Iran
b_yousefi@pnu.ac.ir, Moghimimath@gmail.com

Abstract

Let (X, d) be a cone metric space and T be a self-map of X. In this paper we investigate the convergence of an iteration procedure involving T to a fixed point of T.

Mathematics Subject Classification: 47J25; 26A18

Keywords: Cone metric, semi-compact

1 Introduction

Let E be a real Banach space. A subset $P \subseteq E$ is called a cone in E if it satisfies the following:

(i) P is closed, nonempty and $P \neq \{0\}$.
(ii) $a, b \in \mathbb{R}, a, b \geq 0$ and $x, y \in P$ imply that $ax + by \in P$.
(iii) $x \in P$ and $-x \in P$ imply that $x = 0$.

The space E can be partially ordered by the cone $P \subseteq E$, by defining; $x \leq y$ if and only if $y - x \in P$. Also, we write $x \ll y$ if $y - x \in \text{int} P$, where $\text{int} P$ denotes the interior of P. A cone P is called normal if there exists a constant $k > 0$ such that $0 \leq x \leq y$ implies $\|x\| \leq k\|y\|$.

In the following we suppose that E is a real Banach space, P is a cone in E and \leq is a partial ordering with respect to P.

Definition 1.1 ([1]) Let X be a nonempty set. Assume that the mapping $d : X \times X \to E$ satisfies the following:

(i) $0 \leq d(x, y)$ for all $x, y \in X$ and $d(x, y) = 0$ if and only if $x = y$,
(ii) $d(x, y) = d(y, x)$ for all $x, y \in X$,
(iii) $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$.

Then d is called a cone metric on X and (X, d) is called a cone metric space.
If \(T \) is a self-map of \(X \), then by \(F(T) \) we mean the set of fixed points of \(T \). Also, \(N_0 \) will denote the set of nonnegative integers, i.e., \(N_0 = \mathbb{N} \cup \{0\} \).

Lemma 1.2 ([3]) Let \(P \) be a normal cone, and let \(\{a_n\} \) and \(\{b_n\} \) be sequences in \(E \) satisfying the following inequality:

\[
a_{n+1} \leq ha_n + b_n,
\]

where \(h \in (0, 1) \) and \(b_n \to 0 \) as \(n \to \infty \). Then \(\lim_{n} a_n = 0 \).

Definition 1.3 A self-map \(T \) of \((X,d)\) is called semi-compact if the convergence

\[
\|x_n - Tx_n\| \to 0
\]

implies that there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) and \(x^* \in X \) such that \(x_{n_k} \to x^* \).

For some sources on this topics see [1–7].

2 Main Result

Let \((X,d)\) be a cone metric space and \(T \) be a self-map of \(X \). Let \(x_0 \) be a point of \(X \), and assume then

\[
x_{n+1} = f(T, x_n)
\]

is an iteration procedure involving \(T \), which yields a sequence \(\{x_n\} \) of points from \(X \). Here we want to investigate the convergence of the iteration procedure

\[
x_{n+1} = \beta_n x_n + (1 - \beta_n) S_n x_n
\]

to a fixed point of \(T \), where

\[
S_n = \frac{1}{n}(I + T + ... + T^{n-1}).
\]

Definition 2.1 Let \(X \) be a vector space over the field \(F \). Assume that the function \(p : X \to E \) having the properties:

(a) \(p(x, y) \geq 0 \) for all \(x, y \) in \(X \).
(b) \(p(x + y) \leq p(x) + p(y) \) for all \(x, y \) in \(X \).
(c) \(p(\alpha x) = |\alpha| p(x) \) for all \(\alpha \in F \) and \(x \in X \).

Then \(p \) is called a cone seminorm on \(X \). A cone norm is a cone seminorm \(p \) such that

(d) \(x = 0 \) if \(p(x) = 0 \).
We will denote a cone norm by $\| \cdot \|_c$ and $(X, \| \cdot \|_c)$ is called a cone normed space. Also,
\[d_c(x, y) = \| x - y \|_c \]
defines a cone metric on X.

Theorem 2.2 Let $(X, \| \cdot \|_c)$ be a cone normed space with respect to a normal cone P in the real Banach space E, and T be a self-map of X with $F(T) \neq \emptyset$ and
\[d_c(Tx, q) \leq (1 + \alpha) d_c(x, q) \]
for all $x \in X$ and $q \in F(T)$ where
\[\sum_{n \in \mathbb{N}_0} \alpha_n < \infty. \]
Suppose that there exists a sequence $\{ \beta_n \} \subset (0, 1]$ such that
\[\sum_n \frac{1 - \beta_n}{n} < \infty \]
and the sequence $\{ x_n \}$ obtained by the iteration procedure
\[x_{n+1} = \beta_n x_n + (1 - \beta_n) S_n x_n \]
be bounded where
\[S_n = \frac{1}{n}(I + T^1 + \ldots + T^{n-1}). \]
Then $\lim d_c(x_n, q)$ exists for all $q \in F(T)$. Moreover, if T is a continuous semi-compact mapping and $d_c(Tx_n, x_n) \to 0$ as $n \to \infty$, then $\{ x_n \}$ convergence to a point of T.

Proof. Let $q \in F(T)$ and put
\[\alpha = \sum_n \alpha_n, \]
\[\gamma_0 = \sup d_c(x_n, q), \]
\[b_n = d_c(x_n, q) \]
for each n. By taking $\alpha_0 = 0$, we get
\[b_{n+1} = d_c(x_{n+1}, q) \]
\[= d_c(\beta_n x_n + (1 - \beta_n) S_n x_n, q) \]
\[\leq \beta_n d_c(x_n, q) + (1 - \beta_n) d_c(S_n x_n, q) \]
\[= \beta_n b_n + (1 - \beta_n) d_c(S_n x_n, q). \]
But,

\[d_c(S_n x_n, q) = d_c\left(\frac{1}{n}(x_n + T^1 x_n + \cdots + T^{n-1} x_n), nq\right) \]

\[\leq \frac{1}{n} \sum_{i=0}^{n-1} d_c(T^ix_n, q) \]

\[\leq \frac{1}{n} \sum_{i=0}^{n-1} (1 + \alpha_i) d_c(x_n, q) \]

\[= \frac{1}{n} b_n \sum_{i=0}^{n-1} (1 + \alpha_i) \]

\[= b_n + \frac{1}{n} \sum_{i=1}^{n-1} \alpha_i. \]

Hence we get

\[b_{n+1} \leq \beta_n b_n + (1 - \beta_n)(b_n + \frac{1}{n} b_n \sum_{i=1}^{n-1} \alpha_i) \]

\[= b_n + \frac{1}{n} (1 - \beta_n) \sum_{i=1}^{n-1} \alpha_i b_n \]

\[\leq b_n + \frac{1}{n} (1 - \beta_n) \alpha b_n \]

\[\leq b_n + \frac{1}{n} (1 - \beta_n) \alpha \gamma_0. \]

But

\[\sum_n \frac{1 - \beta_n}{n} < \infty, \]

thus

\[\lim_{k} \| \sum_{n=1}^{k} (b_{n+1} - b_n) \| \]

exists. But

\[\sum_{n=1}^{k} (b_{n+1} - b_n) = b_{k+1} - b_1. \]

Hence \(\lim_n \|b_n\| \) exists and so the proof of the first part is complete. Now let \(T \) be continuous semi-compact and \(d_c(T x_n, x_n) \rightarrow 0 \) as \(n \rightarrow \infty \). Since \(T \) is semi-compact, there exists a subsequence \(\{ x_{n_k} \} \) of \(x_n \) and \(q \in X \) such that \(d_c(x_{n_k}, q) \rightarrow 0 \). But \(T \) is continuous, thus

\[d_c(T x_{n_k}, T q) \rightarrow 0 \]
as $k \to \infty$. Now we have

$$d_c(Tq, q) \leq d_c(Tq, Tx_{n_k}) + d_c(Tx_{n_k}, q) + d_c(q, x_{n_k})$$

which tends to 0 as $k \to \infty$. Hence $Tq = q$. So $q \in F(T)$ and $d_c(x_{n_k}, q) \to 0$. Also, we saw by the first part of the proof, $\lim_n d_c(x_{n_k}, q)$ exists. This implies that $d_c(x_{n_k}, q) \to 0$ and so the proof is complete. \square

References

Received: January, 2012