Arash Method and Uncontrollable Data in DEA

Dariush Khezrimotlagh*, Shaharuddin Salleh and Zahra Mohsenpour

Department of Mathematics, Faculty of Science, UTM, Johor, Malaysia

Abstract

The uncontrollable data such as environmental variables are a kind of data which cannot be controlled by managers or users, but they may affect in assessing the performance evaluation of decision making units (DMU). In this paper, the Arash Method (AM) is improved to assess the efficiency scores of DMUs which have some uncontrollable data. Moreover, the paper illustrates how it would be possible to examine the effects of uncontrollable data to find the efficient DMUs among the technical efficient ones and also arrange both inefficient and technical efficient DMUs at the same time. A numerical example is also considered to depict the validity and capabilities of the proposed extension Arash Method.

Mathematics Subject Classification: 90

Keywords: Data envelopment analysis, Arash method, Uncontrollable data, Technical efficiency, Efficiency.

1. Introduction

Arash Method (AM) in data envelopment analysis (DEA) is a method which discriminates between technical efficient decision making units (DMUs) and it is able to arrange all inefficient and technical efficient DMUs at the same time. This study improves AM for assessing the efficiency of DMUs with some uncontrollable data. In the paper, Section 2 is the background, the proposed method is illustrated in Section 3 and the paper is concluded in Section 4.

2. Background

In data envelopment analysis the Pareto-Koopmans definition states that full (100%) efficiency is attained by any DMU if and only if none of its inputs or outputs can be improved without worsening some of its other inputs or outputs [3]. However, Khezrimotlagh et al. [5] proved that similar to economics the

* Corresponding author e-mail address: khezrimotlagh@gmail.com, Fax: +60 75537800.
Pareto-Koopmans definition is only able to identify the technical efficient DMUs and the meaning of technical efficiency should not be wrongly interpreted as efficiency. They proposed some counter examples to illustrate their claims and proposed a new method called Arash Method (AM) to examine the Farrell frontier and arrange technical efficient DMUs. They also proved that a technical efficient DMU may even be less efficient than an inefficient one. In order to illustrates the Arash Method let us assume that there are \(n \) DMUs (DMU\(_i\), \(i = 1, 2, ..., n \)) with \(m \) nonnegative inputs \((x_{ij}, j = 1, 2, ..., m) \) and \(p \) nonnegative outputs \((y_{ik}, k = 1, 2, ..., p) \) for each DMU which at least one of its inputs and one of its outputs are not zero. The \(\varepsilon \)-AM is as following where DMU\(_l\) (\(l = 1, 2, ..., n \)) is evaluated, \(w_j^- \) and \(w_k^+ \) are the user specified weights obtained through values judgment, \(\varepsilon = (\varepsilon_1, \varepsilon_2, ..., \varepsilon_m) \), \(\varepsilon_j \geq 0 \), \(s_j^- \)'s and \(s_k^+ \)'s are nonnegative slacks, for \(j = 1, 2, ..., m \) and \(k = 1, 2, ..., p \).

\[\begin{align*}
\text{\(\varepsilon \)-AM:} & \quad \max \sum_{j=1}^{m} w_j^- s_j^- + \sum_{k=1}^{p} w_k^+ s_k^+ \\
\text{Subject to} & \quad \sum_{i=1}^{n} \lambda_i x_{ij} + s_j^- = x_{ij} + \varepsilon_j/w_j^- , \forall j, \\
& \quad \sum_{i=1}^{n} \lambda_i y_{ik} - s_k^+ = y_{ik} , \forall k, \\
& \quad \lambda_i \geq 0 , \forall i, \\
& \quad s_j^- \geq 0 , \forall j, \\
& \quad s_k^+ \geq 0 , \forall k.
\end{align*}\]

Moreover, if the weights \(w_j^- \) and \(w_k^+ \) are unknown they are defined as \(1/x_j \) and \(1/y_k \) where \(x_j \neq 0 \) and \(y_k \neq 0 \), respectively. Otherwise, they can be defined a nonnegative real number according to the goal of DMUs. In addition, it is generally defined that \(\varepsilon = (\varepsilon, \varepsilon, ..., \varepsilon) \), and when \(\varepsilon > 0 \) and \(A^e > 1 \) for a DMU, \(\varepsilon \)-AM proposes the DMU to change its data to the new \(\varepsilon \)-AM target and otherwise i.e., when \(A^e \geq 1 \), \(\varepsilon \)-AM warns that the DMU should not change its data, because it may decrease its efficiency score. Khezrimotlagh et al. [6] also proposed the nonlinear AM, proved that the AM is able to measure cost-efficiency of DMUs [7] and proposed the following definition of efficiency in DEA:

Definition: A technical efficient DMU is efficient with \(\varepsilon \)-degree of freedom in inputs if \(A^e_0 - A^e_e \leq \delta \). Otherwise, it is inefficient with \(\varepsilon \)-degree of freedom in inputs. The proposed amount for \(\delta \) is \(10^{-1}\varepsilon \) or \(\varepsilon/m \).

On the other hand, DMUs may sometimes have some uncontrollable inputs such as population or runway in airport. In order to consider those data, Cooper et al. [4] introduced the following radial model for uncontrollable data based on the Banker and Morey [1] model and called it NCN. Moreover, Charnes et al. [2] extended the additive model as below where the sets C and NC refer to the indexes of controllable and non-controllable data, respectively.
NCN:

\[
\min \theta,
\]

Subject to

\[
\sum_{i=1}^{n} \lambda_i x_{ij} \leq \theta x_{ij}, \text{ for } j \text{'s in C},
\]

\[
\sum_{i=1}^{n} \lambda_i x_{ij} = x_{ij}, \text{ for } j \text{'s in NC},
\]

\[
\sum_{i=1}^{n} \lambda_i y_{ik} \geq y_{ik}, \text{ for } k \text{'s in C},
\]

\[
\sum_{i=1}^{n} \lambda_i y_{ik} = y_{ik}, \text{ for } k \text{'s in NC},
\]

\[
\lambda_i \geq 0, \ \forall i.
\]

Extended ADD:

\[
\max \sum_{j=1}^{m} s_j^- + \sum_{k=1}^{p} s_k^+,
\]

Subject to

\[
\sum_{i=1}^{n} \lambda_i x_{ij} + s_j^- = x_{ij}, \ \forall j,
\]

\[
\sum_{i=1}^{n} \lambda_i y_{ik} - s_k^+ = y_{ik}, \ \forall k,
\]

\[
\lambda_i \geq 0, \ \forall i,
\]

\[
s_j^- \geq 0, \text{ for } j \text{'s in C},
\]

\[
s_k^+ \geq 0, \text{ for } k \text{'s in C},
\]

\[
s_j^- = 0, \text{ for } j \text{'s in NC},
\]

\[
s_k^+ = 0, \text{ for } k \text{'s in NC}.
\]

3. Uncontrollable Arash Model

From the above models it is very easy to improve Arash Model to consider uncontrollable data, however, the corresponding constraints to the uncontrollable input values of DMU, i.e., \(\sum_{i=1}^{n} \lambda_i x_{ij} = x_{ij} \), for \(j \)’s in NC, can be changed in Arash Method. In other words, without decreasing the uncontrollable inputs Arash Method is able to examine the instabilities of the combinations of data and arrange the technical efficient DMUs among all DMUs by assuming when a little error happens in the inputs data. As it is clearly illustrated in the following numerical example, it would be much significant where these two constraints (1) \(\sum_{i=1}^{n} \lambda_i x_{ij} + s_j^- = x_{ij} + \frac{\epsilon_j}{w_j^-} \) and (2) \(s_j^- \leq \frac{\epsilon_j}{w_j^-} \), for \(j \)’s in NC, are replaced by \(\sum_{i=1}^{n} \lambda_i x_{ij} = x_{ij} \), in the Arash Model for uncontrollable inputs. Therefore, the Improved AM and the proposed extension of AM are as following:

Improved \(\epsilon \)-AM:

\[
\max \sum_{j=1}^{m} w_j^- s_j^- + \sum_{k=1}^{p} w_k^+ s_k^+,
\]

Subject to

\[
\sum_{i=1}^{n} \lambda_i x_{ij} + s_j^- = x_{ij} + \frac{\epsilon_j}{w_j^-}, \ \forall j,
\]

\[
\sum_{i=1}^{n} \lambda_i y_{ik} - s_k^+ = y_{ik}, \ \forall k,
\]

\[
\lambda_i \geq 0, \ \forall i,
\]

\[
s_j^- \geq 0, \text{ for } j \text{'s in C},
\]

\[
s_k^+ \geq 0, \text{ for } k \text{'s in C},
\]

\[
s_j^- = 0, \text{ for } j \text{'s in NC},
\]

\[
s_k^+ = 0, \text{ for } k \text{'s in NC}.
\]

Proposed Extension \(\epsilon \)-AM:

\[
\max \sum_{j=1}^{m} w_j^- s_j^- + \sum_{k=1}^{p} w_k^+ s_k^+,
\]

Subject to

\[
\sum_{i=1}^{n} \lambda_i x_{ij} + s_j^- = x_{ij} + \frac{\epsilon_j}{w_j^-}, \ \forall j,
\]

\[
\sum_{i=1}^{n} \lambda_i y_{ik} - s_k^+ = y_{ik}, \ \forall k,
\]

\[
\lambda_i \geq 0, \ \forall i,
\]

\[
s_j^- \geq 0, \text{ for } j \text{'s in C},
\]

\[
s_k^+ \geq 0, \text{ for } k \text{'s in C},
\]

\[
s_j^- \leq \frac{\epsilon_j}{w_j^-}, \text{ for } j \text{'s in NC},
\]

\[
s_k^+ = 0, \text{ for } k \text{'s in NC}.
\]

The constraints \(s_j^- \leq \frac{\epsilon_j}{w_j^-} \), in proposed extension \(\epsilon \)-AM, guarantee the corresponding uncontrollable inputs and do not allow the model to decrease their values, because the \(s_j^- \)’s at most can be the same as \(\frac{\epsilon_j}{w_j^-} \) which were added to \(x_{ij} \)’s. In order to examine the models and illustrate their capabilities, let us consider the example of public libraries with four inputs (floor area, number of books, staffs and population of wards) and two outputs (number of registered residents and borrow books) in the 12 Wards of the Tokyo Metropolitan Area in 1986 [4], which are labelled as A01 to A12 in Table 1. Assume that the
population of wards, i.e., Input4, is uncontrollable and $w_j^- = 1/x_j$, and $w_k^+ = 1/y_k$, for $j = 1, 2, 3, 4$ and $k = 1, 2$.

Table 1: The example of 12 DMUs with one uncontrollable input.

<table>
<thead>
<tr>
<th>DMU</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>11381</td>
<td>363116</td>
<td>69</td>
<td>192235</td>
<td>57279</td>
<td>758704</td>
</tr>
<tr>
<td>A02</td>
<td>10086</td>
<td>541658</td>
<td>114</td>
<td>194091</td>
<td>66137</td>
<td>1438746</td>
</tr>
<tr>
<td>A03</td>
<td>5077</td>
<td>511467</td>
<td>84</td>
<td>267385</td>
<td>65391</td>
<td>1562274</td>
</tr>
<tr>
<td>A04</td>
<td>10866</td>
<td>566708</td>
<td>118</td>
<td>503914</td>
<td>102967</td>
<td>1707645</td>
</tr>
<tr>
<td>A05</td>
<td>11469</td>
<td>768484</td>
<td>103</td>
<td>537746</td>
<td>84510</td>
<td>2299694</td>
</tr>
<tr>
<td>A06</td>
<td>10888</td>
<td>1148863</td>
<td>202</td>
<td>808369</td>
<td>191166</td>
<td>4096300</td>
</tr>
<tr>
<td>A07</td>
<td>6235</td>
<td>394158</td>
<td>77</td>
<td>389894</td>
<td>57727</td>
<td>1100779</td>
</tr>
<tr>
<td>A08</td>
<td>6500</td>
<td>467617</td>
<td>74</td>
<td>517318</td>
<td>47236</td>
<td>1223026</td>
</tr>
<tr>
<td>A09</td>
<td>10717</td>
<td>844949</td>
<td>120</td>
<td>622550</td>
<td>89401</td>
<td>1909698</td>
</tr>
<tr>
<td>A10</td>
<td>7781</td>
<td>528799</td>
<td>96</td>
<td>365844</td>
<td>37467</td>
<td>1348588</td>
</tr>
<tr>
<td>A11</td>
<td>7072</td>
<td>527457</td>
<td>92</td>
<td>332609</td>
<td>56064</td>
<td>1345185</td>
</tr>
</tbody>
</table>

Table 2: The outcomes of the models without uncontrollable data and where Input4 is uncontrollable.

<table>
<thead>
<tr>
<th>DMU</th>
<th>CCR</th>
<th>A_0^*</th>
<th>A_0^*</th>
<th>A_0^*</th>
<th>NCN</th>
<th>A_0^*</th>
<th>A_0^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>1.00000</td>
<td>1.00000</td>
<td>0.99996</td>
<td>0.99993</td>
<td>1.00000</td>
<td>1.00000</td>
<td>0.99999</td>
</tr>
<tr>
<td>A02</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>0.99999</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>A03</td>
<td>1.00000</td>
<td>1.00000</td>
<td>0.99999</td>
<td>0.99998</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>A04</td>
<td>1.00000</td>
<td>1.00000</td>
<td>0.99997</td>
<td>0.99994</td>
<td>1.00000</td>
<td>1.00000</td>
<td>0.99999</td>
</tr>
<tr>
<td>A05</td>
<td>1.00000</td>
<td>1.00000</td>
<td>0.99997</td>
<td>0.99994</td>
<td>1.00000</td>
<td>1.00000</td>
<td>0.99999</td>
</tr>
<tr>
<td>A06</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>A07</td>
<td>0.84407</td>
<td>0.66529</td>
<td>0.66529</td>
<td>0.66529</td>
<td>1.00000</td>
<td>1.00000</td>
<td>0.99998</td>
</tr>
<tr>
<td>A08</td>
<td>0.78671</td>
<td>0.56949</td>
<td>0.56949</td>
<td>0.56949</td>
<td>1.00000</td>
<td>1.00000</td>
<td>0.99999</td>
</tr>
<tr>
<td>A09</td>
<td>0.78723</td>
<td>0.62539</td>
<td>0.62539</td>
<td>0.62539</td>
<td>0.94177</td>
<td>0.78658</td>
<td>0.78657</td>
</tr>
<tr>
<td>A10</td>
<td>0.78494</td>
<td>0.53513</td>
<td>0.53513</td>
<td>0.53513</td>
<td>0.70114</td>
<td>0.53513</td>
<td>0.53513</td>
</tr>
<tr>
<td>A11</td>
<td>0.72154</td>
<td>0.48439</td>
<td>0.48439</td>
<td>0.48439</td>
<td>0.80040</td>
<td>0.48439</td>
<td>0.48439</td>
</tr>
<tr>
<td>A12</td>
<td>0.75835</td>
<td>0.64631</td>
<td>0.64631</td>
<td>0.64631</td>
<td>0.77275</td>
<td>0.64631</td>
<td>0.64631</td>
</tr>
</tbody>
</table>

From the fifth column of Table 2, 0.00002-AM identifies that A02, A03 and A06 are efficient with 0.00002-degree of freedom in input and arranges all DMUs together. In addition, when Input4 is considered as uncontrollable, four technical efficient DMUs A01, A02, A03 and A06 can be efficient with 0.00002-degree of freedom in input and they have the most significant combination of their data where 0.00002 errors happen in those inputs by improved AM as the last column of Table 2 depicts it. However, it can arrange DMUs A02, A03 and A06.

Now, let us consider the proposed extension ε-AM. Table 3 represents the scores of 0.00001-AM and its suggestion targets for those DMUs in Table 1. In
order to illustrate the outcomes clearly, the amounts of slacks and \(\varepsilon x_j = 0.00001 \times x_j \) are represented in Table 4.

Table 3: The targets and scores of proposed model (Extended 0.00001-AM) and \(A^*_{0.00002} \).

<table>
<thead>
<tr>
<th>DMU</th>
<th>(A^*_{0.0001})</th>
<th>(x_1^*)</th>
<th>(x_2^*)</th>
<th>(x_3^*)</th>
<th>(y_1^*)</th>
<th>(y_2^*)</th>
<th>(A^*_{0.00002})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>0.99996</td>
<td>11380.43</td>
<td>363119.11</td>
<td>69.00</td>
<td>192236.92</td>
<td>57279.00</td>
<td>758750.31</td>
</tr>
<tr>
<td>A02</td>
<td>1.00000</td>
<td>1085.86</td>
<td>541655.05</td>
<td>114.00</td>
<td>194092.94</td>
<td>66137.00</td>
<td>1438746.00</td>
</tr>
<tr>
<td>A03</td>
<td>0.99999</td>
<td>5076.94</td>
<td>511462.21</td>
<td>84.00</td>
<td>267387.67</td>
<td>65391.49</td>
<td>1562274.00</td>
</tr>
<tr>
<td>A04</td>
<td>0.99999</td>
<td>1086.72</td>
<td>566713.67</td>
<td>118.00</td>
<td>503914.00</td>
<td>102967.00</td>
<td>1707678.16</td>
</tr>
<tr>
<td>A05</td>
<td>0.99999</td>
<td>11468.69</td>
<td>768477.95</td>
<td>103.00</td>
<td>537746.00</td>
<td>84511.40</td>
<td>2299694.00</td>
</tr>
<tr>
<td>A06</td>
<td>1.00000</td>
<td>10888.00</td>
<td>1148863.00</td>
<td>202.00</td>
<td>808369.00</td>
<td>191166.00</td>
<td>4096300.00</td>
</tr>
</tbody>
</table>

As it can be seen, the optimum values of \(s_{-i}^* \)’s in Table 4 cannot be more than \(\varepsilon x_4 \). However, the values of \(s_{4-i}^* \) for DMUs A01, A02, A03 and A11 are 0. This outcome means that the combinations of their controllable data can be improved even if those DMUs increase their uncontrollable Input4. For example, the proposed extension 0.00001-AM suggests A01 (technical efficient DMU) to decrease its Input1 to 11380.43 and increase its output2 to 758750.31, even if it increases 0.001% of its input2 and input4. Although, A01 is able to reject increasing the input2 and input4 values, it is recommended to improve its input1 and output2 in order to have a good combination of its data. In other words, AM suggests A01 to concentrate to decrease its input1 and increase output2. This capability of AM clearly represents its worth in comparison with other current DEA models.

Moreover, the proposed extension 0.00001-AM declares that the technical efficient DMU A02 should focus to decrease its input1 and input2 even if it
increases its uncontrollable input. Therefore, it cannot be more efficient than A06. In fact, 0.00002-AM characterizes that A02, A03 and A06 are efficient with 0.00002-degree of freedom in input as the last column of Table 3 illustrates it. Indeed, just 0.002% errors in each input is enough that AM discriminates the differences between those technical efficient DMUs in Table 1 and arrange all DMUs at the same time. As a result, the proposed extension ε-AM has more advantages than the first improved AM.

4. Conclusion

This paper proposes an extension of AM to consider uncontrollable data. The results significantly demonstrate the validity of the proposed model. In addition, although, the paper focuses on uncontrollable data, AM is able to improve for non-discretionary and bounded variables, too.

References

Received: June, 2012