Total Co-Independent Domination in Graphs

N. D. Soner

Department of Studies in Mathematics
University of Mysore, Mysore 570 006, India

B. V. Dhananjaya Murthy

Department of Mathematics
Nitte Meenakshi Institute of Technology
Yelahanka, Bangalore, India

G. Deepak

Department of Mathematics
Nitte Meenakshi Institute of Technology
Yelahanka, Bangalore, India
deepak1873@gmail.com

Abstract

A set D of vertices in a graph G is a dominating set if every vertex in $V - D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A dominating set D of a graph G is total dominating set if the induced subgraph $\langle D \rangle$ has no isolated vertices. In this paper, we introduce the total co-independent domination in graphs, exact value for some standard graphs, bounds and some results are established.

Mathematics Subject Classification: 05C69

Keywords: Dominating set, Total dominating set, Total co-independent dominating set, Total co-independent domination number

1 Introduction

All graphs in this paper will be finite and undirected, without loops and multiple edges. As usual $p = |V|$ and $q = |E|$ denote the number of vertices and edges of a graph G, respectively. In general, we use $\langle X \rangle$ to denote the subgraph
induced by the set of vertices X. $N(v)$ and $N[v]$ denote the open and closed neighbourhood of a vertex v, respectively. A set D of vertices in a graph G is a dominating set if every vertex in $V - D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. If G is connected graph, then a vertex cut of G is a subset R of V with the property that the subgraph of G induced by $V - R$ is disconnected. If G is not a complete Graph, then the vertex connectivity number $k(G)$ is the minimum cardinality of a vertex cut. If G is complete graph K_p it is known that $k(G) = p - 1$.

For terminology and notations not specifically defined here we refer reader to [4]. For more details about domination number and its related parameters, we refer to [5], [11], and [13].

A dominating set S of G is called a connected dominating set if the induced subgraph $\langle S \rangle$ is connected. The minimum cardinality of a connected dominating set of G is called the connected domination number of G and is denoted by $\gamma_c(G)$ [12].

A dominating set S of G is called non-split dominating set if the induced subgraph $\langle V - S \rangle$ is connected. The minimum cardinality of a non-split dominating set of G is called the non split domination number of G and is denoted by $\gamma_{ns}(G)$ [8].

A dominating set S of G is called total dominating set if the induced subgraph $\langle S \rangle$ has no isolated vertices. The minimum cardinality of a total dominating set of G is called the total domination number of G and is denoted by $\gamma_t(G)$ [5].

Many application of dominations in graphs can be extended to the total co-independent domination. For example the routing protocols in such networks are typically based on the concept of a virtual backbone, which is a (small) subset of nodes that are used as a core for communication within the network. In particular, totally connected dominating sets are often used to describe a virtual backbone in ad hoc wireless networks. This motivates us to introduce the concept of total co-independent domination in a graph.

2 Total Co-independent Domination Number

Definition. A total dominating set S of a graph $G = (V, E)$ is called total co-independent dominating set if the induced subgraph $\langle V - S \rangle$ has no edge and has at least one vertex. The minimum cardinality of a total co-independent dominating set of G is called the total co-independent domination number of G and is denoted by $\gamma_{t,coi}(G)$. A total co-independent dominating set S is said
to be minimal if no proper subset of S is total co-independent dominating set.

Example 2.1 Let G be the graph in the Figure 1, $V(G) = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

![Figure 1: G](image)

\(\{2, 3\}\) is the minimum total dominating set. Hence $\gamma_t(G) = 2$, clearly $\{2, 3\}$ is not total co-independent set of G. The minimum total co-independent dominating sets are $\{1, 2, 3, 4\}$, $\{1, 2, 3, 5\}$, $\{2, 3, 4, 9\}$, $\{2, 3, 5, 9\}$. Therefore $\gamma_{t,\text{coi}}(G) = 4$.

As in the standard dominating set, any minimum total co-independent dominating set is minimal, but the converse is not true as seen in Figure 1. The set $\{1, 2, 4, 5, 6, 7\}$ is minimal total co-independent dominating set but not minimum total co-independent dominating set.

Observation 2.2 A non empty graph G is without isolated vertices if and only if it admits a total co-independent dominating set.

Theorem 2.3 A total co-independent dominating set D of a graph G is minimal if and only if for each vertex $v \in D$, one of the following conditions is satisfied: (i) There exist a vertex $u \in V$ such that $N(u) \cap D = \{v\}$.

(ii) For every vertex v there exist $w \in V - D$ adjacent to v.

Proof. Let D be a total co-independent dominating set of G. Suppose there exist a vertex $v \in D$ does not satisfy any of the conditions. Then Clearly by (i) $D - \{v\}$ is total dominating set and also by (ii) $V - (D - \{v\})$ is independent set. Therefore $D - \{v\}$ is total co-independent dominating set of G, a contradiction. Hence one of the given conditions is satisfied. The converse is straightforward.
The following observations are immediate.

Observation 2.4 For any Cycle C_p, $\gamma_{t,coi}(C_p) = p - \left\lfloor \frac{p}{3} \right\rfloor$.

Observation 2.5 For any path P_p, $\gamma_{t,coi}(P_p) = p - \left\lfloor \frac{p}{3} \right\rfloor$.

Observation 2.6 For any wheel W_p with p vertices, $\gamma_{t,coi}(W_p) = 1 + \left\lceil \frac{p-1}{2} \right\rceil$.

Observation 2.7 For any complete Graph K_p, $\gamma_{t,coi}(K_p) = p - 1$.

Observation 2.8 For any complete bipartite graph $K_{r,s}$ where $r \leq s$, $\gamma_{t,coi}(K_{r,s}) = r + 1$.

Proposition 2.9 Let G be graph with $p \geq 3$ vertices and has no isolated vertices, then

$$2 \leq \gamma_{t,coi}(G) \leq p - 1.$$

Further the equality of upper bound is attained if G is P_3 or G is two star, and the upper bound attained if G is complete graph K_p or $G = P_2 \cup P_3$.

Proof. Let G be graph with $p \geq 3$ vertices and has no isolated vertices and D total co-independent dominating set of G. Then obviously D is total total dominating set. Hence $2 \leq \gamma_{t,coi}(G)$. For the upper bound, suppose that $D = V - \{u\}$ where u is a pendent vertex with respect to some spanning tree of G. Clearly D is total co-independent dominating set of G. Therefore $\gamma_{t,coi}(G) \leq p - 1$.

Hence $2 \leq \gamma_{t,coi}(G) \leq p - 1$.

Proposition 2.10 For any graph $G = (V, E)$ with no isolated vertices and $|V| \geq 3$,

(i) $\gamma(G) \leq \gamma_s(G) \leq \gamma_{t,coi}(G)$.

(ii) $\gamma(G) \leq \gamma_t(G) \leq \gamma_{t,coi}(G)$.

Proof. Let $G = (V, E)$ be graph with no isolated vertices. Suppose that $S \subseteq V$ is any minimum total co-independent dominating set of G. Since for any graph G any total co-independent dominating set S is also split dominating set and every split dominating set is also dominating set. Hence $\gamma(G) \leq \gamma_s(G) \leq \gamma_{t,coi}(G)$. similarly we can proof (ii).

Proposition 2.11 If $G = (V, E)$ is a graph with no isolated vertices and $|V| \geq 3$ and H is spanning subgraph with no isolated vertices and has vertices greater than two of G then, $\gamma_t(G) \leq \gamma_{t,coi}(H)$.
Proof. Let S be any minimum total co-independent dominating set of H. Then obviously from the definition of the total co-independent domination, S is also total dominating set of H. Therefore S is total dominating set of G. Hence $\gamma_t(G) \leq \gamma_{t, coi}(H)$.

Theorem 2.12 Let G be a graph with D as minimal total co-independent dominating set. then $V - D$ is independent dominating set of G.

Proof. Let D be minimal total co-independent dominating set of G. Suppose that $V - D$ is not independent dominating set of G, since D is total co-independent dominating set of G, then $V - D$ is independent set, that means if we suppose that $V - D$ is not independent dominating set of G, then there exists a vertex u such that u is not dominated by any vertex in $V - D$. Since G has total co-independent dominating set, then G has no isolated vertices, therefore u is dominated by at least one vertex in $D - \{u\}$. Thus $D - \{u\}$ is total co-independent dominating set of G, which contradicts the minimality of D. Thus every vertex in D is adjacent with at least one vertex in $V - D$ and $V - D$ is independent set. Hence $V - D$ is independent dominating set of G.

Proposition 2.13 If $G = (V, E)$ is a graph with no isolated vertices and $|V| \geq 3$ and H is spanning subgraph with no isolated vertices and has vertices greater than two of G then, $\gamma_{t, coi}(H) \leq \gamma_{t, coi}(G)$.

Proof. As the number of independent vertices may increase in any connected spanning subgraph H of G we can still maximize the set $V - D$, which results in the decrease of the value $\gamma_{t, coi}$ of G. Hence, $\gamma_{t, coi}(H) \leq \gamma_{t, coi}(G)$.

Observation 2.14 For any graph G any total co-independent dominating set of G contains all the support vertices.

Proof. Suppose the graph G has a total co-independent dominating set D and let v be support vertex does not belongs to D then clearly the pendent vertex which adjacent to v can not belong to D from the definition of total co-independent dominating set. Hence D is not a dominating set, which is contradiction.

Theorem 2.15 Let $G = (V, E)$ with total co-independent domination number $\gamma_{t, coi}(G)$, then

$$p - \beta \leq \gamma_{t, coi}(G) \leq q,$$

where β is the independence number of G and q is the number of edges in G.

Proof. Since $V - D$ is independent in a total co-independent dominating set D and since β is the independence number, then obviously $p - \beta \leq \gamma_{t, coi}(G)$.

For the upper bound we know that the total co-independent domination number exist if G has no isolated vertices and has vertices more than two, therefore $q \geq p - 1$. Hence $\gamma_{t,coi}(G) \leq q$.

Proposition 2.16 For any connected graph G, we have

$$\gamma_{t,coi}(G) \leq 2q - p + 1.$$

Proof. Since from Observation 2.4, $\gamma_{t,coi}(G) \leq p - 1$.

Hence $\gamma_{t,coi}(G) \leq p - 1 = 2(p - 1) - p + 1 \leq 2q - p + 1$.

Theorem 2.17 For any graph G with $p \geq 3$ with out isolated vertices and has complement graph \overline{G} with out isolated vertices,

$$\gamma_{t,coi}(G) + \gamma_{t,coi}(\overline{G}) \leq \frac{p(p-1)}{2}.$$

Proof. From Theorem 2.15 we have $\gamma_{t,coi}(G) \leq q$ and similarly $\gamma_{t,coi}(\overline{G}) \leq \overline{q}$, where \overline{q} is the number of edges in \overline{G}. Therefore $\gamma_{t,coi}(G) + \gamma_{t,coi}(\overline{G}) \leq q + \overline{q} = \frac{p(p-1)}{2} - p$. Hence $\gamma_{t,coi}(G) + \gamma_{t,coi}(\overline{G}) \leq \frac{p(p-1)}{2}$. The following result is obvious. Hence, we omit its proof.

Theorem 2.18 For any graph G with $p \geq 3$ with out isolated vertices and has complement graph \overline{G} with out isolated vertices,

$$\gamma_{t,coi}(G)\gamma_{t,coi}(\overline{G}) \leq (p - 1)^2.$$

ACKNOWLEDGEMENTS. This research was supported by UGC-SAP, DRS-1, NO: F.510/2/DRS/2011(SAP-1).

References

Received: August, 2012