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Abstract

In this paper numerical algorithms for solving ‘fuzzy ordinary
differential equations’ based on Seikkala derivative of fuzzy process [9],
are considered. A numerical method based on the Runge-Kutta method
of order five in detail is discussed and this is followed by a complete
error analysis. The algorithm is illustrated by solving some linear and
nonlinear Fuzzy Cauchy Problems.
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1 Introduction

The concept of fuzzy derivative was first introduced by S.L. Chang, L.A. Zadeh
in [3] . It was followed up by D. Dubois, H. Prade in [4] , who defined and used
the extension principle. The fuzzy differential equation and the initial value
problem were regularly treated by O. Kelva in [7, 8] and by S. Seikkala in [9].
The numerical method for solving fuzzy differential equations is introduced by
M.Ma, M.Friedman, A. Kandel in [12] by the standard Euler Method and by
authors in [1, 2] by Taylor method.

The structure of this Chapter organizes as follows. In section 2 some basic
results on fuzzy numbers and definition of a fuzzy derivative, which have been
discussed by S. Seikkala in [9], are given. In section 3 we define the problem,
this is a fuzzy Cauchy problem whose numerical solution is the main interest
of this chapter. The numerically solving fuzzy differential equation by the
Runge-Kutta method of order 5 is discussed in section 4. The proposed
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algorithm is illustrated by solving some examples in section 5 and conclusion
is in section 6.

2 Preliminary Notes

Consider the initial value problem

y(t)=flt,yt); a<t<b,
(1)

y(a) = q,

The basis of all Runge-Kutta method is to express the difference between the
value of y at t,,,; and ¢, as

Ynt1 — Yn = szkh (2>
i=1
where for i = 1,2,...,m, the w]s are constants and
i—1
ki=h- f(t, + a;h, yn+ZBijkj>' (3)
j=1

Equation (2) is to be exact for powers of h through h™, because it is to be
coincident with Taylor series of order m. Therefore, the truncation error 7,,,
can be written as

Tpp = k™ + O(R™2).

The true magnitude of ~,, will generally be much less than the bound of
theorem 2.1 Thus, if the O(h™*?) term is small compared with ~,,A™, as we
expect, to be so if h is small, then the bound on ~,,A™*!, will usually be a
bound on the error as a whole. The famous nonzero constants «;, 3;; in the
Runge Kutta method of order 5 are

a; =0, 042:043:%,044:%7045:1,521:%7 531:@32:%,@11:%,
Bao=0,83=2, Bs1 =13, Boo=0,053 =7, Bsa =2,
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where m = 5. Hence we have,
Yo = &,
ki = h.f(ti, i),
ko =h.f(t; + %,y + 5,
ky=h.f(t;+ 2,y + 5 + &), (4)
k4:h-f(ti+%:yi+%+%>:
ks =h.f(t; + h,y; + 5 — 35 4 2k),

Yiv1 = Y + %(k’l + 41{34 + k5),

where

b—
a:t0§t1§§tN:bcmdh:(Na):tz+1—tz (5)

Theorem 2.1 Let f(t,y) belong to C*[a,b] and let it’s partial derivatives
are bounded and assume there exists, L, M, positive numbers, such that

3z‘+jf i+ . .
then in the Runge-Kutta method of order 5, y(tiv1) — Yiy1 = Mh ML° +

O(h")

A triangular fuzzy number v, is defined by three numbers a; < as < as
where the graph of v(x), the membership function of the fuzzy number v, is a
triangle with base on the interval [a1, as] and vertex at x = ay. We specify v as
(ay/az/as). We will write: (1)v >0 if ay > 0; (2)v >0 if a; > 0; (3)v < 0 if
az < 0; and (4)v <0 ifag <O0.

Let E be the set of all upper semicontinuous normal convex fuzzy numbers
with bounded r—level intervals. It means that if v € E then the r—level set

[v], = {s] v(s) >}, 0<r<1,
15 a closed bounded interval which is denoted by

[0l = [oa(r) , 0a(r)].
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Let I be a real interval. A mapping x : I — E is called a fuzzy process and
its r—level set is denoted by

[(t)], = [x1(t;7) ,xo(t;7)], tel, re(0,1].
The derivative = (t) of a fuzzy process x(t) is defined by
[z ()], = [z, (t:r) ,ay(t;7)], tel, re(0,1],
provided that this equation defines a fuzzy number, as in Seikkala [9].

Lemma 2.2 Let v,w € E and s scalar, then for r € (0,1]

[v+w] = [0u(r) +wilr) ,a(r) + walr)]
[U —wL = [01(7“) wi(r) , va(r) — wa(r )}
[U.U)L = [min{vl( )owq (1), v1 (1) wa (1), va(r).wy (1), va(r).wa(r)},

max{ vy (r).wy(r), v1(r).wa(r), ve(r).wy(r), va(r).wsy (7“)}} )

], =5[],

3 A Fuzzy Cauchy Problem

Consider the fuzzy initial value problem

y'(t) = f(ty(t), tel=10,T],
{ (6)

y(0) = wo,

where f is a continuous mapping from R, x R into R and yy € E with r—level
sets

[yO]T = [yl(();r) ayQ(O;T)L re (07 1]'

The extension principle of Zadeh leads to the following definitioin of f(¢,vy)
when y = y(t) is a fuzzy number

F(t9)(s) = sup{y(r)| s = f(t,7)}, s€R
It follows that

[F(ty)] = [Aysr), By, e 1],
where

fult ysr) = min{ f(tu)] w € [yi(r), yo(r)]},

foltyir) = maz{ f(t,w)| w € [y (r), ya(r)]}.
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Theorem 3.1 Let f satisfy
|f(tv) = f@0) < gt lv—1]), t=0, v,vER,

where g : Ry X Ry is a continuous mapping such that r — g(t,r) is nonde-
creasing, the initial value problem

/

w(t) =gt ult), u(0)=uo, (8)

has a solution on R foruy > 0 and that u(t) = 0 is the only solution of (8) for
ug = 0. Then the fuzzy initial value problem (6) has a unique fuzzy solution.

4 The Runge-Kutta Method of Order Five

Let the exact solution [Y(t)], = [Yi(t;r), Ya(t;7)] is approximated by some
[yl = [ya(t;7), y2(t;7)]. From (2),(3) we define

U1 (thrl; 7') — Y1 (tn7 T) = Z?:l wiki,l(tna y(tna T))a

y2(tn+1; 7') - yQ(tnv T) = Z?:l wiki,Q(tna y(tna T))

where the w]s are constants and

ity )] = [k (6 y(6 ) kot y(tr)) |, 6=1,2,3,4,5

ki1 (t, y(t, 7")) = h'f(tn + aih, yi(t,) + Zj;ll Bijkja(tn, y(tn; 7"))), (10)

ki 2 (t, y(t, 7")) h'f(tn + il ya(tn) + X520 Bihkjo(tn, y(tn; 7“))),
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and
kua(ty(tsr)) = min{h.f(t,w)] w € [y (t7), 12t 7))},
kia(ty(t 7)) = max{h.f(t,u)| w € [y (tr), ya(t )]},
() = i1+ € [ttt 2.
kaa(ty(ti7)) = maa{h f(t+ 5 w) we [z (t (7)), 22(tw(t) |},
ksa(ty(tir) = min{h.f(t+ % w) v € |ma(ty(t:7)), 222(ty(tm) |},
ks (ty(tr)) = maz{h.f(t+ 5 u)| u € [z (ty(t:7)), 22(ty(t )]}, "
kaa(ty(tsr)) = min{h.f(t+ 5, 0)| w € [zs1(ty(t 7)), z2(ty(t )]},
kaa(ty(tsr)) = maz{h.f(t+ 5 u)| u € |21 (ty(t7)), 2s2(t vt )]},
km(t y(t ) mm{hf t+hu)| ue [241(15 y(t ) 242(15 y(t;r))]},
ksa(ty(t7) = max{h.f(t + h,u)| w € 201 (£ y(t 7)), 22 (tu(ts )]}
where in the Runge-Kutta method of order 5,
2 (ty(tir) = niltr) + sk (fy (),
zi2(ty(tr)) = ot 7) + 3ka(t y(t 7)),
za(tytr)) =it r) + ghua(ty(tr) + ghaa(ty(tr)
200(ty(t;7)) = yo(tsr) + shio(t, y(tir)) + shoa(t, y(t; )

(12)
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Define,

Flt,y(tir)| = k(. y(tr) + 4k (G y (7)) + ksa (6 y(8 7))
(13)
Glty(tir)| = kua(ty(t 7)) + 4haa(ty(tr)) + kst y(t 7).

The exact and approximate solutions at ¢,,0 < n < N are denoted
by [Y(tn)}r = [Yi(tn;7), Ya(ta;r)] and [y(tn)}r = [sn(tair), valtn;r)], re-
spectively. The solution is calculated by grid points at (5). By (9),(13) we
have

Vi(tnyr;m) = Yi(tn;r) + ¢F|ta, Y (ta; )], (14)
Yo(tus1;7) & Yaltn;r) + 2G|tn, Y (ty;r))|.

We define
Y1(tna;r) = yiltn;r) + 5 F |t y(tes 7)) (15)
Ya(tni1;7) = ya(tn;7) + §G |tn, y(tn; )|

The following lemmas will be applied to show convergence of these approxi-
mates
ie.,

limp_o 31 (t;7) = Ya(t;7),
limp_o ya(t;7) = Yo(t;7).

Lemma 4.1 Let the sequence of numbers {W, }_, satisfy

for some given positive constants A and B. Then

A" —1

Lemma 4.2 Let the sequence of numbers {W,}2_o, {V,}_, satisfy

n=0’

(Waia| < [Wal| + Amaz{|W,|, [V,|} + B,
Vata| < Vol + Amax{{W,], [Va[} + B.

for some given positive constants A and B, and denote

Uy =W, + V.|, 0<n<A.
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Then

lUn| < A Uy+ B=—-, 0<n<N,
A-1
where A =1+ 2A and B = 2B.
Let F(t,u,v) and G(t,u,v) are obtained by substituting [y(t)], = [u,v] in

(13),
F(t,u,v) = k11(t,u,v) + 4kg1(t, u,v) + k5 1(t, u, v)
G(t,u,v) = kyo(t, u,v) + 4kgo(t, u, v) + ks 2(t, u, v).

The domain where F' and G are defined is therefore
K:{(t,u,v)| 0<t<T, —-o0<v<oo, —oo<u<v}.

Theorem 4.3 Let F(t,u,v) and G(t,u,v) belong to C*(K) and let the
partial derivatives of F' and G be bounded over K. Then, for arbitrary fized
r,0 < r <1, the approzimately solutions (14) converge to the exact solutions
Yi(t;r) and Ya(t;7) uniformly in t.

Proof:
It 1s sufficient to show

limp, o y1(tn; 1) = Ya(tasr),
limy, o y2(tn; 1) = Ya(tnsr),
where ty =T. Forn=20,1,...,N — 1, by using Taylor theorem we get
11987

Yi(tni1;r) = Yi(ter) + s F[tn, Yi(ta; ), Yaltn; )] + Mh6ML5 + O(h"),
(16)
) 11987 4. & .

denote
Wn - K(tnv T) - yl(tTu T))
Vo = Ya(tn; 1) — ya(tn;r).
Hence from (15) and (16)

Wn+1 = Wn + %{F[tmyvl(tn;r);)@(tn;r)] - F[tmyl(tn;r))y2(tn;7ﬂ)]}
———h’ML
+12960h + O(h'),

Vn+1 = Vn + %{G[tm }/i(tn; T); )/Q(tn; T)] - G[tmyl(tn; T)7y2(tn; T)]}
———h’ML .
+12960h + O(h')
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Then
11987
|W@H|§|W@L+§Lhnmx“MQLH@H~+Ii%ﬁhWWL5+CXhU,
11987
1 6 5 7
H@+ﬂ§|MJ+§LhmmxﬂW@LWH}+i§&ﬁhZWL +O(h"),

fort € [0,T] and L > 0 is a bound for the partial derivatives of F and G. Thus
by lemma 4.2

11987 0% (1+2Lh)" -1
6480

2
W,| < (14 ZLh)"|U, ——hML°+ 0
Wil < (14 30100 + + o

2 11987 (1+2Lh)" — 1
V| < (1+ =Lh)"|U, ——ROML* + O(h" 3

where |Uy| = [Wo| + |Vo|. In particular

2 11 1+ 2Lh
nmJgu+§meaﬂ+<—§5WML?+om%>(+3 )

4320 L ’
2 11987 (14 2Lh)% —1
< (1 ZLh)" SR 6ML5 7 3
Vil < (04 2Lh) \U0!+<432Oh o )) /

Since Wy = Vo = 0, we obtain

11987 e3LT _q
< | == mpt ) ————pt RS

and if h — 0 we get W — 0 and Vy — 0 which completes the proof.
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5 NUMERICAL EXAMPLES

Example 5.1 Consider the fuzzy initial value problem, [12],
{ y(t)=y(t), tel=][0,1],
y(0) = (.75 + .25r, 1.125 — .125r), O0<r < 1.

By using the Runge-Kutta method of order 5, we have

h  h® At h®
yl(tn-‘rhr):yl(tn7r)[1+h+3+€+ﬂ+m:|y
h?  h® At hb

tha;r) =yolty;r)|1+h+ — 4+ — 4+ — + —|.
Ya(tns 7”) yQ( 7“){ +hn+ 5 + G —1—24—1-144}

The exact solution is given by
Yi(t;r) = y1(0;7)e’,  Yo(t;r) = ya(0; 7)€,

which att =1,

Yi(l;r) = [(75 4 25r)e, (1125 — .125r)e|, 0 <r<1.

The exact and approzimate solutions by Improved Euler mathod and the Runge
Kutta method of order 5, are compared and plotted at t =1 in figure 1.

Table 1

r Improved Fuler’s Method | Runge Kutta Method of order 5 Exact Solution
yi(ti;r) Ya(ti;r) yi(ti;r) Ya(ti;r) Yi(ti;r) | Ya(tisr)
0.01 1.9812 2.9705 2.0453 3.0544 2.0394 | 3.0578
0.1 2.0465 2.9377 2.1064 3.0237 2.1067 | 3.0241
0.2 2.1125 2.9047 2.1743 2.9897 2.1746 | 2.9901
0.3 2.1785 2.8717 2.24253 2.9558 2.2426 | 2.9561
0.4 2.2446 2.8387 2.3102 2.9216 2.3105 | 2.9222
0.5 2.3106 2.8057 2.3781 2.8877 2.3785 | 2.8882
0.6 2.3766 2.7727 2.4460 2.8537 2.4465 | 2.8542
0.7 2.4425 2.7596 2.5141 2.8198 2.5144 | 2.8202
0.8 2.5087 2.7066 2.5820 2.7858 2.5824 | 2.7862
0.9 2.5746 2.6736 2.6500 2.7518 2.6503 | 2.7523
1 2.6406 2.64006 2.7179 2.7179 2.7183 | 2.7183
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o RK Method Of 5

0.8 - Exact

0.7

0.6

0.4r
0.31
0.2

0.1

Figure 1: h=0.5

Example 5.2 Consider the fuzzy initial value problem

’

y (t) = ay?(t) + 2, y(0) =0,

where ¢; > 0, for i = 1,2 are triangular fuzzy numbers, [13].
The exact solution is given by

with
Li(r) =/ean(r)/cia(r), la(r) =/caa(r)/cia(r),
wi(r) = Je11(r).can(r), wa(r) =/c12(r).can(r),
where

[c1]r = [e11(r), c12(r)] and e, = [ca1(r), co2(r)]

c11(r) =05+ 0.5r, cia(r) =1.5—0.5r,
co1(r) = 0.75+0.25r,  co(r) = 1.25 — 0.25r.
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The r—level sets of y (t) are

Yl/(t; 1) = g1 (r)sec® (wy (r)t),
YQI(t; r) = 6272(7“)8602(11}2(7’)15),

which defines a fuzzy number. We have

filt ysr) = min{eru? + calu € [y1 (1), go(ts7)], 1 € [era(r), eaa(r)],
¢ € [e21(r), caa(r)]},

falt,ys) = maz{cru? + calu € [yi(t57), ya(ti )1 € era(r), era(r)),

o € [e21(r), 0272(7“)]}.
By using the Runge-Kutta method of order 5 att,, 0 <n < N

where

211ty 1) =
219(tp; 1) =
201 (tn;T) =
209(tn; 1) =
231(tn;T) =
239(tn; 1) =
241 (tn;T) =

249(tn;r) =

ki(ta;r) = hlen(r).yi(ta;r) + can(r)),

kra(tn;r) = h(era(r).ya(te; ) + caa(r)),

koi(tn;r) = h(cii(r).z 1(tn, r)+c21(r)),
kao(tn;r) = hcia(r).275(ta; ) + caa(r)),
kaa(tn;r) = h(ein(r).25, (ta;r) + can(r)),
kao(tn;r) = hcia(r).255(ta; ) + caa(r)),
kyi(tn;r) = h(cia(r). zg () + c21(1)),
kyo(tn;r) = h(cia(r). zg o (tn; 1) 4 Caa(1)),
ksi(tn;r) = h(cia(r). ZZ () + c21(1)),
kso(tn;r) = h(cia(r). zig(tn, )+ ca2(r)),

1

y1(tn;r) + gkl,l(tn; r),
1

Yo(tn;r) + §k1,2(tn; r),
1 1

y1(tn;m) + ékl,l(tn; r)+ 6k2,1(tn; r),
1 1

Yo(tn;r) + 6k1,2(tn; r)+ 6k2,2(tn; r),
1 3

y1(tn;m) + gkm(tn; r)+ gk?),l(tn; r),
1 3

Yo(tn;r) + §k1,2(tn; r)+ §k3,2(tn; r),
1 3

y1(tn;m) + ikl,l(tn; r)— 574?371(%; )+ 2kg1(tn;7),

1 3
Yo(tn;r) + §k1,2(tn; r)— §k3,2(tn; )+ 2kga(tn;T).

The exact and approximate solutions are shown in figure 2 at t = 1.
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Table 2

r Improved Fuler’s Method | Runge kutta Method of order 5 Ezact Solution
yi(tisr) Ya(tisr) yi(ts; ) Ya(ti;7) Yi(ti;r) | Ya(tir)
0.01 0.8727 2.8729 0.8649 3.9406 0.8650 | 4.3914
0.1 0.9128 2.6962 0.9078 3.5140 0.9079 | 3.7886
0.2 0.9666 2.5160 0.9584 3.1224 0.9585 | 3.2851
0.3 1.0205 2.3511 1.0128 2.8014 1.0129 | 2.8994
0.4 1.0775 2.2001 1.0714 2.5314 1.0715 | 2.5918
0.5 1.15386 2.0612 1.1344 2.3039 1.1348 | 2.3419
0.6 1.2036 1.9336 1.2034 2.1096 1.2038 | 2.1330
0.7 1.2733 1.1860 1.2785 1.9419 1.2793 | 1.9568
0.8 1.3479 1.7074 1.3610 1.7957 1.3625 | 1.8051
0.9 1.4278 1.6069 1.4524 1.6674 1.4545 | 1.6732
1 1.5141 1.5141 1.5537 1.5537 1.5574 | 1.5574

1
0.9 . . Improved Euler

o RK Method Of 5
0.8 . - Exact

0.7

0.6

0.4r

0.31

0.2

0.1

Figure 2: h=0.5

6 Conclusion

In this work we have applied iterative solution of Runge-kutta Method of
order five for numerical solution of fuzzy differential equations. It is clear that
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the method introduced in Chapter with O(h®) performs better than Improved
Euler’s Method with O(h?).
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