Some New Results in Dislocated and Dislocated Quasi-Metric Spaces

Kastriot Zoto
Department of Mathematics and Computer Sciences
Faculty of Natural Sciences,
University of Gjirokastra
Gjirokastra, Albania,
zotokastriot@yahoo.com

Elida Hoxha
Department of Mathematics
Faculty of Natural Sciences,
University of Tirana
Tirana, Albania,
hoxhaelida@yahoo.com

Arben Isufati
Department of Mathematics and Computer Sciences
Faculty of Natural Sciences,
University of Gjirokastra
Gjirokastra, Albania,
benisufati@yahoo.com

Abstract
In this paper we have proved two fixed point theorems in complete dislocated and dislocated quasi-metric spaces, which generalizes some recent results in literature.

Keywords: Dislocated quasi-metric space; fixed point; dq-limit; dq-Cauchy sequence
1 Introduction

Hitzler and Seda, introduced the notion of dislocated metric spaces [5, 6] and generalized the Banach Contraction Principle in such spaces. These metrics play a very important role not only in topology but also in other branches of science involving mathematics especially in logic programming and electronic engineering. D. S. Jaggi [3] proved fixed point theorem using rational type of contractive condition which generalized the Banach contraction principle in complete metric space. Zeyada et al. [4] initiated the concept of dislocated quasi-metric space and generalized the result of Hitzler and Seda in dislocated quasi-metric spaces. Results on fixed points in dislocated and dislocated quasi-metric spaces followed by Isufati [1] and Aage and Salunke [3], and recently by Shrivastava, Ansari and Sharma [7].

In this paper we establish two fixed point theorems in the context of dislocated quasi-metric space, which generalize and unify some known results.

2 Preliminaries

We introduce below necessary notions and present a few results in dislocated quasi-metric space, that will be used throughout the paper.

Definition 2.1 [4] Let \(X \) be a non-empty and let \(d : X \times X \to \mathbb{R}^+ \) be a function, called a distance function if for all \(x, y, z \in X \), satisfies:

\[
\begin{align*}
 &d_1 : d(x, x) = 0 \\
 &d_2 : d(x, y) = d(y, x) = 0 \Rightarrow x = y \\
 &d_3 : d(x, y) = d(y, x) \\
 &d_4 : d(x, y) \leq d(x, z) + d(z, y).
\end{align*}
\]

If \(d \) satisfies the condition \(d_1 - d_4 \), then \(d \) is called a metric on \(X \). If it satisfies the conditions \(d_1, d_2 \) and \(d_4 \) it is called a quasi-metric space. If \(d \) satisfies conditions \(d_2, d_3 \) and \(d_4 \) it is called a dislocated metric (or simply \(d \)-metric). If \(d \) satisfies only \(d_2 \) and \(d_4 \) then \(d \) is called a dislocated quasi-metric (or simply \(dq \)-metric) on \(X \). A nonempty set \(X \) with \(dq \)-metric \(d \), i. e., \((X, d)\) is called a dislocated quasi-metric space.

Definition 2.2 [4] A sequence \((x_n)_{n \in \mathbb{N}} \) in \(dq \)-metric space \((X, d)\) is called Cauchy if for all \(\varepsilon > 0 \), \(\exists n_0 \in \mathbb{N} \) such that \(\forall m, n \geq n_0 \), \(d(x_m, x_n) < \varepsilon \) or \(d(x_n, x_m) < \varepsilon \).

In above definition if we replace \(d(x_m, x_n) < \varepsilon \) or \(d(x_n, x_m) < \varepsilon \) by \(\max\{d(x_m, x_n), d(x_n, x_m)\} < \varepsilon \) then \((x_n)_{n \in \mathbb{N}} \) is called "bi" Cauchy sequence.
Definition 2.3 [4] A sequence \((x_n)_{n \in \mathbb{N}}\) dislocated quasi-converges or dq-converges to \(x\) if \(\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x, x_n) = 0\).

In this case \(x\) in called a dq-limit of \((x_n)_{n \in \mathbb{N}}\) and we write \(x_n \to x\).

Proposition 2.4[4] Every convergent sequence is a dq-metric space is "bi" Cauchy.

Definition 2.5 [4] A dq-metric space \((X, d)\) is complete if every Cauchy sequence in it is dq-convergent.

Lemma 2.6 [4] Every subsequence of dq-convergent sequence to a point \(x_0\) is dq-convergent to \(x_0\).

Definition 2.7 [4] Let \((X, d)\) be a dq-metric space. A mapping \(f : X \to X\) is called contraction if there exists \(0 < \lambda < 1\) such that:

\[d(fx, fy) \leq \lambda d(x, y)\]

for all \(x, y \in X\).

Lemma 2.8 [4] Let \((X, d)\) be a dq-metric space. If \(f : X \to X\) is a contraction function, then \(f^n(x_0)\) is a Cauchy sequence for each \(x_0 \in X\).

Lemma 2.9 [4] dq-limits in a dq-metric space are unique.

Further the following theorems give common fixed points for continuous contraction mappings satisfying contractive type conditions and rational inequality in dislocated and dislocated quasi-metric space. Our theorems unify and generalizes some results.

Theorem 2.10 [4] Let \((X, d)\) be complete dq-metric space and let \(f : X \to X\) be a continuous contraction function then \(f\) has a unique fixed point.

Theorem 2.11 [3] Let \(T\) be a continuous self-map defined on a complete metric space \((X, d)\). Further, let \(T\) satisfies the following contractive condition:

\[d(Tx, Ty) \leq \alpha \frac{d(x, Tx)d(y, Ty)}{d(x, y)} + \beta d(x, y)\] \(1\)

for all \(x, y \in X\), \(x \neq y\) and for some \(\alpha, \beta \in [0,1]\) with \(\alpha + \beta < 1\), then \(T\) has a unique fixed point.

Theorem 2.12 [7] Let \(T\) be a continuous self mapping defined on a complete dq-metric space \((X, d)\). Further let \(T\) satisfy the contractive condition \((1)\), then \(T\) has a unique fixed point.

Theorem 2.13 [7] Let \((X, d)\) be a complete dislocated quasi-metric space. Let \(T : X \to X\) be continuous mapping satisfies the condition:

\[d(Tx, Ty) \leq \alpha d(x, y) + \beta \frac{d(x, Tx)d(y, Ty)}{d(x, y)} + \gamma [d(x, Tx) + d(y, Ty)] + \delta [d(x, Ty) + d(y, Tx)]\] \(2\)

for all \(x, y \in X\), \(\alpha, \beta, \gamma, \delta \in [0,1]\) and \(0 \leq \alpha + \beta + 2\gamma + 2\delta < 1\). Then \(T\) has a unique fixed point.
3 Main results

Our result is the following theorem which unifies the results of [1], [2] and [7].

Theorem 3.1 Let \((X, d)\) be a complete dq-metric space. Let \(T : X \to X\) be continuous mapping satisfies the condition:

\[
\begin{align*}
 d(Tx, Ty) &\leq \alpha d(x, y) + \beta \frac{d(x, Tx)d(y, Ty)}{d(x, y)} + \gamma [d(x, Tx) + d(y, Ty)] + \\
 &\quad + \delta [d(x, Ty) + d(y, Tx)] + \eta [d(x, Tx) + d(x, y)]
\end{align*}
\]

for all \(x, y \in X\), \(x, y \in X\), \(\alpha, \beta, \gamma, \delta, \eta\) non negative with \(0 \leq \alpha + \beta + 2\gamma + 2\delta + 2\eta < 1\), then \(T\) has a unique fixed point.

Proof: Let be any \(x_0 \in X\) and define the sequence as follows:

\(T(x_0) = x_1, T(x_1) = x_2, \ldots, T(x_n) = x_{n+1}, \ldots\)

Putting \(x = x_{n+1}\) and \(y = x_n\) in (3) we have:

\[
d(x_n, x_{n+1}) = d(Tx_n, Tx_{n+1})
\]

\[
\leq \alpha d(x_{n-1}, x_n) + \beta \frac{d(x_{n-1}, Tx_{n-1})d(x_n, Tx_n)}{d(x_{n-1}, x_n)} + \gamma [d(x_{n-1}, Tx_{n-1}) + d(x_n, Tx_n)] + \\
\quad + \delta [d(x_{n-1}, Tx_n) + d(x_n, Tx_{n-1})] + \eta [d(x_{n-1}, Tx_{n-1}) + d(x_{n-1}, x_n)]
\]

\[
= \alpha d(x_{n-1}, x_n) + \beta \frac{d(x_{n-1}, x_n)d(x_n, x_{n+1})}{d(x_{n-1}, x_n)} + \gamma [d(x_{n-1}, x_n) + d(x_n, x_{n+1})] + \\
\quad + \delta d(x_{n-1}, x_n) + \eta d(x_{n-1}, x_n)
\]

\[
(\alpha + \gamma + \delta + 2\eta) d(x_{n-1}, x_n) + (\beta + \gamma + \delta) d(x_n, x_{n+1})
\]

Therefore:

\[
d(x_n, x_{n+1}) \leq \lambda d(x_{n-1}, x_n)
\]

where \(\lambda = \frac{\alpha + \gamma + \delta + 2\eta}{1 - (\beta + \gamma + \delta)}\), \(0 \leq \lambda < 1\).

So

\[
d(x_n, x_{n+1}) \leq \lambda d(x_{n-1}, x_n)
\]

Similarly \(d(x_{n-1}, x_n) \leq \lambda d(x_{n-2}, x_{n-1})\) . From (4) we have

\[
d(x_n, x_{n+1}) \leq \lambda^2 d(x_{n-2}, x_{n-1})
\]

Continuing in this way, we have \(d(x_n, x_{n+1}) \leq \lambda^n d(x_0, x_1)\).

Since \(0 \leq \lambda < 1\), for \(n \to \infty\), we have \(d(x_n, x_{n+1}) \to 0\).
Similarly, we show that \(d(x_{n+1}, x_n) \to 0 \). Hence \((x_n)_{n \in \mathbb{N}} \) is a Cauchy sequence in complete dislocated quasi-metric space \((X, d)\). So there exists \(u \in X \) such that
\[(x_n)_{n \in \mathbb{N}} \text{ dislocated quasi converges to } u. \]
Since \(T \) is a continuous, therefore
\[T(u) = T(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} T(x_n) = \lim_{n \to \infty} (x_{n+1}) = u. \]
Thus, \(u \) is a fixed point of \(T \).

Uniqueness: Suppose \(u \) and \(v \) are two fixed points of \(T \) \((u \neq v, Tu = u, Tv = v) \).
Let \(u \) be a fixed. Then by condition [3] for \(u \) we have:
\[
d(u, u) = d(Tu, Tu) \\
\leq \alpha d(u, u) + \beta d(u, u) + 2\gamma d(u, u) + 2\delta d(u, u) + 2\eta d(u, u) \\
= (\alpha + \beta + 2\gamma + 2\delta + 2\eta)d(u, u)
\]
which implies that \(d(u, u) = 0 \), since \(0 < \alpha + \beta + 2\gamma + 2\delta + 2\eta < 1 \). Thus, \(d(u, u) = 0 \) for a fixed point \(u \) of \(T \). Similarly, we get \(d(v, v) = 0 \) for \(v \) fixed point of \(T \).

Now from (3) we have
\[
d(u, v) = d(Tu, Tv) \\
\leq \alpha d(u, v) + \beta \frac{d(u, u)d(v, v)}{d(u, v)} + \gamma [d(u, u) + d(v, v)] \\
\delta [d(u, v) + d(v, u)] + \eta [d(u, u) + d(v, v)] \\
= (\alpha + \delta + \eta)d(u, v) + \delta d(v, u)
\]
Similarly:
\[
d(v, u) \leq (\alpha + \delta + \eta)d(v, u) + \delta d(u, v)
\]
Hence \[|d(u, v) - d(v, u)| \leq (\alpha + \eta)|d(u, v) - d(v, u)|. \] Since \(0 < \alpha + \eta < 1 \), we get:
\[
d(u, v) = d(v, u) \quad (5)
\]
Again replacing (5) in (3) we have that \(d(u, v) \leq (\alpha + 2\delta + \eta)d(u, v) \), which gives \(d(u, v) = 0 \). Since \(0 \leq (\alpha + 2\delta + \eta) < 1 \). Further, \(d(u, v) = d(v, u) = 0 \), which implies \(u = v \). Hence fixed point is unique.

Remark 3.2 In Theorem 3.1:
(1) If we put \(\eta = 0 \), we obtain Theorem 2.13 of R. Shrivastava et.al. in [7].
(2) If we put \(\beta = \gamma = \eta = 0 \), we obtain Theorem 3.2 of Isufati [1].
(3) If we put \(\beta = \eta = 0 \), we obtain Theorem 3.5 of Aage and Salunke [2].
(4) If we put \(\gamma = \delta = \eta = 0 \), we obtain Theorem 2.12. of [7].

Theorem 3.3 Let \((X, d)\) be a complete dislocated metric space. Let \(S, T : X \to X \) be continuous mappings satisfying the condition:
for all $x, y \in X$ and $0 < h < \frac{1}{2}$. Then S and T have unique common fixed point.

Proof. Let $x_0 \in X$ be arbitrary. Define the sequence $(x_n)_{n \in \mathbb{N}}$ inductively:
\[x_0 = S(x_0), x_1 = T(x_0), \ldots, x_{2n} = T(x_{2n-1}), x_{2n+1} = S(x_{2n}). \]

By the condition we have:
\[
\begin{align*}
 d(x_{2n+1}, x_{2n+2}) &= d(Sx_{2n}, Tx_{2n+1}) \\
 &\leq h \max \left\{ \frac{d(x_{2n}, x_{2n+1}), d(x_{2n}, Sx_{2n}), d(x_{2n+1}, Tx_{2n+1}), d(x_{2n}, Tx_{2n+1})}{d(x_{2n}, x_{2n+1})} \right\} \\
 &= h \max \left\{ \frac{d(x_{2n}, x_{2n+1}), d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+1}), d(x_{2n}, x_{2n+1})}{d(x_{2n}, x_{2n+1})} \right\} \\
 &= h \max \left\{ \frac{d(x_{2n}, x_{2n+1}), d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+1}), d(x_{2n}, x_{2n+1})}{d(x_{2n}, x_{2n+1})} \right\} \\
 &\leq h (d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, x_{2n+2}))
\end{align*}
\]

Therefore
\[
\begin{align*}
 d(x_{2n+1}, x_{2n+2}) &\leq h \frac{1}{1-h} d(x_{2n}, x_{2n+1}) \\
 &\text{define } r = \frac{h}{1-h}, \quad 0 < r < 1
\end{align*}
\]
continuing in this way we get
\[d(x_{2n+1}, x_{2n+2}) \leq r^n d(x_0, x_1), \quad \text{since } 0 < r < 1, \quad r^{2n} \to 0, \quad \text{for } n \to \infty. \]

Hence, $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in complete dislocated metric space (X, d). So there exists $u \in X$, such that $(x_n)_{n \in \mathbb{N}}$ converges to u. Further, the subsequences $(Sx_{2n}) \to u$ and $(Tx_{2n+1}) \to u$. Since $S, T : X \to X$ are continuous, will have $Su = u$ and $Tu = u$.

Uniqueness: Let u and v be fixed points of S, T.

Then:
\[
\begin{align*}
 d(u, v) &= d(Su, Tv) \\
 &\leq h \max \left\{ d(u, v), d(u, Su), d(v, Tv), d(u, Tv), d(v, Su), d(u, Su)d(v, Tv) \right\} \\
 &= h \max \left\{ d(u, v), d(u, u), d(v, v), d(u, v), d(u, v), d(u, v) \right\}
\end{align*}
\]
Replacing \(v \) by \(u \) in (7), we get:
\[d(u, u) \leq h d(u, u), \text{ since } 0 < h < \frac{1}{2}. \]
Hence:
\[d(u, u) = 0 \quad (8) \]
Similarly can show
\[d(v, v) = 0 \quad (9) \]
Again from (7) \(d(u, v) \leq h d(u, v) \), which implies that \(d(u, v) = 0 \), since \((X, d) \) is dislocated we have \(u = v \).

Example 3.4 Let \(X = \{1, 2, 3\} \) and \(d(x, y) = \begin{cases} 2, & \text{if } x + y \text{ is even} \\ 1, & \text{if } x + y \text{ is odd} \end{cases} \)
Define \(S, T : X \to X \) as \(S(1) = S(2) = S(3) = 1 \) and \(T(1) = T(2) = T(3) = 2 \)
we observed
\[d(Sx, Ty) = \frac{1}{2} \max \left\{ \frac{d(x, y)}{d(x, Sx)}, \frac{d(x, Ty)}{d(x, Ty)} \right\} \]
for all \(x, y \in X \).

We note that Theorem 3.3 is not valid for \(h = \frac{1}{2} \), because \(S \) and \(T \) have no common fixed points. Clearly 1 is a fixed point of \(S \), and 2 is a fixed point of \(T \).

Remark 3.5 If we put \(S = T \) we obtain result for a continuous mapping \(T \) on \(X \) and the contractive condition of Theorem 3.3 is more general.

References

Received: January, 2012