Matrices Formula for Padovan and Perrin Sequences

Kritsana Sokhuma

Department of Mathematics, Faculty of Science and Technology
Muban Chom Bueng Rajabhat University, Ratchaburi 70150, Thailand
k.sokhuma@yahoo.co.th

Copyright © 2013 Kritsana Sokhuma. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Abstract

The Padovan and Perrin numbers have the matrix formula,

$$Q^n = \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}^n \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}.$$

The matrix product is a 3×2 matrix that when raised to the n^{th} power give a matrix product whose entries are Padovan and Perrin numbers. For which we established by mathematical induction such that,

$$Q^n \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}^n \begin{bmatrix} 0 & 3 \\ P_n & P_n \\ P_{n+1} & P_{n+1} \end{bmatrix},$$

where P_n and P_n are the Padovan and Perrin sequences, respectively.

Mathematics Subject Classification: 11B39, 11B99

Keywords: Padovan sequences, Perrin sequences, Q-matrix

1 Introduction

The Padovan sequence is named after Richard Padovan who attributed its discovery to Dutch architect Hans van der Laan in his 1994 essay *Dom Hans van der Laan: Modern Primitive*.

In this paper, the Padovan sequence is the sequence of integers P_n defined by the initial values $P_0 = 0, P_1 = 0, P_2 = 1$ and the recurrence relation

$$P_n = P_{n-2} + P_{n-3}, \text{ for all } n \geq 3.$$
The first few values of P_n are 0, 0, 1, 0, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, \ldots.

The Padovan numbers have the Q-matrix, $Q = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ such that
\[
Q^n = \begin{bmatrix} P_{n-1} & P_{n+1} & P_n \\ P_n & P_{n+2} & P_{n+1} \\ P_{n+1} & P_{n+3} & P_{n+2} \end{bmatrix}, \text{ for all } n \geq 3.
\]

The Perrin sequence is the sequence of integers P_n defined by a recurrence relation, and is qualitatively similar to the Lucas sequence. The initial terms are $P_0 = 3, P_1 = 0, P_2 = 2$ and subsequent terms are defined by
\[
P_n = P_{n-2} + P_{n-3}, \text{ for all } n \geq 3.
\]

Here are the first few Perrin numbers: 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, \ldots.

2 Main Results

In this study, we investigate the new property of Padovan and Perrin numbers in relation with the Padovan and Perrin matrices formula,
\[
\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}^n \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix}.
\]

More generally, we have $Q^n \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} P_n & P_n \\ P_{n+1} & P_{n+1} \\ P_{n+2} & P_{n+2} \end{bmatrix}$. This strategy allows us to obtain the new relations for the Padovan and Perrin sequences.

Theorem 2.1. For all $n \in \mathbb{N}$ we have,
\[
Q^n \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}^n \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} P_n & P_n \\ P_{n+1} & P_{n+1} \\ P_{n+2} & P_{n+2} \end{bmatrix}.
\]

Proof. Let use the principle of mathematical induction on n. For $n = 1$, it is easy to see that
\[
Q^1 \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}^1 \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} P_1 & P_1 \\ P_2 & P_2 \\ P_3 & P_3 \end{bmatrix} = \begin{bmatrix} P_1 & P_1 \\ P_{1+1} & P_{1+1} \\ P_{1+2} & P_{1+2} \end{bmatrix}.
\]

Assume that it is true for all positive integer $n = k$. That is,
\[
Q^k \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}^k \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} P_k & P_k \\ P_{k+1} & P_{k+1} \\ P_{k+2} & P_{k+2} \end{bmatrix}.
\]
Therefore, we have to show that it is true for \(n = k + 1 \). By the laws of associativity and exponents hold for the matrices such that their dimensions match. Consider,

\[
Q^{k+1} \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix} = (QQ^k) \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix} = Q \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix}
\]

\[
= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} P_k & \mathcal{P}_k \\ P_{k+1} & \mathcal{P}_{k+1} \\ P_{k+2} & \mathcal{P}_{k+2} \end{bmatrix} = \begin{bmatrix} P_{k+1} & \mathcal{P}_{k+1} \\ P_{k+2} & \mathcal{P}_{k+2} \\ P_k + P_{k+1} & \mathcal{P}_k + \mathcal{P}_{k+1} \end{bmatrix} = \begin{bmatrix} P_{k+1} & \mathcal{P}_{k+1} \\ P_{k+2} & \mathcal{P}_{k+2} \\ P_{k+3} & \mathcal{P}_{k+3} \end{bmatrix}.
\]

Therefore, the result is true for every \(n \geq 1 \).

Let us generalize this observation using the Padovan and Perrin formula matrices.

Proposition 2.2. For all integers \(m, n \) such that \(3 \leq m < n \), we have the following relations:

(a) \(P_n = P_{m-1} \cdot P_{n-m} + P_{m+1} \cdot P_{n-m+1} + P_m \cdot P_{n-m+2} \).

(b) \(\mathcal{P}_n = P_{m-1} \cdot \mathcal{P}_{n-m} + P_{m+1} \cdot \mathcal{P}_{n-m+1} + P_m \cdot \mathcal{P}_{n-m+2} \).

Proof. From the laws of exponent for the square matrices. So, we have

\[
Q^n = Q^m Q^{n-m},
\]

it follows that

\[
Q^n \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix} = Q^m \left(Q^{n-m} \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix} \right).
\]

From the property of Padovan \(Q \)-matrix (see [2], page 2778) and Theorem 2.1 it follows that,

\[
\begin{bmatrix} P_n & \mathcal{P}_n \\ P_{n+1} & \mathcal{P}_{n+1} \\ P_{n+2} & \mathcal{P}_{n+2} \end{bmatrix} = \begin{bmatrix} P_{m-1} & P_{m+1} & P_m \\ P_m & P_{m+2} & P_{m+1} \\ P_{m+1} & P_{m+3} & P_{m+2} \end{bmatrix} \begin{bmatrix} P_{n-m} & \mathcal{P}_{n-m} \\ P_{n-m+1} & \mathcal{P}_{n-m+1} \\ P_{n-m+2} & \mathcal{P}_{n-m+2} \end{bmatrix}.
\]
yielding, upon equating corresponding elements. That is,

\[P_n = P_{m-1} \cdot P_{n-m} + P_{m+1} \cdot P_{n-m+1} + P_m \cdot P_{n-m+2}, \]

and

\[\mathcal{P}_n = P_{m-1} \cdot \mathcal{P}_{n-m} + P_{m+1} \cdot \mathcal{P}_{n-m+1} + P_m \cdot \mathcal{P}_{n-m+2}. \]

Completes the proof.

Remark 2.3. In Proposition 2.2, if \(m = 3 \), then we have

\[P_n = P_2 \cdot P_{n-3} + P_4 \cdot P_{n-2} + P_3 \cdot P_{n-1}, \]

\[= 1 \cdot P_{n-3} + 1 \cdot P_{n-2} + 0 \cdot P_{n-1}, \text{ (replaces } P_2 = P_4 = 1 \text{ and } P_3 = 0) \]

\[= P_{n-2} + P_{n-3}. \]

Similary, we have \(\mathcal{P}_n = \mathcal{P}_{n-2} + \mathcal{P}_{n-3} \).

References

Received: November 25, 2013