On the Twisted q-Tangent Numbers and Polynomials

C. S. Ryoo

Department of Mathematics
Hannam University, Daejeon 306-791, Korea

Copyright © 2013 C. S. Ryoo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we introduce the twisted q-tangent numbers $T_{n,q,w}$ and polynomials $T_{n,q,w}(x)$. Some interesting results and relationships are obtained.

Mathematics Subject Classification: 11B68, 11S40, 11S80

Keywords: Euler numbers and polynomials, tangent numbers and polynomials, twisted q-tangent numbers and polynomials

1 Introduction

Throughout this paper, we always make use of the following notations: \mathbb{N} denotes the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$, \mathbb{C} denotes the set of complex numbers, \mathbb{Z}_p denotes the ring of p-adic rational integers, \mathbb{Q}_p denotes the field of p-adic rational numbers, and \mathbb{C}_p denotes the completion of algebraic closure of \mathbb{Q}_p. Let ν_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-\nu_p(p)} = p^{-1}$. When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, or p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$ one normally assume that $|q| < 1$. If $q \in \mathbb{C}_p$, we normally assume that $|q - 1|_p < p^{-\frac{1}{p-1}}$ so that $q^x = \exp(x \log q)$ for $|x|_p \leq 1$. For

$$g \in UD(\mathbb{Z}_p) = \{g|g: \mathbb{Z}_p \rightarrow \mathbb{C}_p \text{ is uniformly differentiable function}\},$$
the fermionic p-adic invariant integral on \mathbb{Z}_p is defined by Kim as follows:

$$I_{-1}(g) = \int_{\mathbb{Z}_p} g(x) d\mu_{-1} = \lim_{N \to \infty} \sum_{0 \leq x < p^N} g(x)(-1)^x, \quad \text{(see [1])}. \quad (1.1)$$

If we take $g_1(x) = g(x + 1)$ in (1.1), then we see that

$$I_{-1}(g_1) + I_{-1}(g) = 2g(0), \quad \text{(see [1-4])}. \quad (1.2)$$

From (1.1), we obtain

$$\int_{\mathbb{Z}_p} g(x + n) d\mu_{-1}(x) = (-1)^n \int_{\mathbb{Z}_p} g(x) d\mu_{-1}(x) + 2 \sum_{l=0}^{n-1} (-1)^{n-1-l} g(l). \quad (1.3)$$

Let us define the tangent numbers T_n and polynomials $T_n(x)$ as follows:

$$\int_{\mathbb{Z}_p} e^{2yt} d\mu_{-1}(y) = \sum_{n=0}^{\infty} T_n \frac{t^n}{n!}, \quad \text{(see [3])}. \quad (1.4)$$

$$\int_{\mathbb{Z}_p} e^{(x+2y)t} d\mu_{-1}(y) = \sum_{n=0}^{\infty} T_n(x) \frac{t^n}{n!}. \quad (1.5)$$

Numerous properties of tangent number are known. More studies and results in this subject we may see references [3], [4], [5]. About extensions for the tangent numbers can be found in [5].

Recently, many mathematicians have studied in the area of the q-analogue of the Bernoulli numbers, Euler numbers, and Genocchi numbers (see [1-5]). Our aim in this paper is to define twisted q-tangent polynomials $T_{n,q,w}(x)$. We investigate some properties which are related to twisted q-tangent numbers $T_{n,q,w}$ and polynomials $T_{n,q,w}(x)$. We also derive the existence of a specific interpolation function which interpolate twisted q-tangent numbers $T_{n,q,w}$ and polynomials $T_{n,q,w}(x)$ at negative integers.

2 Twisted q-tangent numbers and polynomials

Our primary goal of this section is to define twisted q-tangent numbers $T_{n,q,w}$ and polynomials $T_{n,q,w}(x)$. We also find generating functions of twisted q-tangent numbers $T_{n,q,w}$ and polynomials $T_{n,q,w}(x)$ and investigate their properties. Let $T_p = \bigcup_{N \geq 1} C_{pN} = \lim_{N \to \infty} C_{pN}$, where $C_{pN} = \{w \mid w^{pN} = 1\}$ is the cyclic group of order p^N. For $w \in T_p$, we denote by $\phi_w : \mathbb{Z}_p \to \mathbb{C}_p$ the locally
constant function $x \mapsto w^x$. For $w \in T_p$ and $q \in \mathbb{C}_p$ with $|1 - q|_p \leq 1$, if we take $g(x) = q^x \phi_w(x)e^{2xt}$ in (1.2), then we easily see that

$$I_{-1}(q^x \phi_w(x)e^{2xt}) = \int_{\mathbb{Z}_p} q^x \phi_w(x)e^{2xt}d\mu_{-1}(x) = \frac{2}{wqe^{2t} + 1}.$$

Let us define the twisted q-tangent numbers $T_{n,q,w}$ and polynomials $T_{n,q,w}(x)$ as follows:

$$I_{-1}(q^y \phi_w(y)e^{2yt}) = \int_{\mathbb{Z}_p} q^y \phi_w(y)e^{2yt}d\mu_{-1}(y) = \sum_{n=0}^{\infty} T_{n,q,w} \frac{t^n}{n!}, \quad (2.1)$$

$$I_{-1}(q^y \phi_w(y)e^{(2y+x)t}) = \int_{\mathbb{Z}_p} q^y \phi_w(y)e^{(x+2y)t}d\mu_{-1}(y) = \sum_{n=0}^{\infty} T_{n,q,w}(x) \frac{t^n}{n!}. \quad (2.2)$$

By (2.1) and (2.2), we obtain the following Witt’s formula.

Theorem 2.1 For $n \in \mathbb{Z}_+$, we have

$$\int_{\mathbb{Z}_p} q^x \phi_w(x)(2x)^n d\mu_{-1}(x) = T_{n,q,w},$$

$$\int_{\mathbb{Z}_p} q^y \phi_w(y)(x+2y)^n d\mu_{-1}(y) = T_{n,q,w}(x).$$

By using p-adic integral on \mathbb{Z}_p, we obtain,

$$\int_{\mathbb{Z}_p} q^x \phi_w(x)e^{2xt}d\mu_{-1}(x) = 2 \sum_{m=0}^{\infty} (-1)^m w^m q^m e^{2mt}. \quad (2.3)$$

Thus twisted q-tangent numbers $T_{n,q,w}$ are defined by means of the generating function

$$F_{q,w}(t) = \sum_{n=0}^{\infty} T_{n,q,w} \frac{t^n}{n!} = 2 \sum_{m=0}^{\infty} (-1)^m w^m q^m e^{2mt}. \quad (2.4)$$

Using similar method as above, by using p-adic integral on \mathbb{Z}_p, we have

$$\sum_{n=0}^{\infty} T_{n,q,w}(x) \frac{t^n}{n!} = \left(\frac{2}{wqe^{2t} + 1} \right) e^{xt}. \quad (2.5)$$

By using (2.2) and (2.5), we have

$$F_{q,w}(t, x) = \sum_{n=0}^{\infty} T_{n,q,w}(x) \frac{t^n}{n!} = 2 \sum_{m=0}^{\infty} (-1)^m w^m q^m e^{(2m+x)t}. \quad (2.6)$$
By Theorem 2.1, we easily obtain that
\[
T_{n,q,w}(x) = \int_{\mathbb{Z}_p} q^y \phi_w(y)(x + 2y)^n d\mu_{-1}(y)
= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} T_{k,q,w}
= 2 \sum_{m=0}^{\infty} (-1)^m w^m q^m (x + 2m)^n.
\]

The following elementary properties of tangent polynomials \(T_{n,q,w}(x)\) are readily derived from (2.1) and (2.2). We, therefore, choose to omit the details involved. More studies and results in this subject we may see references [1]-[4].

\textbf{Theorem 2.2} For any positive integer \(n\), we have
\[
T_{n,q,w}(x) = (-1)^n w^{-1} q^{-1} T_{n,q^{-1},w^{-1}}(2 - x).
\]

\textbf{Theorem 2.3} For any positive integer \(m (=\text{odd})\), we have
\[
T_{n,q,w}(x) = m^n \sum_{a=0}^{m-1} (-1)^a w^a q^a T_{n,q^a,w^m} \left(\frac{2a + x}{m} \right), \quad n \in \mathbb{Z}_+.
\]

By (1.3), (2.1), and (2.2), we easily see that
\[
2^{m+1} \sum_{l=0}^{n-1} (-1)^{n-1-l} w^l q^l m^l = w^n q^n T_{m,q,w}(2n) + (-1)^{n-1} T_{m,q,w}.
\]

Hence, we have the following theorem.

\textbf{Theorem 2.4} Let \(m \in \mathbb{Z}_+\). If \(n \equiv 0 \pmod{2}\), then
\[
w^n q^n T_{m,q,w}(2n) - T_{m,q,w} = 2^{m+1} \sum_{l=0}^{n-1} (-1)^{l+1} w^l q^l m^l.
\]

If \(n \equiv 1 \pmod{2}\), then
\[
w^n q^n T_{m,q,w}(2n) + T_{m,q,w} = 2^{m+1} \sum_{l=0}^{n-1} (-1)^l w^l q^l m^l.
\]
From (1.3), we note that
\[
2 =qw \int_{\mathbb{Z}_p} q^x \phi_w(x)e^{(2x+2)t}d\mu_{-1}(x) + \int_{\mathbb{Z}_p} q^x \phi_w(x)e^{2xt}d\mu_{-1}(x)
\]
\[
= \sum_{n=0}^{\infty} \left(\left[wq \int_{\mathbb{Z}_p} q^x \phi_w(x)(2x + 2)^n d\mu_{-2}(x) + \int_{\mathbb{Z}_p} q^x \phi_w(x)(2x)^n d\mu_{-1}(x) \right] \frac{t^n}{n!} \right)
\]
\[
= \sum_{n=0}^{\infty} \left(wqT_{n,q,w}(2) + T_{n,q,w} \right) \frac{t^n}{n!}.
\]

Therefore, we have the following theorem.

Theorem 2.5 For \(n \in \mathbb{Z}_+ \), we have

\[
wqT_{n,q,w}(2) + T_{n,q,w} = \begin{cases} 2, & \text{if } n = 0, \\ 0, & \text{if } n \neq 0. \end{cases}
\]

By (2.7) and Theorem 2.5, we have the following corollary.

Corollary 2.6 For \(n \in \mathbb{Z}_+ \), we have

\[
wq(T_{q,w} + 2)^n + T_{n,q,w} = \begin{cases} 2, & \text{if } n = 0, \\ 0, & \text{if } n \neq 0, \end{cases}
\]

with the usual convention of replacing \((T_{q,w})^n\) by \(T_{n,q,w}\).

Theorem 2.7 For \(n \in \mathbb{Z}_+ \), we have

\[
T_{n,q,w}(x + y) = \sum_{k=0}^{n} \binom{n}{k} T_{k,q,w}(x)y^{n-k}.
\]

By Theorem 2.1, we easily get

\[
T_{n,q,w}(x) = \sum_{l=0}^{n} \binom{n}{l} x^{n-l} \int_{\mathbb{Z}_p} q^y \phi_w(y)(2y)^l d\mu_{-1}(y) = \sum_{l=0}^{n} \binom{n}{l} x^{n-l} T_{l,q,w}.
\]

Therefore, we obtain the following theorem.

Theorem 2.8 For \(n \in \mathbb{Z}_+ \), we have

\[
T_{n,q,w}(x) = \sum_{l=0}^{n} \binom{n}{l} T_{l,q,w}x^{n-l}.
\]
3 The twisted q-tangent zeta function

In this section, by using twisted q-tangent numbers and polynomials, we give the definition for the twisted q-tangent zeta function and Hurwitz-type twisted q-tangent zeta functions. These functions interpolate the twisted q-tangent numbers and tangent polynomials, respectively. Let q be a complex number with $|q| < 1$ and w be the p^N-th root of unity. From (2.4), we note that
\[
\frac{d^k}{dt^k} F_{q,w}(t) \bigg|_{t=0} = 2 \sum_{m=0}^{\infty} (-1)^m w^m q^m (2m)^k = T_{k,q,w}, \quad (k \in \mathbb{N}).
\]

By using the above equation, we are now ready to define twisted q-tangent zeta functions.

Definition 3.1 Let $s \in \mathbb{C}$ with $\text{Re}(s) > 0$.
\[
\zeta_{q,w}(s) = 2 \sum_{n=1}^{\infty} \frac{(-1)^n w^n q^n}{(2n)^s}.
\]

Note that $\zeta_{q,w}(s)$ is a meromorphic function on \mathbb{C}. Relation between $\zeta_{q,w}(s)$ and $T_{k,q,w}$ is given by the following theorem.

Theorem 3.2 For $k \in \mathbb{N}$, we have
\[
\zeta_{q,w}(-k) = T_{k,q,w}.
\]

Observe that $\zeta_{q,w}(s)$ function interpolates $T_{k,q,w}$ numbers at non-negative integers. By using (2.7), we note that
\[
\frac{d^k}{dt^k} F_{q,w}(t, x) \bigg|_{t=0} = 2 \sum_{m=0}^{\infty} (-1)^m w^m q^m (x + 2m)^k = T_{k,q,w}(x), \quad (k \in \mathbb{N}),
\]
and
\[
\left(\frac{d}{dt} \right)^k \left(\sum_{n=0}^{\infty} T_{n,q,w}(x) \frac{t^n}{n!} \right) \bigg|_{t=0} = T_{k,q,w}(x), \quad \text{for } k \in \mathbb{N}.
\]

By (3.2) and (3.4), we are now ready to define the Hurwitz-type twisted q-tangent zeta functions.

Definition 3.3 Let $s \in \mathbb{C}$ with $\text{Re}(s) > 0$.
\[
\zeta_{q,w}(s, x) = 2 \sum_{n=0}^{\infty} \frac{(-1)^n w^n q^n}{(2n + x)^s}.
\]

Note that $\zeta_{q,w}(s, x)$ is a meromorphic function on \mathbb{C}. Relation between $\zeta_{q,w}(s, x)$ and $T_{k,q,w}(x)$ is given by the following theorem.

Theorem 3.4 For $k \in \mathbb{N}$, we have
\[
\zeta_{q,w}(-k, x) = T_{k,q,w}(x).
\]
On the twisted q-tangent numbers and polynomials

References

Received: July 5, 2013