Asymmetric Ascoli-type Theorems and Filter Exhaustiveness

A. Boccuto

Dipartimento di Matematica e Informatica
via Vanvitelli, 1 I-06123 Perugia, Italy

X. Dimitriou

Department of Mathematics
University of Athens, Panepistimiopolis
Athens 15784, Greece

Copyright © 2015 A. Boccuto and X. Dimitriou. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We prove an Ascoli-type theorem, giving a necessary and sufficient condition for forward compactness of sets of functions, defined and with values in asymmetric metric spaces. Furthermore, we pose some open problems.

Mathematics Subject Classifications: Primary: 26E50, 28A12, 28A33, 28B10, 28B15, 40A35, 46G10, 54A20, 54A40; Secondary: 06F15, 06F20, 06F30, 22A10, 28A05, 40G15, 46G12, 54H11, 54H12

Keywords: asymmetric metric space, (free) filter, filter forward/backward compactness, filter forward/backward convergence, filter forward/backward exhaustiveness, Ascoli theorem

1 Introduction

In the literature there have been many recent extensions of the classical Ascoli theorems (see [17, 19]) in the metric space context along several directions.
For example, in [16], some Ascoli-type theorems are proved, in connection with various kinds of convergence and exhaustiveness of function nets. In [1] and [4] these convergences, together with the concept of exhaustiveness, are considered in the context of filter/ideal convergence, and in this setting some Ascoli-type theorems in the metric space context are extended. In [15] some Ascoli-type theorem is proved, when the involved distance function is not required to be necessarily symmetric. Asymmetric distance has different applications in several branches of Mathematics (see for instance [15] and the bibliography therein), and is connected also with the study of various semi-continuity properties and related topics (see also, for example, [2]). Filter convergence and filter exhaustiveness have many developments in the very recent literature, for instance in limit and decomposition theorems for measures (see also [5, 6, 7, 8, 9, 10, 11, 13, 14]). A comprehensive survey about these topics can be found in [12]. In this paper we prove an Ascoli-type theorem for the asymmetric case in the metric space setting, extending earlier results proved in [1, 15, 16], in which equicontinuity is replaced by filter exhaustiveness. This tool allows us to give a necessary and sufficient condition for relative (forward) compactness of suitable function sets. Finally, we pose some open problems.

2 Preliminaries

We begin with recalling some basic notions on ideals and filters of \(\mathbb{N} \).

Let \(\mathcal{P}(\mathbb{N}) \) be the class of all subsets of \(\mathbb{N} \). A family \(\mathcal{I} \subset \mathcal{P}(\mathbb{N}) \) is called an ideal of \(\mathbb{N} \) iff \(A \cup B \in \mathcal{I} \) whenever \(A, B \in \mathcal{I} \) and for each \(A \in \mathcal{I} \) and \(B \subset A \) we get \(B \in \mathcal{I} \). A class of sets \(\mathcal{F} \subset \mathcal{P}(\mathbb{N}) \) is a filter of \(\mathbb{N} \) iff \(A \cap B \in \mathcal{F} \) for all \(A, B \in \mathcal{F} \) and for every \(A \in \mathcal{F} \) and \(B \supset A \) we have \(B \in \mathcal{F} \).

An ideal \(\mathcal{I} \) (resp. a filter \(\mathcal{F} \)) of \(\mathbb{N} \) is said to be non-trivial iff \(\mathcal{I} \neq \emptyset \) and \(\mathbb{N} \not\in \mathcal{I} \) (resp. \(\mathcal{F} \neq \emptyset \) and \(\emptyset \not\in \mathcal{F} \)). A non-trivial ideal \(\mathcal{I} \) of \(\mathbb{N} \) is said to be admissible iff it contains all the single sets.

Given an ideal \(\mathcal{I} \) of \(\mathbb{N} \), we call dual filter of \(\mathcal{I} \) the family \(\mathcal{F} = \{ \mathbb{N} \setminus I : I \in \mathcal{I} \} \). In this case we say that \(\mathcal{I} \) is the dual ideal of \(\mathcal{F} \) and we get \(\mathcal{I} = \{ \mathbb{N} \setminus F : F \in \mathcal{F} \} \). A non-trivial filter \(\mathcal{F} \) of \(\mathbb{N} \) is free iff its dual ideal is admissible.

A filter \(\mathcal{F} \) of \(\mathbb{N} \) is called a \(P \)-filter iff for every sequence \((A_n)_n \) in \(\mathcal{F} \) there exists another sequence \((B_n)_n \) in \(\mathcal{F} \), such that the symmetric difference \(A_n \triangle B_n \) is finite for all \(n \in \mathbb{N} \) and \(\bigcap_{n=1}^{\infty} B_n \in \mathcal{F} \).

The filter \(\mathcal{F}_{\text{cofin}} \) is the filter of all subsets of \(\mathbb{N} \) whose complement is finite, and its dual ideal \(\mathcal{I}_{\text{fin}} \) is the family of all finite subsets of \(\mathbb{N} \). The filter \(\mathcal{F}_{\text{st}} \) is the filter of all subsets of \(\mathbb{N} \) having asymptotic density one, while its dual ideal \(\mathcal{I}_{\text{st}} \) is the family of all subsets of \(\mathbb{N} \) with asymptotic density zero. Note that
both F_{cofin} and F_{st} are P-filters (see also [12]).

We now recall the main notions and properties about convergence, closure, compactness and exhaustiveness in the filter setting and in the asymmetric case (see also [4, 15]).

An asymmetric metric space $X = (X, d)$ is any nonempty set endowed with an asymmetric metric or asymmetric distance $d : X \times X \to \mathbb{R}$, satisfying the following properties:

- $d(x, y) \geq 0$ for every $x, y \in X$ and $d(x, y) = 0$ if and only if $x = y$;
- for each $x, y, z \in X$ we get $d(x, z) \leq d(x, y) + d(y, z)$.

Given an element $x_0 \in X$ and a positive real number r, we call forward open ball (resp. backward open ball) of center x_0 and radius r the set $B^+(x_0, r) := \{y \in X : d(x_0, y) < r\}$ (resp. $B^-(x_0, r) := \{y \in X : d(y, x_0) < r\}$).

Let F be a free filter of \mathbb{N} and choose $\pi \in X$. A sequence $(s_n)_n$ in X is said to be F-forward bounded (resp. F-backward bounded) iff there is $r > 0$ such that $\{n \in \mathbb{N} : d(\pi, s_n) \leq r\} \in F$ (resp. $\{n \in \mathbb{N} : d(s_n, \pi) \leq r\} \in F$). We say that $(s_n)_n$ is forward bounded (resp. backward bounded) iff it is F_{cofin}-forward bounded (resp. F_{cofin}-backward bounded).

Let $x \in X$. A sequence x_n, $n \in \mathbb{N}$, in X is F-forward convergent (resp. F-backward convergent) to $x \in X$ iff

$$\{n \in \mathbb{N} : d(x, x_n) \leq \varepsilon\} \in F \quad (\text{resp.} \quad \{n \in \mathbb{N} : d(x_n, x) \leq \varepsilon\} \in F)$$

for every $\varepsilon > 0$. We say that $(x_n)_n$ forward (resp. backward) converges to x iff F_{cofin}-forward (resp. F_{cofin}-backward) converges to x.

Let (X, d_X) and (Y, d_Y) be two asymmetric metric spaces, and choose $\overline{y} \in Y$. We say that a sequence $f_n : X \to Y$, $n \in \mathbb{N}$, is F-pointwise forward (resp. backward) bounded, iff for every $x \in X$ there are a set $F_x \in F$ and a positive real number k_x with

$$f_n(x) \in B^+(\overline{y}, k_x) \quad (\text{resp.} \quad f_n(x) \in B^-(\overline{y}, k_x)) \quad \text{for each} \quad n \in F_x. \quad (1)$$

Throughout this paper, the concept of (filter forward/backward) compactness is always intended as sequential compactness (for various definitions of compactness and related comparisons, see also [4, 15, 18, 20]).

A subset $S \subset X$ is F-forward compact (resp. F-backward compact) iff every sequence in S has a subsequence, F-forward (resp. F-backward) convergent to an element of S. We say that $S \subset X$ is forward compact (resp. backward compact) iff it is F_{cofin}-forward compact (resp. F_{cofin}-backward compact).

Given $S \subset X$, the F-forward (resp. F-backward) closure of S in the set of all elements $x \in X$, such that there is a sequence $(s_n)_n$ in S, F-forward (resp. F-backward) convergent to x.

Remark 2.1. Observe that, by proceeding analogously as in [3, Proposition 2.4], it is possible to prove that every \mathcal{F}-forward (resp. \mathcal{F}-backward) convergent sequence in an asymmetric metric space (X, d) has a forward (resp. backward) convergent subsequence. From this it follows that, for every free filter \mathcal{F} of \mathbb{N}, \mathcal{F}-forward (\mathcal{F}-backward) compactness and closure are equivalent to forward (backward) compactness and closure respectively (see also [4]).

Let (X, d_X) and (Y, d_Y) be two asymmetric metric spaces, and $x \in X$. A sequence $f_n : X \to Y$, $n \in \mathbb{N}$, is said to be \mathcal{F}-forward (resp. \mathcal{F}-backward) exhaustive at x iff for every $\varepsilon > 0$ there exist $\delta > 0$ and a set $F \in \mathcal{F}$ (depending on ε and x) with $d_Y(f_n(x), f_n(y)) < \varepsilon$ (resp. $d_Y(f_n(y), f_n(x)) < \varepsilon$) whenever $n \in F$ and $y \in X$ with $d_X(x, y) < \delta$. We say that $(f_n)_n$ is \mathcal{F}-forward (resp. \mathcal{F}-backward) exhaustive on X iff it is \mathcal{F}-forward (resp. \mathcal{F}-backward) exhaustive at every $x \in X$.

We say that a set $C \subset Y^X$ is forward (resp. backward) equicontinuous on X iff for every $\varepsilon > 0$ and $x \in X$ there is $\delta > 0$ (depending on ε and x) such that for every $f \in C$ and $y \in X$ with $d_X(x, y) < \delta$ we get $d_Y(f(x), f(y)) < \varepsilon$ (resp. $d_Y(f(y), f(x)) < \varepsilon$). Observe that equicontinuity is in general strictly stronger than filter exhaustiveness (see also [4, Remark 3.9]).

Let $C(X, Y)$ denote the sets of all functions $f \in Y^X$ with the property that for every $\varepsilon > 0$ and $x \in X$ there exists $\delta > 0$ such that $f(y) \in B^+(f(x), \varepsilon)$ whenever $y \in B^+(x, \delta)$.

The uniform metric \overline{p} on Y^X is defined by

$$\overline{p}(f, h) = \sup \{d_Y(f(x), h(x)) : x \in X\},$$

where $\overline{d_Y}(a, b) = \min\{d_Y(a, b), 1\}$, $a, b \in Y$. We say that a subset $C \subset Y^X$ is forward (resp. backward) totally bounded iff, for every $\varepsilon > 0$, C is contained in the union of a finite number of forward (resp. backward) open balls of radius ε in the metric \overline{p}.

3 The main results

We begin with recalling the following

Proposition 3.1. (see [15, Proposition 5.5]) Let (X, d_X) and (Y, d_Y) be two asymmetric metric and forward compact spaces, and let $C \subset C(X, Y)$ be forward equicontinuous. Then C is forward totally bounded with respect to \overline{p}.

Proposition 3.2. (see [15, Proposition 5.11]) Let (X, d_X) and (Y, d_Y) be two asymmetric metric spaces such that Y is forward compact and forward convergence implies backward convergence in Y. Then $C(X, Y)$ is complete with respect to \overline{p}.
We now prove the next result.

Proposition 3.3. Let \((X, d_X)\) and \((Y, d_Y)\) be asymmetric metric spaces such that \(X\) is forward compact, \(\mathcal{F}\) be a free filter of \(\mathbb{N}\), \(\mathcal{G}\) be as in (1), and assume that forward closed and forward bounded sets in \(Y\) are forward compact. Let \(f_n : X \to Y, n \in \mathbb{N}\), be a function sequence, \(\mathcal{F}\)-forward exhaustive and \(\mathcal{F}\)-pointwise forward bounded. Then there exist \(F \in \mathcal{F}\) and a forward compact set \(Z \subset Y\) with \(f_n(X) \subset Z\) for every \(n \in F\).

Proof: Choose arbitrarily \(a \in X\). By \(\mathcal{F}\)-forward exhaustiveness of \((f_n)\), in correspondence with \(a\) and \(\varepsilon = 1\) there exist \(\delta_a > 0\) and \(F_a \in \mathcal{F}\) with \(d_Y(f_n(a), f_n(x)) < 1\) whenever \(x \in B^+(a, \delta_a)\) and \(n \in F_a\). Since \(X\) is forward compact, there is a finite cover \(\mathcal{V}\) of \(X\), \(\mathcal{V} = \{B^+(a_j, \delta_{a_j}) : j = 1, 2, \ldots, q\}\) (see also [18], [20, Theorem III]). Since \((f_n)\) is \(\mathcal{F}\)-pointwise forward bounded, there are \(F' \in \mathcal{F}\) and \(k' > 0\) such that \(f_n(a_j) \subset B^+(\mathcal{G}, k')\) for every \(n \in F'\) and \(j \in [1, q]\). Let \(F = F' \cap \left(\bigcap_{j=1}^{q} F_{a_j}\right)\), and choose \(n \in F\) and \(x \in X\). Note that \(F \in \mathcal{F}\). There is \(j \in [1, q]\) with \(x \in B^+(a_j, \delta_{a_j})\), and hence we get

\[
d_Y(\mathcal{G}, f_n(x)) \leq d_Y(\mathcal{G}, f_n(a_j)) + d_Y(f_n(a_j), f_n(x)) < k' + 1.
\]

Therefore, \(f_n(X) \subset B^+(\mathcal{G}, k' + 1)\) for each \(n \in F\). If \(Z\) is the forward closure of \(B^+(\mathcal{G}, k' + 1)\) with respect to \(d_Y\), then \(Z\) is forward compact, since by hypothesis forward closed and forward bounded sets in \(Y\) are forward compact. \(\square\)

We now turn to our main theorem, which extends [1, Theorem 3.7], [15, Theorem 5.12] and [16, Theorems 3.2.19, 3.2.20] to the setting of filter exhaustiveness and asymmetric distance, and gives a necessary and sufficient condition for (forward) relative compactness of function sets.

Theorem 3.4. Let \((X, d_X)\) and \((Y, d_Y)\) be asymmetric metric spaces, such that \(X\) is forward compact, \(\mathcal{G}\) be as in (1), and \(\mathcal{F}\) be a \(\mathcal{P}\)-filter of \(\mathbb{N}\). Assume that every forward closed and \(\mathcal{F}\)-forward bounded subset of \(Y\) is \(\mathcal{F}\)-forward compact, and forward convergence implies backward convergence in \(Y\). Let \(\overline{\mathcal{P}}\) be as in (2), and \(\mathcal{C} \subset C(X, Y)\) be such that

1. every sequence \((f_n)\) in \(\mathcal{C}\) has a subsequence \((f_{n_r})_r\), \(\mathcal{F}\)-pointwise forward bounded in \(Y\).

Suppose moreover that

2. every sequence in \(\mathcal{C}\), pointwise \(\mathcal{F}\)-forward convergent in \(Y^X\), has a \(\mathcal{F}\)-forward exhaustive subsequence.
Then the set \overline{C}, that is the forward closure of C with respect to \overline{p}, is forward compact.

Conversely, if \overline{C} is forward compact with respect to \overline{p}, then 3.4.1) and 3.4.2) hold.

Proof: For each $x \in X$, set $C_x := \{f(x) : f \in C\}$, and let \overline{C}_x be the forward closure of C_x in Y. We claim that \overline{C}_x is forward compact in Y. Indeed, choose $y \in \overline{C}_x$. There is a sequence $(y_n)_n$ in C_x, forward (and also backward) convergent to y with respect to d_Y. So, in correspondence with $\varepsilon = 1$ there is a natural number n_0 with $d_Y(y, y_n) \leq 1$ whenever $n \geq n_0$. Moreover there is a sequence $(f_n)_n$ in C such that $f_n(x) = y_n$ for each $n \in \mathbb{N}$. By 3.4.1), there exist a subsequence $(f_{n_k})_k$ of $(f_n)_n$, a positive real number k_x and a set $F_x \in \mathcal{F}$ with $y_{n_k} \in B^+(\overline{y}, k_x)$ whenever $r \in F_x$. Thus there is a positive integer r_0 with

$$d_Y(\overline{y}, y) \leq d_Y(\overline{y}, y_{n_{r_0}}) + d_Y(y_{n_{r_0}}, y) \leq k_x + 1,$$

getting forward boundedness of \overline{C}_x and hence also \mathcal{F}-forward compactness and forward compactness of \overline{C}_x, thanks to the hypotheses and Remark 2.1.

Now, since \overline{C}_x is forward compact in Y and forward convergence implies backward convergence in Y, then, by the Tychonoff theorem, the set $\Pi_{x \in X} \overline{C}_x$ is compact in Y^X with respect to the pointwise convergence. Since $C \subseteq \Pi_{x \in X} \overline{C}_x$, then we get that every sequence $(f_n)_n$ in C has a subsequence $(f_{n_k})_k$, pointwise convergent to a suitable function $h \in Y^X$ and hence pointwise bounded too.

Pick arbitrarily any sequence $(f_n)_n$ in C. We will prove that $(f_n)_n$ has a subsequence, forward convergent with respect to \overline{p}. Let $(f_{n_k})_k$ be as above. From 3.4.2) and the above argument it follows that $(f_{n_k})_k$ admits a pointwise bounded and \mathcal{F}-forward exhaustive subsequence, say $(g_n)_n$. By Proposition 3.3 there exist a compact subset $Z \subseteq Y$ and a set $F_0 \subseteq \mathcal{F}$, with $\{g_n : n \in F_0\} \subseteq C(X, Z)$. Note that even the sequence $(g_n)_{n \in F_0}$ is pointwise convergent to h, and so by 3.4.2) it has an \mathcal{F}-forward exhaustive subsequence, say $(h_n)_n$. Now observe that, arguing analogously as in [15, Lemma 5.2], it is possible to show that \mathcal{F}-forward exhaustiveness implies \mathcal{F}-backward exhaustiveness, because Z is forward compact, forward convergence implies backward convergence in Z with respect to d_Y, and the forward and backward topologies on Z are equivalent. By virtue of \mathcal{F}-forward exhaustiveness of the sequence $(h_n)_n$ and since \mathcal{F} is a P-filter, arguing analogously as in [1, Lemma 3.6] it is possible to find a set $F^* \subseteq \mathcal{F}$, such that for every $\varepsilon > 0$ there are $\delta > 0$ and $n_0 \in F^*$ such that $d_Y(h_n(x), h_n(z)) < \varepsilon$ for any $x, z \in X$ with $d_X(x, z) < \delta$ and $n \in F^*, n \geq n_0$. From this, since $h_n \in C(X, Z)$ for every $n \in \mathbb{N}$, we get that the sequence $(h_n)_{n \in F^*}$ is forward equicontinuous on X. By Proposition 3.1 it follows that the set $\{h_n : n \in F^*\}$ is forward totally bounded with respect to \overline{p}. By Proposition 3.2, since Z is forward compact, we get that $C(X, Z)$ is complete with respect to \overline{p}. If Z denotes the closure of $\{h_n : n \in F^*\}$ in
\(C(X,Z) \) with respect to \(\bar{\rho} \), then we get that \(Z \) is complete and forward totally bounded. Thus, arguing analogously as in [15, Theorem 4.8], it follows that \(Z \) is forward compact. Thus the sequence \((h_n)_{n \in F^*} \), and so a fortiori the sequence \((f_n)_n \), has a subsequence, forward convergent with respect to \(\bar{\rho} \), getting forward compactness of the set \(\bar{C} \).

We now turn to the last part. Let \((f_n)_n \) be a sequence of functions in \(C \). Since \(\bar{C} \) is forward compact, there is a subsequence \((f_{n_k})_k \) of \((f_n)_n \), convergent to a function \(f_0 \in Y^X \) with respect to the metric \(\bar{\rho} \) in (2), and hence also pointwise convergent with respect to \(d_Y \), getting forward compactness of \(\bar{C}_x \) in \(Y \) for every \(x \in X \). From this it follows that \((f_{n_k}(x))_k \) is forward totally bounded for each \(x \in X \) (see also [15, Proposition 4.8]), and hence \(F \)-pointwise forward bounded too, getting 3.4.1). Moreover, since \(\bar{C} \) is forward compact, \(\bar{C} \cup \{ f_0 \} \) is forward totally bounded, and in particular for every \(\varepsilon > 0 \) there are \(h_1, \ldots, h_q \in \bar{C} \) with the property that for every \(n \geq 0 \) there is \(i \in [1,q] \) with \(\bar{\rho}(h_i, f_n) < \varepsilon/2 \), and hence \(d_Y(h_i(x), f_n(x)) < \varepsilon/2 \) for each \(x \in X \). Let now \(i \in [1,q] \). Since \(h_i \in C(X,Y) \) and \(X \) is forward compact, then \(h_i(X) \) is forward compact in \(Y \), and hence forward totally bounded too. Therefore for every \(\varepsilon > 0 \) there are \(y_{i,1}, y_{i,2}, \ldots, y_{i,p(i)} \in Y \) such that for every \(x \in X \) there is \(j \in [1,p(i)] \) with \(d_Y(y_{i,j}, h_i(x)) < \varepsilon/2 \). Let now

\[
A = \{(i,j) : i \in [1,q], j \in [1,p(i)]\}. \tag{3}
\]

Note that \(A \) is a finite subset of \(\mathbb{N}^2 \). For each \(\beta \in A \), let \(y_\beta = y_{i,j} \), where \(i, j \) are as in (3). Thus for every \(n \geq 0 \) and \(x \in X \) there is \(\beta \in A \) with

\[
d_Y(y_\beta, f_n(x)) \leq d_Y(y_\beta, h_i(x)) + d_Y(h_i(x), f_n(x)) < \varepsilon,
\]

getting forward total boundedness of the set \(E = \{ f_n(x) : x \in X, n \geq 0 \} \).

So, \(E \) is forward bounded. Arguing analogously as in Proposition 3.3, it is possible to see that the forward closure \(Z \) of \(E \) with respect to \(d_Y \) is forward bounded, and hence also forward compact, by hypothesis. By [15, Lemma 4.2], the forward and backward convergence on \(Z \) coincide. By [15, Lemma 5.8], \(f \in C(X,Z) \). Furthermore note that, by [15, Lemma 5.2], in the space \(Z^X \) with the metric \(\bar{\rho} \), forward and backward convergence coincide.

We now prove forward equicontinuity of the sequence \((f_{n_k})_k \) on \(X \), which will imply its \(F \)-forward exhaustiveness with respect to any free filter \(F \) of \(\mathbb{N} \), getting in particular 3.4.2). Choose arbitrarily \(x \in X \). Since \(f_0 \in C(X,Z) \), in correspondence with \(\varepsilon > 0 \) and \(x \in X \) there is \(\delta > 0 \) with \(d_Y(f_0(x), f_0(z)) < \varepsilon/3 \) whenever \(z \in B^+(x, \delta) \). By convergence of \((f_{n_k})_k \) to \(f_0 \) on \(X \) with respect to \(\bar{\rho} \), there is \(\overline{k} \in \mathbb{N} \) with

\[
d_Y(f_0(z), f_{n_k}(z)) < \varepsilon/3 \quad \text{and} \quad d_Y(f_{n_k}(x), f_0(x)) < \varepsilon/3 \quad \text{for each} \quad k \geq \overline{k}. \tag{4}
\]

From (4) we get

\[
d_Y(f_{n_k}(x), f_{n_k}(z)) \leq d_Y(f_{n_k}(x), f_0(x)) + d_Y(f_0(x), f_0(z)) + d_Y(f_0(z), f_{n_k}(x)) < \varepsilon \tag{5}
\]
for every $k \geq \bar{k}$ and $z \in B^+(x,\delta)$. Forward equicontinuity of $(f_{nk})_k$ follows from (5), since the f_{nk}’s belong to $C(X,Z)$. This ends the proof. □

Remarks 3.5. (a) Note that, in general, condition 3.4.2) is strictly weaker than forward/backward equicontinuity (see also [16, Remark 3.2.17]), and that a condition similar to 3.4.2) was given in [16, Theorems 3.2.19, 3.2.20].

(b) Observe that in the asymmetric case, under the hypotheses of Theorem 3.4, in general forward compactness of the set \mathcal{C} does not imply forward equicontinuity of \mathcal{C} (see also [15, Example 3.5]). Moreover, in general the condition that forward convergence implies backward convergence cannot be dropped (see also [15, Example 5.13]).

Open problems: (a) Prove some Ascoli-type theorems for functions, defined and/or taking values in spaces endowed with other structures.

(b) Investigate some other kinds of (filter) exhaustiveness in abstract contexts.

References

Received: May 19, 2015; Published: August 17, 2015