On λ-Bernoulli Polynomials of the Second Kind

Taekyun Kim

Department of Mathematics, Kwangwoon University
Seoul 139-701, Republic of Korea

Hyuck-In Kwon

Department of Mathematics, Kwangwoon University
Seoul 139-701, Republic of Korea

Jong-Jin Seo

Department of Applied Mathematics
Pukyong National University
Busan 608-737, Republic of Korea

Copyright © 2015 Taekyun Kim, Hyuck-In Kwon and Jong-Jin Seo. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we study the λ-analogues of Bernoulli polynomials of the second kind, and we derive some new identities related to those polynomials.

Mathematics Subject Classification: 05A10, 05A19

Keywords: Bernoulli polynomials
1. Introduction

For \(r \in \mathbb{N} \), the Bernoulli polynomials of order \(r \) are defined by the generating function to be
\[
\left(\frac{t}{e^t-1} \right)^r e^{xt} = \sum_{n=0}^{\infty} B_n^{(r)}(x) \frac{t^n}{n!}, \text{ (see [1-12]).} \tag{1.1}
\]

L. Carlitz have introduced the degenerate Bernoulli polynomials of order \(r \) as follows:
\[
\left(\frac{t}{(1+\lambda t)^{\frac{1}{\lambda}}-1} \right)^r (1+\lambda t)^{\frac{1}{\lambda}} = \sum_{n=0}^{\infty} \beta_n^{(r)}(x|\lambda) \frac{t^n}{n!}, \text{ (see [2]).} \tag{1.2}
\]

When \(x = 0 \), \(\beta_n^{(r)}(\lambda) = \beta_n^{(r)}(0|\lambda) \) are called the degenerate Bernoulli numbers. The Bernoulli polynomials of the second kind are defined by the generating function to be
\[
\frac{t}{\log(1+t)}(1+t)^x = \sum_{n=0}^{\infty} b_n(x) \frac{t^n}{n!}, \text{ (see [10]).} \tag{1.3}
\]

When \(x = 0 \), \(b_n = b_n(0) \) are called the \(n \)-th Bernoulli numbers of the second kind.

It is well known that
\[
\left(\frac{t}{\log(1+t)} \right)^r (1+t)^{x-1} = \sum_{n=0}^{\infty} B_n^{(n-r+1)}(x) \frac{t^n}{n!}, \tag{1.4}
\]

From (1.3) and (1.4), we have \(b_n(x) = B_n^{(n)}(x), \ (n \geq 0) \).

Recently, Korobov introduced the special polynomials which are given by the generating function to be
\[
\frac{\lambda t}{(1+t)^{\frac{1}{\lambda}}-1} (1+t)^x = \sum_{n=0}^{\infty} K_n(x|\lambda) \frac{t^n}{n!}, \text{ (see [9]).} \tag{1.5}
\]

Note that \(\lim_{n \to 0} K_n(x|\lambda) = b_n(x), \ (n \geq 0) \). When \(x = 0 \), \(K_n(\lambda) = K_n(0|\lambda) \) are called Korobov numbers.

In this paper, we consider the \(\lambda \)-analogue of Bernoulli polynomials of the second kind and give some new identities of those polynomials.

2. \(\lambda \)-analogues of Bernoulli polynomials of the second kind

For \(\lambda \in [0,1] \), we consider the \(\lambda \)-analogue of Bernoulli polynomials of the second kind which are given by definite integral as follows:
\[
\int_0^1 (1+t)^{\lambda y+x} dy = \frac{1}{\log(1+t)} \left(\frac{(1+t)^{\lambda}-1}{\lambda} \right) (1+t)^x = \sum_{n=0}^{\infty} b_{n,\lambda}(x) \frac{t^n}{n!}. \tag{2.1}
\]
Note that \(b_{n,1}(x) = b_n(x) \) and \(\lim_{\lambda \to 0} b_{n,\lambda}(x) = (x)_n, \) \((n \geq 0)\), where \((x)_n = \sum_{l=0}^{n} S_1(n,l) x^l \) with \(S_1(n,l) \) Stirling number. When \(x = 0 \), \(b_{n,\lambda} = b_{n,\lambda}(0) \) are called \(\lambda \)-Bernoulli numbers of the second kind.

From (2.1), we note
\[
\int_0^1 (\lambda y + x)_n dy = b_{n,\lambda}(x), \quad (n \geq 0),
\]
where \((x)_n = x(x-1) \cdots (x-n+1) = \sum_{l=0}^{n} S_1(n,l) x^l \). It is easy to show that
\[
\int_0^1 (1+t)^{x+y} dy = \frac{t}{\log(1+t)} (1+t)^x = \sum_{n=0}^{\infty} b_n(x) \frac{t^n}{n!}.
\]
Thus, by (2.3), we get
\[
\int_0^1 (x+y)_n dy = b_n(x), \quad (n \geq 0).
\]
We observe that
\[
\int_0^1 (\lambda y + x)_n dy = \lambda^n \int_0^1 \left(y + \frac{x}{\lambda} \right)_n dy = \lambda^n b_n \left(\frac{x}{\lambda} \right).
\]
Therefore, by (2.2) and (2.5), we get
\[
b_{n,\lambda}(x) = \lambda^n b_n \left(\frac{x}{\lambda} \right), \quad (n \geq 0).
\]
From (2.2), we have
\[
\int_0^1 (1+t)^{\lambda y + x} dy = \frac{t}{\log(1+t)} \left(\frac{(1+t)^\lambda - 1}{\lambda t} \right) (1+t)^x.
\]
It is not difficult to show that
\[
\frac{1}{\lambda t} \left((1+t)^\lambda - 1 \right) = \frac{1}{\lambda^2} \sum_{n=1}^{\infty} \left(\frac{\lambda}{n} \right) t^n = \sum_{n=0}^{\infty} \frac{1}{\lambda} \left(\frac{\lambda}{n+1} \right) t^n.
\]
By (2.7) and (2.8), we get
\[
\frac{t}{\log(1+t)} \left(\frac{(1+t)^\lambda - 1}{\lambda t} \right) (1+t)^x
= \left(\sum_{l=0}^{\infty} b_l(x) \frac{t^l}{l!} \right) \left(\sum_{m=0}^{\infty} \frac{1}{\lambda} \left(\frac{\lambda}{m+1} \right) t^m \right)
= \left(\sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} b_l(x) \left(\frac{\lambda}{n-l+1} \right) \frac{1}{\lambda} \frac{n!(n-l)!}{l!(n-l)!} \right) t^n \right) \frac{1}{n!}
= \left(\sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \frac{n!}{l!} b_l(x) \left(\frac{\lambda}{n-l+1} \right) \frac{1}{\lambda} \right) t^n \right) \frac{1}{n!}.
\]
Therefore, by (2.1) and (2.9), we obtain the following theorem.
Theorem 2.1. For $n \geq 0$, we have
\[b_{n,\lambda}(x) = \sum_{l=0}^{\infty} \left(\begin{array}{c} n \\ l \end{array} \right) (n-l)! b_l(x) \frac{\lambda}{n-l+1}. \]

In particular,
\[b_{n,\lambda}(x) = \lambda^n b_n \left(\frac{x}{\lambda} \right). \]

Corollary 2.2. For $n \geq 0$, we have
\[\sum_{l=0}^{n} \frac{S_1(n,l)}{l+1} ((x+\lambda)^{l+1} - x^{l+1}) = \sum_{l=0}^{n} \left(\begin{array}{c} n \\ l \end{array} \right) (n-l)! b_l(x) \left(\begin{array}{c} \lambda \\ n-l+1 \end{array} \right). \]

From (1.3) and (2.7), we have
\[\sum_{n=0}^{\infty} \frac{b_n(x)^t}{n!} = \frac{t}{\log(1+t)} (1+t)^x = \frac{\lambda t}{(1+t)^\lambda - 1} \int_{0}^{1} (1+t)^{\lambda y+x} dy \]
\[= \left(\sum_{l=0}^{\infty} K_l(\lambda) t^l \right) \left(\sum_{m=0}^{\infty} \int_{0}^{1} (\lambda y + x)_m dy \frac{t^m}{m!} \right) \]
\[= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \left(\begin{array}{c} n \\ m \end{array} \right) K_m(\lambda) b_{n-m,\lambda}(x) \right) \frac{t^n}{n!}. \]

Therefore, by (2.10), we obtain the following theorem.

Theorem 2.3. For $n \geq 0$, we have
\[b_n(x) = \sum_{m=0}^{n} \left(\begin{array}{c} n \\ m \end{array} \right) K_m(\lambda) b_{n-m,\lambda}(x). \]

By replacing t by $e^t - 1$ in (2.1), we get
\[\frac{1}{\lambda t} (e^{\lambda t} - 1) e^{xt} = \sum_{n=0}^{\infty} b_{n,\lambda}(x) \frac{1}{n!} (e^t - 1)^n \]
\[= \sum_{n=0}^{\infty} b_{n,\lambda}(x) \sum_{m=n}^{\infty} S_2(m,n) \frac{t^m}{m!} \]
\[= \sum_{m=0}^{\infty} \left(\sum_{n=0}^{m} b_{n,\lambda}(x) S_2(m,n) \right) \frac{t^m}{m!}. \]

We observe that
\[\frac{1}{\lambda t} (e^{\lambda t} - 1) e^{xt} = \sum_{m=0}^{\infty} \left(\sum_{n=0}^{m} x^m \frac{\lambda^{m-n}}{m-n+1} \left(\begin{array}{c} m \\ l \end{array} \right) \right) \frac{t^m}{m!}. \]

Therefore, by (2.11) and (2.12), we obtain the following theorem.
Theorem 2.4. For \(m \geq 0 \), we have
\[
\sum_{n=0}^{m} \frac{\lambda^{m-n}}{m-n+1} \binom{m}{l} x^n = \sum_{n=0}^{m} b_{n,\lambda}(x) S_2(m, n).
\]

Let us consider the multivariate integral on \([0, 1]\) given by
\[
\int_0^1 \cdots \int_0^1 (1 + t)^{\lambda(x_1 + \cdots + x_r) + x} \, dx_1 \cdots dx_r.
\] (2.13)

From (2.1), we note that
\[
\int_0^1 \cdots \int_0^1 (1 + t)^{\lambda(x_1 + \cdots + x_r) + x} \, dx_1 \cdots dx_r
= \left(\frac{1}{\log(1 + t)} \frac{(1 + t)^{\lambda} - 1}{\lambda} \right)^r (1 + t)^x.
\] (2.14)

Now, we define \(\lambda \)-Bernoulli polynomials of the second kind with order \(r \) as follows:
\[
\left(\frac{1}{\log(1 + t)} \frac{(1 + t)^{\lambda} - 1}{\lambda} \right)^r (1 + t)^x = \sum_{n=0}^{\infty} b_{n,\lambda}^{(r)}(x) \frac{t^n}{n!}.
\] (2.15)

Now, we observe that
\[
\left(\frac{1}{\log(1 + t)} \frac{(1 + t)^{\lambda} - 1}{\lambda} \right)^r (1 + t)^x
= \left(\frac{t}{\log(1 + t)} \right)^r \left(\frac{(1 + t)^{\lambda} - 1}{\lambda t} \right)^r (1 + t)^x
= \left(\sum_{l=0}^{\infty} B_l^{(l-r+1)}(x+1) \frac{t^l}{l!} \right)
\times \left(\sum_{n=0}^{\infty} \sum_{l_1+\cdots+l_r=m} \frac{\lambda}{(m-l_1+1) \cdots (m-l_r+1)} \binom{m}{l_1} \cdots \binom{m}{l_r} \frac{t^m}{m!} \right)
= \sum_{n=0}^{\infty} \left(\sum_{\lambda,m=0}^{\infty} \binom{n}{m} \sum_{l_1+\cdots+l_r=m} \frac{\lambda^{r-m(l_1+\cdots+l_r)}}{(m-l_1+1) \cdots (m-l_r+1)} \binom{m}{l_1} \cdots \binom{m}{l_r} B_{n-m-r+1}^{(n-m-r+1)}(x+1) \right) \frac{t^m}{m!}.
\] (2.16)

Therefore, by (2.15) and (2.16), we obtain the following theorem.

Theorem 2.5. For \(n \geq 0 \), we have
\[
b_{n,\lambda}^{(r)}(x) = \sum_{m=0}^{n} \binom{n}{m} \sum_{l_1+\cdots+l_r=m} \frac{\lambda^{r-m(l_1+\cdots+l_r)}}{(m-l_1+1) \cdots (m-l_r+1)} \binom{m}{l_1} \cdots \binom{m}{l_r} B_{n-m-r+1}^{(n-m-r+1)}(x+1).
\]
By replacing t by $e^t - 1$ in (2.15), we get

$$
\left(\frac{1}{\lambda t} (e^{\lambda t} - 1) \right)^r e^{xt} = \sum_{m=0}^{\infty} b_{m, \lambda}(x) \frac{1}{m!} (e^t - 1)^m
$$

$$
= \sum_{m=0}^{\infty} b_{m, \lambda}^{(r)}(x) \sum_{n=m}^{\infty} S_2(n, m) \frac{t^m}{m!}
$$

$$
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} b_{m, \lambda}^{(r)}(x) S_2(n, m) \right) \frac{t^m}{m!}.
$$

(2.17)

Note that

$$
\left(\frac{1}{\lambda t} (e^{\lambda t} - 1) \right)^r e^{xt} = \left(\frac{1}{\lambda t} \right)^r r! \left(\sum_{l=r}^{\infty} S_2(l, r) \frac{\lambda^l t^l}{l!} \right) e^{xt}
$$

$$
= \left(\sum_{l=0}^{\infty} S_2(l + r, r) \frac{r!}{(l + r)!} \frac{\lambda^l t^l}{l!} \right) \left(\sum_{m=0}^{\infty} \frac{x^m}{m!} t^m \right)
$$

$$
= \left(\sum_{l=0}^{\infty} S_2(l + r, r) \frac{1}{(l + r)!} \frac{\lambda^l t^l}{l!} \right) \left(\sum_{m=0}^{\infty} \frac{x^m}{m!} t^m \right)
$$

$$
= \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} S_2(l + r, r) \frac{1}{(l + r)!} \frac{\lambda^l x^{n-l}}{l!} \right) \frac{t^n}{n!}.
$$

(2.18)

Therefore, by (2.17) and (2.18), we obtain the following theorem.

Theorem 2.6. For $n \geq 0$, we have

$$
\sum_{m=0}^{n} b_{m, \lambda}^{(r)}(x) S_2(m, n) = \sum_{m=0}^{n} S_2(m + r, r) \left(\frac{n}{m+r} \right) \lambda^m x^{n-m}.
$$

From (2.14) and (2.15), we can derive the following equation:

$$
\int_0^1 \binom{\lambda y + x}{n} dy = b_{n, \lambda}(x), \quad (n \geq 0),
$$

and

$$
\int_0^1 \cdots \int_0^1 \binom{\lambda (x_1 + \cdots + x_r) + x}{n} dx_1 \cdots dx_r = b_{n, \lambda}^{(r)}(x).
$$

REFERENCES

On λ-Bernoulli polynomials

Received: July 3, 2015; Published: August 10, 2015