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Abstract

We show what physical capacity of refuge it influences in the exis-
tence and stability the unique equilibrium point at interior of the first
quadrant. We analyze the consequences of such function through mod-
ifying the well-known Lotka-Volterra predator-prey model with prey
self-limitation.
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1 Introduction

In population dynamics the models proposed for interactions prey-predator
have considered diverse suppositions to simplify their mathematical descrip-
tions, such as: The populations’ homogeneity, homogeneity of environmental,
distribution spatial uniform, constant rates of growth, encounters between the
species predators and equally probable prey, sizes population clerks exclusively
of the time, the species predators feeds exclusively of the species prey, while
this feeds of a resource that is in the habitat in big quantities the one which
alone it intervenes passively, they are not considered behaviors of the species of
physiologic, morphological, social type, neither reintroduction of species, etc.

The behavior of the species is affected by the effect of ecological variables
(readiness of refuges, formation of defence groups, difficulty of mating, ap-
pearance of other strategies antipredator, etc).

The behaviors antipredator can be:
- Physiologic: Emission of chemical substances or pheromones, etc.

- Morphological: Patterns of coloration, mimicry with the atmosphere, adapt-
ability of some parts of the body, etc.

- Imitation of codes: Emission of sounds, to be made the dead, etc.

- Habitat adaptation: Uses of refuges, in the nature, many preys respond to
the attacks of the predators looking for such space refuges. The effect itself
of refuge use on the population growth is complex in nature, but for modeling
purposes it can be understood as the reduction of prey mortality due to reduc-
tion in predation success. The refuges affect positively the population growth
of preys and negatively that of predators. A more relevant behavior trait that
affects the dynamics of predator-prey systems is the use of spatial refuges by
the prey. Spatial refuges are found where environmental heterogeneity pro-
vides less-accessible sites for predators in which a number of preys can stay, at
least temporarily. In this way, some fraction of the prey population is partially
protected against predators and we assume that the refuge is a physical loca-
tion in which prey either live or temporally hide [1]. The majority of the works
show the refuge conclusion that stabilizes predator interactions [2]. However,
Gonzalez-Olivares and Ramos-Jiliberto, discard the common conclusion that
the use of the shelter by the population of prey always leads to stability as con-
sidering the same assumptions in the model Rosenzweig-McArthur obtained
which trajectories can oscillate for some parameter values [3].

We denote for X (t) = X and Y (t) = Y the population sizes of preys and
predators, respectively for ¢ > 0, considered as continuous variables that can
represent density, biomass or quantity of each population’s individuals. The
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common Lotka-Volterra predator prey model is

K=r(1-%X)X —qXY

e ¥ — hX —c)Y W
dt g

where ¢ = (a, b, ¢, K, r) € R’ is vector of biological parameter.

Usually the parameters have the following biological meanings:

r is the intrinsic per capita prey growth rate;

K is the prey environmental carrying capacity;

g is the maximal per capita predator consumption rate;

b is the efficiency with which predators convert consumed prey into new

predators;

¢ is the natural per capita death predator rate.

If X,.(t) = X,, a quantity of prey population that occupies a refuge (het-

erogeneity of the means), the quantity of preys in refuge, then the quantity of

preys that interact with the predators is X — X,.. The model (1) is transformed

in

K—r(1-X)X-¢(X-X,)Y

X, (2)
%: (b (X_XT)_C) Y7

which is a Kolmogorov type system, where functional response is linear [4].

According to [5, 6] two refuge types have usually been considered in the eco-

logical literature.

(I). Those that protect a constant fraction of the preys, X, = 5X.

Objection: The fraction of hidden preys is a growing linear function; this
implies that the refuge readiness is bigger while bigger it is the population
size. Then the system is topologically equivalent to the original one [3],
changing only the coordinates of the positive equilibrium point.

(IT). Those that protect a fixed quantity of preys, X, = f.

Objections: Quantity of refuge prey does not depend on physical capacity
of refuge. The occurrence of a constant number or constant proportions
of the prey in refuge seem to be very unlikely in the nature [7].

The system ceases to be a Kolmogorov type, but the new positive equilibrium
point is also globally asymptotically stable.

In the present work, we analyze the population consequences of refuge use
in the Lotka-Volterra model with self-limitation, assuming that the amount
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of prey in refuge is given by the function of the functional response type II
Holling, which considers the two objections is used

B aX
T'_X+/B7

where «a represents the maximum physical capacity of the refuge and [ is a
half saturation constant of the refuge. Moreover, we have that the per capita
fraction of prey population on refuge % is a decreasing function. We note

that

(i) If 8 — 0 or X — oo, then X, — «, therefore all the prey population is
in a refuge with capacity a constant.

(ii) If B — oo, then X, — 0; therefore, the prey in refuge tends to zero

(iii) If @« — 0, then X, — 0; therefore, the amount of prey on refuge tends to
Zero.

(iv) If a — oo, then X, — oo; therefore, all population can be in refuge.

The study of prey refuge use is essential for conservation of endangered species
creating protected areas to preserve them.

2 The model

Considering the function proposed in the model obtains the field vectorial Xﬁ’ﬁ
described by the autonomous system of differential equations:

C=r(l-%)X —a(X - gH)Y

a?IB .
XH ' dy aX (3)
where u = (a, b, ¢, K, r, a, ) € RZF is vector of biological parameters.
Following the methodology used in [8], we make a reparametrization of the
vector field Xﬁ“’ﬁ or the system (3) including changes of variables and a time
rescaling given by the diffeomorphism ¢ : (RT)?> x R — (RT)? x R, such
that o(N, P, 7) = (KN, tP, 5287y = (X, Y, t), with det Jo(N, P, 1) =
w >0and A= &, B = %, C = KTb, D = ¢. The vector field in the new
coordinates is X, :<poX[j75, and associated second-order differential equations
system is the following Kolmogorov type polynomial:
% =N[(1-N)(N+B)—(N+B—-A)P|

Xy = (4)

a2 — P[C(N + B — A)N — D(N + B)],
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where n = (A, B, C, D) € R% and the system (4) is topologically equivalent
to system (3). The N-nulclines associated to the system (4) they are given for:

N =0and P = %, N > A — B. The P-nulclines associated to the

system (4) they are given for: P =0 and N = H+YH?+4BCD VH;CJFM. The Jacobian
matrix of system (4) is

11 12
JXUZ{JXn JX] }

JX? JX2
where
JX)' = —=3N*+2(1 - B— P)N + (B — BP + AP),

JX,?=—-N?+(A-B)N,JX' = (2CN + (B — A)C — D)P,
JX?* = CN?+ (BC — AC — D)N — BD.

Considering the isolated means, where there is not reintroduction of preys X
such that overcome the prey environmental carrying capacity K.

3 Main Results

For system (4) we have that

Lemma 3.1. The set Q = {(N,P) € (R{)*0 < N <1,P >0} is an in-
variant region of vector field.

Proof.  (a) As system (4) is of Kolmogorov type, then the

N- axis and P- axis are invariant sets.

(b) If N =1, we have that ¥ = — (1 + B — A) P < 0, and the trajectories

point into to region Q. (N, P) € [0,1] x [0, z2;] € Q, if B > A.
(N, P)e [A— B, 1] x [0,00] C Q, if B < A.
O
Lemma 3.2. The trajectories are bounded.
Proof. Using the Poincaré compactification, we obtain the result. O]

Lemma 3.3. (a) If A > w, the system (4) has two equilibrium
points:

(1) (N7, Pr) =(0,0).
(i) (N3, P5) = (1, 0).

(b) If A< w, the system (4) has tree equilibrium points:
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(i) (N7, P7) = (0, 0).

(i) (N3, P3) = (1, 0).

(ZZZ) gg,(i):k) :ngJr%/H;CJrzlw’ HC—(H2+H\2/§[C2’—L1-)4BCD+2BC’D)); where H —
+(A-B)C.

If B> A, then Nj —0, Py — 2

B-A"
If B< A, then Ny -+ A— B, Py — o0.

Proof. Considering the equations that define X, we obtain the result. m

Lemma 3.4. (i) The singularity (N7, Pf) = (0, 0) is saddle point for
all parameter value.

(i) The singularity (N5, Py) = (1, 0) is globally asymptotically stable, if

A> w and is saddle point, if A < w.

Proof. Evaluating the Jacobian matrix we have:

B 0
@ 2x000 = (g _pp ).
The eigenvalues: \y = B >0, \a = —BD < 0.

1+ B) A—(1+B)
0 Cl+B—-A)—-D(1+B) |

The eigenvalues: \y = —B—1<0, A\ =C(1+B—-A)—D(1+ B). We
observe that the sign of A\ depends on the value of the parameters like it
indicates the hypothesis: If A > %, Ay < 0 and (1,0) is globally
asymptotically stable by applying the Poincaré Bendixon theorem.

(b) JX,(1,0) = [ ~

For system (4) we have the following results

Theorem 3.5. The singularity

(N7, Pp) = (2t YH?TABCD HC—(H*+HY H2+4BCD+2BCD))
3 3/ 20 ) 2CD

18:

. . N*4+B)?
(i) Center, if A= Q(N*IB)_p

(i) Spiral unstable, if A > Q(JJVV:I?_QP

(i11) Spiral stable, if A < %.
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Proof. Evaluating the Jacobian matrix at

x p¥\ _ (H+YH?$4BCD HC—(H2+H YH?+4BCD+2BCD)
(N ,P ) _( 20 )7

) 2CD
we have: I b
JX JX
* *) n n
JXTI(N 7P) |iJX$1 JX§2 :|7
where

JX = —3N*2 —2N*B + 2N* — 2N*P* + B — P*B + P*A,
JX)?=—=(N"+ B = A)N", JX;! = (2CN" + CB - CA- D)P",

JXP =0.
As P =NWNED) - then —3N2 — 2NB + 2N — 2NP + B — PB + PA =

N242NB—2NA+B?2—BA+A
—N( NP4 ), and

_N*(N*2+2N*B]\735rv;ix232—BA+A) —(N*—I—B—A)N*

TX (N7 P7) = (2CN* 4+ CB — CA — D)P* 0 !

where
DetJX,(N*,P*) = (N*"+ B —- A)N*(2CN*+ CB — CA— D)Px > 0.

With CN? + (CB — CA — D)N — DB = 0 then CA — CB + D = ¢¥°2D5,
(2CN+CB—-CA—D)P =+ (CN*+DB)P > 0and N+ B— A > 0 this way
(N*+B—A)N*(2CN*+CB—~CA—D)Px = (N*+B—A)(CN*+DB)Px > 0.

And the behavior of singularity depends on the trace

N*2 +2N*B —2N*A+ B2 —BA+ A
N*+B— A

TraceJ X,(N*, P*) = =N*( ).

If A= the Trace is zero and (N*, P*) is center. If A > (N'AB the

OIN*+B-1 2N+B-1
Trace is positive, and (N*, P*) is unstable spiral. If A < 2(]]\?*15)71 the Trace
is negative, and (N*, P*) is spiral attractor. O

4 Conclusions

The preys react fleeing the refuge due to the presence of a certain amount of
predator. This work was shown in Theorem 3.5, the assertion that regular
use refuge stabilizes prey predator-prey interaction depends on the size of the
refuge. We show that this way of modeling the refuge function limits cycles
are obtained, which indicates periodic solutions. It is important to note that
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the parameter of maximum physical capacity of refuge influences in the num-
ber of equilibrium points. The variations of the parameter A makes that you
of the bifurcation of Hopf and spends from a point of stable equilibrium to a
limit cycle. The existence of an equilibrium point within the first quadrant
is conditional refuge size, because if A — w, collapses to the point
(N, P) = (1,0). The knowledge of the impact of prey refuge use by a fraction
of prey-population is relevant in the context of bioeconomic and conserva-
tion management, because it helps in regulating the harvesting activity in the
ecosystem and management of reserves or non-take zones; also it is essential
for conservation of endangered species creating protected areas (reserves) for
preserve them [9]. For this reason, other models for interaction between species
must be considered.
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