Some Relations Involving Hypergeometric Functions of Three and Four Variables

*Ahmed Ali Atash and **Ala’a Mohammed Obad

*Department of Mathematics, Faculty of Education-Shabowh Aden University, Aden, Yemen

**Department of Mathematics, Faculty of Education-Aden Aden University, Aden, Yemen

Copyright © 2015 Ahmed Ali Atash and Ala’a Mohammed Obad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The aim of this paper is to derive certain relations involving Exton’s functions K_1 and K_2, generalized Horn’s function $(k)H_k^{(4)}$ and Lauricella’s function $F_C^{(4)}$. These relations are derived with the help of the Laplace integral representations of Exton’s quadruple hypergeometric functions. Some deductions from these relations lead us to a number of (new and known) reduction formulas of Lauricella’s functions $F_A^{(3)}$ and $F_C^{(3)}$ and Exton’s functions X_2, X_4 and X_8.

Keywords: Exton’s functions, Generalized Horn’s function, Lauricella’s functions, Laplace integral

1. Introduction

Exton [1; p. 78-82] gave the definitions and the Laplace integral representations of the quadruple hypergeometric functions K_1 and K_2 as follows:

$$K_1(a,a,a;a;b,b;c_2,d_2,d_4;x,y,z,t)$$
\[
= \sum_{m,n,p,q=0}^{\infty} \frac{(a)_{m+n+p+q} (b)_{m+n} (c_1)_{p} (c_2)_{q} n^m y^n z^p t^q}{(d_1)_m (d_2)_n (d_3)_p (d_4)_q} m! n! p! q!
\]

(1.1)

\[
= \frac{1}{\Gamma(a)} \int_0^{\infty} e^{-u} u^{a-1} \Psi_2(b; d_1, d_2; xu, yu) F_1(c_1; d_3; zu) F_1(c_2; d_4; tu) du
\]

(1.2)

\[K_{13}(a, a, a, a; b_1, b_2, b_3, b_4; c, c, d_1, d_2; x, y, z, t)
\]

\[
= \sum_{m,n,p,q=0}^{\infty} \frac{(a)_{m+n+p+q} (b_1)_{m} (b_2)_{n} (b_3)_{p} (b_4)_{q} n^m y^n z^p t^q}{(c)_{m+n} (d_1)_p (d_2)_q} m! n! p! q!
\]

(1.3)

\[
= \frac{1}{\Gamma(a)} \int_0^{\infty} e^{-u} u^{a-1} \Phi_2(b_1, b_2; c; xu, yu) F_1(b_3; d_1; zu) F_1(b_4; d_2; tu) du
\]

(1.4)

Where \(F_1 \) is Kummer’s function \([7; p. 36]\) and the functions \(\Phi_2, \Psi_2 \) are the confluent hypergeometric functions of two variables \([7; p. (58, 59)]\).

The generalized Horn’s function of four variables \((k)H_4^{(4)}\) is defined by Exton \([1; p.97]\) as follows:

\[\begin{align*}
(k)H_4^{(4)}(a, b_1, \ldots, b_4; c_1, \ldots, c_4; x_1, \ldots, x_4, x_{k+1}, \ldots, x_4)
&= \sum_{m_1, \ldots, m_4=0}^{\infty} \frac{(a)_{2m_1+\cdots+2m_4} (b_1)_{m_1} \cdots (b_4)_{m_4} x_1^{m_1} \cdots x_4^{m_4}}{(c_1)_{m_1} \cdots (c_4)_{m_4}} m_1! \cdots m_4!
\end{align*}\]

(1.5)

The Lauricella’s function of four variables \(F_C^{(4)}\) \([7; p.60]\) is defined by

\[\begin{align*}
F_C^{(4)}(a, b; c_1, c_2, c_3, c_4; x, y, z, t)
&= \sum_{m,n,p,q=0}^{\infty} \frac{(a)_{m+n+p+q} (b)_{m+n+p+q} x^m y^n z^p t^q}{(c_1)_m (c_2)_n (c_3)_p (c_4)_q} m! n! p! q!
\end{align*}\]

(1.6)

2. Main Results

The following formulas will be established in this section:

\[
\sum_{n=0}^{\infty} \frac{(a)_{n} (b)_{n} w^n}{(c)_{n} n!} K_{10}(a + n, a + n, a + n, a + n; b_1, b_1, c_1, c_2; b_1, b_1, 2c_1, 2c_2; x, y, 2z, 2t)
\]
\[X^{-\alpha} H_4^{(3)} \left[a, b : b_1, c_1 + \frac{1}{2}, c_2 + \frac{1}{2}, c \right] ; \frac{xy}{X^2}, \frac{z^2}{4X^2}, \frac{t^2}{4X^2}, \frac{w}{X} \]
\[(2.1) \]

\[\sum_{n=0}^{\infty} \frac{(a)_n (b)_n w^n}{(c)_n n!} K_{10} (a + n, a + n, a + n, a + n; b_1, b_1, c_1, c_1; b_1, b_1, 2c_1, 2c_1; x, x, z, 2t) \]

\[= (1 - z - t)^{-\alpha} H_4^{(4)} \left[a, b, b_1 - \frac{1}{2}, c_1 + \frac{1}{2}, c_2 + \frac{1}{2}, c ; 2b_1 - 1 \right] \]
\[\frac{z^2}{4(1 - z - t)^2}, \frac{t^2}{4(1 - z - t)^2}, \frac{w}{1 - z - t}, \frac{4x}{1 - z - t} \]
\[(2.2) \]

\[\sum_{n=0}^{\infty} \frac{(a/2)_n ((a+1)/2)_n w^n}{(d)_n n!} K_{10} (a + 2n, a + 2n, a + 2n, a + 2n; b_1, b_1, c_1, c_1; b_1, b_1, 2c_1, 2c_1; x, y, z, 2t) \]

\[= X^{-\alpha} F_4^{(4)} \left[a, a + \frac{1}{2} : b_1, c_1 + \frac{1}{2}, c_2 + \frac{1}{2}, d \right] ; \frac{4xy}{X^2}, \frac{z^2}{X^2}, \frac{t^2}{X^2}, \frac{w}{X^2} \]
\[(2.3) \]

\[\sum_{n=0}^{\infty} \frac{(a)_n (b)_n w^n}{(c)_n n!} K_{13} (a + n, a + n, a + n, a + n; b_1, b_1, c_1, c_1; b_1, b_1, 2c_1, 2c_1; x, x, z, 2t) \]

\[= (1 - y - z - t)^{-\alpha} \]

\[(2) H_4^{(4)} \left[a, b, b_1 ; c_1 + \frac{1}{2}, c_2 + \frac{1}{2}, c , 2b_1 \right] ; \frac{z^2}{4(1 - y - z - t)^2}, \frac{t^2}{4(1 - y - z - t)^2}, \frac{w}{1 - y - z - t}, \frac{x - y}{1 - y - z - t} \]
\[(2.4) \]

\[\sum_{n=0}^{\infty} \frac{(a)_n (b)_n w^n}{(c)_n n!} K_{13} (a + n, a + n, a + n, a + n; b_1, b_1, c_1, c_1; b_1, b_1, 2c_1, 2c_1; 2x, 2y, 2z, 2t) \]

\[= X^{-\alpha} H_4^{(3)} \left[a, b ; b_1 + \frac{1}{2}, c_1 + \frac{1}{2}, c_2 + \frac{1}{2}, c \right] ; \frac{(x - y)^2}{4X^2}, \frac{z^2}{4X^2}, \frac{t^2}{4X^2}, \frac{w}{X} \]
\[(2.5) \]

\[\sum_{n=0}^{\infty} \frac{(a/2)_n ((a+1)/2)_n w^n}{(d)_n n!} \]
\[K_{13}(a+2n,a+2n,a+2n,a+2n; b_1,b_1,c_1,c_1; 2b_1,2b_1,2c_1,2c_2; 2x,2y,2z,2t) \]
\[= X^{-a} F_c^{(4)} \left[\frac{a}{2}, \frac{a+1}{2}; b_1+\frac{1}{2}, c_1+\frac{1}{2}, c_2+\frac{1}{2}, d; \frac{(x-y)^2}{X^2}, \frac{z^2}{X^2}, \frac{t^2}{X^2}, \frac{w}{X^2} \right], \]

where \(X = 1 - x - y - z - t \).

The following results will be required in the proofs ([6; p.17 and p.322]), [2; p.98]):

\[\Psi_2 [a;a,a;x,y] = e^{x+y} F_1 \left[-; a; xy \right] \] \hfill (2.7)

\[\Phi_2 [a,a;2a; x,y] = e^{x} F_1 \left[a; 2a; x - y \right] \] \hfill (2.8)

\[t F_1 \left[\frac{a}{2a}; x \right] = e^{\frac{x}{2}} F_1 \left[-; a+\frac{1}{2}; \frac{x^2}{16} \right] \] \hfill (2.9)

\[\int_0^\infty e^{-xu} u^{-1} F_1 \left[-; d_1; xu^2 \right] \eta F_1 \left[-; d_2; yu^2 \right] du \]
\[= \frac{\Gamma(a)}{s^a} F_4 \left[\frac{a}{2}, \frac{a+1}{2}; d_1, d_2; \frac{4x}{s^2}, \frac{4y}{s^2} \right], \] \hfill (2.10)

where \(F_4 \) is Appell’s function [7;p.53].

\[(\lambda)_2 = 2^{2n} \left(\frac{1}{2} \frac{1}{n} \right) \alpha \left(\frac{1}{2} \frac{1}{n} \right) \alpha, \quad n=0,1,2,\ldots \] \hfill (2.11)

Proofs:

To prove (2.1), we proceed as follows: Let us denote the left hand side of (2.1) by \(S \), replace \(K_{10} \) by its integral representation and then by using the results (2.7) and (2.9), we get

\[S = \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(c)_n n!} w^n \]
\[= \int_0^\infty e^{-(1-x-y-z-t)u} u^{a+n-1} F_1 \left[-; b_1; xu^2 \right] \eta F_1 \left[-; c_1 + \frac{1}{2}; \frac{z u^2}{4} \right] \eta F_1 \left[-; c_1 + \frac{1}{2}; \frac{t u^2}{4} \right] du \]
Now, expressing the first \(\binom{1}{n} F_1 \) into power series and using (2.10), we get

\[
S = \sum_{m,n=0}^{\infty} \frac{(a)_m (b)_n}{(c)_m} \frac{w^n}{n!} \Gamma(a + n + 2m) \Gamma(a + n + 2m + 1) \Gamma(a + n) X^{a+n+2m}
\]

\[
\times F_4 \left[\frac{a + n + 2m}{2}, \frac{a + n + 2m + 1}{2}, c_1 + \frac{1}{2}, c_2 + \frac{1}{2}, \frac{z^2}{X^2}, \frac{t^2}{X^2} \right]
\]

Expressing Appell’s function \(F_4 \) as double series and using (2.11), we get

\[
S = X^{-a} \sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \frac{(a)_{2m+2r+2s+t}}{(b)_m} \frac{x^m y^r z^t w^s}{m! s! t! n!} \]

\[
(b)_m (c_1 + \frac{1}{2}), (c_2 + \frac{1}{2})_s, m! s! n!
\]

This complete the proof of (2.1). The proofs of (2.2) and (2.3) are similarly. Formulas (2.4) to (2.6) are similarly established on replacing \(K_{13} \) by its integral representation and then by applying the results (2.8), (2.9), (2.10) and (2.11) during the proofs.

In (2.1), putting \(y = x \) and comparing with the result (2.2), we get

\[
(3) H^{(4)}_4 \left[\frac{a, b, b_1, b_2, b_3, c; \quad z^2 \quad t^2 \quad w}{(1 - 2x - z - t)^2, 4(1 - 2x - z - t)^2, 4(1 - 2x - z - t)^2, 1 - 2x - z - t} \right]
\]

\[
= (1 - 2x - z - t)^{a-1} (1 - z - t)^{-a}
\]

\[
(2) H^{(4)}_4 \left[\frac{a, b, b_1 - \frac{1}{2}, b_2, b_3, c, 2b_1 - 1; \quad z^2 \quad t^2 \quad w}{4(1 - z - t)^2, 4(1 - z - t)^2, 1 - z - t, 1 - z - t} \right], \quad (2.12)
\]

where \(b_2 = c_1 + \frac{1}{2} \) and \(b_3 = c_2 + \frac{1}{2} \).

Next, in (2.4) replacing \(x \) and \(y \) by \(2x \) and \(2y \) respectively and comparing with the result (2.5), we get

\[
(2) H^{(4)}_4 \left[\frac{a, b, b_1; b_2, b_3, c, 2b_1; \quad z^2}{4Y^2}, \frac{t^2}{4Y^2}, \frac{w}{Y}, \frac{2(x - y)}{Y} \right]
\]
\[X^{-a} Y^{a} \binom{3}{H_2} H_4 \left[a, b ; b_1 + \frac{1}{2}, b_2, b_3, c ; \frac{(x-y)^2}{4X^2}, \frac{z^2}{4X^2}, \frac{t^2}{4X^2}, \frac{w}{X} \right], \] \hspace{1cm} (2.13)

where \(X = 1 - x - y - z - t, Y = 1 - 2y - z - t, b_2 = c_1 + \frac{1}{2} \) and \(b_3 = c_2 + \frac{1}{2} \).

3. Special Cases

In this section we deduce some (new and known) reduction formulas for Lauricella’s functions \(F_A^{(3)} \) and \(F_c^{(3)} \) of three variables [7; p.50] and Exton’s functions \(X_2, X_4 \) and \(X_6 \) of three variables [3].

Taking \(t = z = 0 \) and \(w = 4v \) in (2.3), we get

\[
X_4[a, b_1; d, b_1, b_1 ; v, x, y] = (1 - x - z)^{-a} F_4 \left[a, a + b_1 + \frac{1}{2}; b_1, d ; \frac{4xy}{(1-x-y)^2}, \frac{4v}{(1-x-y)^2} \right] \quad (3.1)
\]

Taking \(t = y = 0 \) in (2.5), we get

\[
F_A^{(3)} \left[a, b_1, c_1, b_2b_1, 2c_1, c ; 2x, 2z, w \right] = (1 - x - z)^{-a} X_2 \left[a, b ; b_1 + \frac{1}{2}, c_1 + \frac{1}{2}; \frac{x^2}{4(1-x-z)^2}, \frac{z^2}{4(1-x-z)^2}, \frac{w}{1-x-z} \right], \hspace{1cm} (3.2)
\]

which for \(x = 0 \), reduces to a known result of [5; p.42]

\[
F_2[a, c_1, b; 2c_1, c; 2z, w] = (1 - z)^{-a} H_4 \left[a, b ; c_1 + \frac{1}{2}; \frac{z^2}{4(1-z)^2}, \frac{w}{1-z} \right], \hspace{1cm} (3.3)
\]

where \(F_2 \) and \(H_4 \) are Appell’s function [7;p.53] and Horn’s function [7; p.57].

Taking \(t = y = 0 \) and \(w = 4v \) in (2.6), we get a known result of [4; p.88]

\[
X_6[a, b, c; d, 2b, 2c ; v, 2x, 2z] = (1 - x - z)^{-a} F_c^{(3)} \left[a, a + b_1 + \frac{1}{2}; b_1, c + \frac{1}{2}; \frac{4v}{(1-x-z)^2}, \frac{x^2}{(1-x-z)^2}, \frac{z^2}{(1-x-z)^2} \right], \hspace{1cm} (3.4)
\]
Some relations involving hypergeometric functions

Taking \(w \to 0 \) in (2.12) and considering the definition (1.5)

\[
{H^{(3)}_c\left[a; c_1, c_2, c_3; c_4; x_1, x_2, x_3 \right] = F^{(3)}_c\left[\frac{a + 1}{2}; c_1, c_2, c_3; 4x_1, 4x_2, 4x_3 \right],}
\]

we get

\[
F^{(3)}_c\left[\frac{a + 1}{2}; b_1, b_2, b_3; \frac{4x^2}{(1 - 2x - z - t)^2}, \frac{z^2}{(1 - 2x - z - t)^2}, \frac{t^2}{(1 - 2x - z - t)^2} \right]
= (1 - 2x - z - t)^{a} (1 - z - t)^{-a}
\]

Finally, taking \(z = y = 0 \) in (2.13), we get

\[
X_2\left[a, b_1 - \frac{1}{2}, b_2, b_3, 2b_1 - 1; \frac{z^2}{4(1 - z - t)^2}, \frac{t^2}{4(1 - z - t)^2}, \frac{4x}{1 - z - t} \right]
= (1 - x - t)^{-a} (1 - t)^{a}
\]

\[
X_2\left[a, b; b_1 + \frac{1}{2}, b_2, c; \frac{x^2}{4(1 - x - t)^2}, \frac{t^2}{4(1 - x - t)^2}, \frac{w}{1 - x - t} \right]
\]

References

Received: January 1, 2015; Published: February 19, 2015