Spanning Trees on Decorated Centered Cubic Lattices

Mohammad Q. Owaidat
Department of Physics
Al-Hussein Bin Talal University, Ma’an, Jordan

Ahmed A. Qwasme
Department of Physics
Al-Hussein Bin Talal University, Ma’an, Jordan

Ayed Al e’damat
Department of Mathematics
Al-Hussein Bin Talal University, Ma’an, Jordan

Copyright © 2014 Mohammad Q. Owaidat, Ahmed A. Qwasme and Ayed Al e’damat. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we compute the number of spanning trees on the following decorated centred cubic lattices; base- centred cubic, side- centered cubic and edge- centred cubic lattices. For these lattices we also determine the asymptotic growth constant.

Keywords: Spanning trees, Asymptotic growth constant, Decorated centred cubic lattices

1 Introduction

The problem of the enumeration of the number of spanning trees on the network is considered by Kirchhoff in his analysis of electric circuits [6]. Kirchhoff showed that the spanning trees problem is related to the problem of computing the two-node
resistance of a resistor electrical network. The number of spanning trees is an important measure of reliability of a network and useful for designing electrical circuits. Spanning tree is of interest in statistical physics. It is also closely concerned with the q-state Potts model [5, 15].

There are two approaches for calculating the number of spanning trees are the matrix tree theorem (Laplacian matrix) [9, 10, 11] and the Tutte polynomial [1, 4, 7, 13]. The enumeration of spanning trees and the computation of their asymptotic growth constants on uniform lattices or graphs were studied extensively, see for instance [2, 3, 8, 12, 14].

In this paper we will use the matrix tree theorem to determine the number of spanning trees and the thermodynamic limit (asymptotic growth constant) for the following decorated cubic centered lattices: base-centered cubic, side-centered cubic and edge-centered cubic lattice.

2 Definitions and method (A brief formulation)

In this section, we briefly present basic definitions, expressions and the general method (matrix tree theorem) that we use in this work.

Consider a lattice \(L \) that is a uniform (periodic) tiling of \(d \)-dimensional space and is decomposable into a hypercubic array of \(N_1 \times N_2 \times \cdots \times N_d \) unit cells, each containing \(s \) sites labeled by 1, 2, \ldots, \(s \) so that the number of sites in the lattice is \(n = s N_1 N_2 \cdots N_d \). The unit cell can be specified by the coordinate \(n = (n_1, n_2, \ldots, n_d) \), where \(n_i = 0, 1, 2, \ldots, N_i - 1 \). The connection between the sites of the unit cells \(n \) and \(n' \) can be described by an adjacency matrix \(A(n, n') \) which is \(s \times s \) matrix and defined by

\[
A_{\alpha \beta}(n, n') = \begin{cases}
1 & \text{if site } \alpha \text{ in cell } n \text{ and site } \beta \text{ in cell } n' \text{ are adjacent} \\
0 & \text{otherwise}
\end{cases}
\] (1)

By imposing periodic boundary conditions, the translational symmetry is \(A(n, n') = A(n - n') \) and therefore \(A(n) = a(n_1, n_2, \ldots, n_d) \). The degree matrix \(D_s \) for a unit cell is a \(s \times s \) diagonal matrix whose elements

\[
D_{\alpha \beta} = \kappa_{\alpha} \delta_{\alpha \beta}
\] (2)

where \(\kappa_{\alpha} \) is the degree or coordination number of site \(\alpha \) and \(\delta_{\alpha \beta} \) is the Kronecker delta function defined as \(\delta_{\alpha \beta} = 1 \) if \(\alpha = \beta \) and \(\delta_{\alpha \beta} = 0 \) if \(\alpha \neq \beta \). The Laplacian matrix of the lattice is defined by

\[
L(\Theta) = D_s - \sum_n A(n)e^{in\Theta}
\] (3)

where \(\Theta = (\theta_1, \theta_2, \ldots, \theta_d) \) is the \(d \)-dimensional vector. The very important theorem for counting the number of spanning trees \(N_{ST} \) (\(L \)) in graph theory is given by [1, 7]
Spanning trees on decorated centered cubic lattices

\[N_{ST}(L) = \frac{1}{n} \prod_{i=1}^{n-1} \lambda_i \]

(4)

where \(\lambda_i \) are the non-zero eigenvalues of the Laplacian matrix \(L \) of the lattice.

It is known that a determinant of the Laplacian matrix is equal to the product of its eigenvalues, so that \(N_{ST}(L) \) can be written as [8]

\[N_{ST}(L) = \frac{\lambda_1 \lambda_2 \ldots \lambda_{n-1}}{sN_1 N_2 \ldots N_d} \prod_{i=0}^{N_1-1} \prod_{j=0}^{N_2-1} \prod_{k=0}^{N_d-1} \det L \left(\theta_1 = \frac{2 \pi \ell_1}{N_1}, \theta_2 = \frac{2 \pi \ell_2}{N_2}, \ldots, \theta_d = \frac{2 \pi \ell_d}{N_d} \right) \]

(5)

where \(\lambda_1, \lambda_2, \ldots, \lambda_{n-1} \) are the non-zero eigenvalues of \(L(0,0,0) \).

The number of spanning trees \(N_{ST}(L) \) grows asymptotically as \(\exp(nz_L) \) in the thermodynamic limit, \(n \to \infty \), where \(z_L \) is called the asymptotic growth constant for spanning trees in the thermodynamics limit on graphs or lattices and given by [8]

\[z_L = \frac{1}{s} \int_{-\pi}^{\pi} \frac{d \theta_1}{2 \pi} \ldots \int_{-\pi}^{\pi} \frac{d \theta_d}{2 \pi} \log \left(\det (L(\theta_1, \ldots, \theta_d)) \right) \]

(6)

It was shown in [3] that the asymptotic growth constant on the homeomorphic expansion of \(k \)-regular lattices with \(p \) lattice points inserted on each edge is given by

\[z_{\text{homeomorphic expansion}} = \left(\frac{k}{2} - 1 \right) \log(p + 1) + z_{\text{regular lattice}} \]

(7)

where \(k \) is the coordination number for a regular lattice.

3 Decorated centered cubic lattices, \(d=3 \)

In this section, the number of spanning trees and the asymptotic growth constants on the decorated centered cubic lattices are calculated.

3.1 Base-centered cubic lattice

The base-centered cubic lattice is a simple cubic lattice with extra vertices at the centers of the horizontal faces of the cube as shown in Fig.1. The unit cell is a cube containing two sites \(s = 2 \) numbered 1 and 2.
The base-centered cubic lattice.

Fig.1. The base-centered cubic lattice.

The degree matrix and adjacency matrices are

\[
D = \begin{pmatrix} 10 & 0 \\ 0 & 4 \end{pmatrix}, \quad A(0,0,0) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A(1,0,0) = A(-1,0,0)^T = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix},
\]

\[
A(0,1,0) = A(0,-1,0)^T = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \quad A(0,0,1) = A(0,0,-1)^T = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},
\]

\[
A(1,1,0) = A(-1,-1,0)^T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
\]

where \(A^T \) is the transpose of the matrix \(A \).

Therefore, using Eq.(3) the Laplacian matrix can be written as

\[
L(\theta_1, \theta_2, \theta_3) = D - A(0,0,0) - A(1,0,0)e^{i\theta_1} - A(-1,0,0)e^{-i\theta_1} - A(0,1,0)e^{i\theta_2} - A(0,0,1)e^{i\theta_2} - A(0,0,-1)e^{-i\theta_2} - A(1,1,0)e^{i(\theta_1 + \theta_2)} - A(-1,-1,0)e^{-i(\theta_1 + \theta_2)}
\]

Substituting Eq.(8) into the above equation yields

\[
L(\theta_1, \theta_2, \theta_3) = \begin{pmatrix} 10 - 2\cos \theta_1 - 2\cos \theta_2 - 2\cos \theta_3 & -(1 + e^{i\theta_1})(1 + e^{i\theta_2}) \\ -(1 + e^{-i\theta_1})(1 + e^{-i\theta_2}) & 4 \end{pmatrix}
\]

and hence the determinant is

\[
\det(L(\theta_1, \theta_2, \theta_3)) = 36 - 12\cos \theta_1 - 12\cos \theta_2 - 8\cos \theta_3 - 4\cos \theta_1 \cos \theta_2
\]
The non-zero eigenvalues of $L(0,0,0)$ is $\lambda_1 = 8$. Hence, the number of spanning trees N_{ST} given by Eq. (5) becomes

$$N_{ST}(L_{\text{base cubic lattice}}) = \frac{1}{2N_1N_2N_3} \prod_{l_1=0}^{N_1} \prod_{l_2=0}^{N_2} \prod_{l_3=0}^{N_3} \left(36 - 12\cos \frac{2\pi l_1}{N_1} - 12\cos \frac{2\pi l_2}{N_2} - 8\cos \frac{2\pi l_3}{N_3} - 4\cos \frac{2\pi l_1}{N_1} \cos \frac{2\pi l_2}{N_2} \right)$$

(11)

As an example, if $N_1 = N_2 = N_3 = 2$ then, number of spanning trees of the base-centered cubic lattice is

$$N_{ST}(L_{\text{base cubic lattice}}) = \frac{1}{2} \prod_{l_1=0}^{1} \prod_{l_2=0}^{1} \prod_{l_3=0}^{1} \left(36 - 12\cos \pi l_1 - 12\cos \pi l_2 - 8\cos \pi l_3 - 4\cos \pi l_1 \cos \pi l_2 \right)$$

(12)

Using Eq. (6), the asymptotic growth constant for spanning trees is given by

$$z_{\text{base cubic lattice}} = \frac{1}{2} \int_{-\pi}^{\pi} \frac{d\theta_1}{2\pi} \int_{-\pi}^{\pi} \frac{d\theta_2}{2\pi} \int_{-\pi}^{\pi} \frac{d\theta_3}{2\pi} \log \left(36 - 12\cos \theta_1 - 12\cos \theta_2 - 8\cos \theta_3 - 4\cos \theta_1 \cos \theta_2 \right)$$

(13a)

The numerical computation of (13) yields the value

$$z_{\text{base cubic lattice}} = 1.738692709 \ldots$$

(13b)

3.2 Side-centered cubic lattice

The side-centered cubic lattice is a simple cubic lattice with additional vertices at the centers of vertical faces as shown in Fig. 2. Each unit cell consisting of three vertices $s = 3$ labeled by 1, 2 and 3. Therefore, the degree matrix and the adjacency matrices are
Fig. 2. The side-centered cubic lattice.

$$D_3 = \begin{pmatrix} 14 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}, \quad A(0,0,0) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad A(1,0,0) = A(-1,0,0)^T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A(0,1,0) = A(0,-1,0)^T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad A(0,0,1) = A(0,0,-1)^T = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A(1,0,1) = A(-1,0,-1)^T = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad A(0,1,1) = A(0,-1,1)^T = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

and one has

$$L(\theta_1, \theta_2, \theta_3) = \begin{pmatrix} 14 - 2 \cos \theta_1 - 2 \cos \theta_2 - 2 \cos \theta_3 & -(1 + e^{i\theta_1})(1 + e^{i\theta_2}) & -(1 + e^{i\theta_1})(1 + e^{i\theta_2}) \\ -(1 + e^{-i\theta_1})(1 + e^{-i\theta_2}) & 4 & 0 \\ -(1 + e^{-i\theta_1})(1 + e^{-i\theta_2}) & 0 & 4 \end{pmatrix}.$$
det \(L(\theta_1, \theta_2, \theta_3) = 16(12 - 3 \cos \theta_1 - 3 \cos \theta_2 - 4 \cos \theta_3 - \cos \theta_1 \cos \theta_3 - \cos \theta_2 \cos \theta_3), \) \hspace{1cm} (16)

The non-zero eigenvalues of \(L(0, 0, 0) \) are \(\lambda_1 = 12, \lambda_2 = 4 \). Thus the number of spanning trees of the side-centered cubic lattice is

\[
N_s(L_{\text{side cubic lattice}}) = \frac{48}{3N^3} \prod_{l=1}^{N-1} \frac{1}{(l,l,l,l)} \prod_{l=0}^{N-1} \frac{2}{2 \pi} \frac{2 \pi l_1}{N_1} - \frac{2 \pi l_2}{N_2} - \frac{2 \pi l_3}{N_3} - 64 \cos \frac{2 \pi l_1}{N_1} - 16 \cos \frac{2 \pi l_2}{N_2} - 16 \cos \frac{2 \pi l_3}{N_3}
\]

(17a)

As an example, we compute the number of spanning trees of a finite side-centered cubic lattice with \(N_1 = N_2 = N_3 = 2 \).

\[
N_s(L_{\text{side cubic lattice}}) = 2 \prod_{l_1=0}^{1} \prod_{l_2=0}^{1} \prod_{l_3=0}^{1} \left(192 - 48 \cos \pi l_1 - 48 \cos \pi l_2 - 64 \cos \pi l_3 - 16 \cos \pi l_1 \cos \pi l_3 - 16 \cos \pi l_2 \cos \pi l_3 \right)
= 230 \, 897 \, 441 \, 832 \, 960
\]

(17b)

From Eq. (6) the asymptotic growth constant for spanning trees is given by

\[
z_{\text{side cubic lattice}} = \frac{1}{3} \left[\frac{d}{d \pi} \frac{d}{d \theta_1} \frac{d}{d \theta_2} \frac{d}{d \theta_3} \right] \log \{ 16(12 - 3 \cos \theta_1 - 3 \cos \theta_2 - 4 \cos \theta_3 - \cos \theta_1 \cos \theta_3 - \cos \theta_2 \cos \theta_3) \}
\]

and the numerical evaluation gives \(z_{\text{side cubic lattice}} = 1.7211738959 \ldots \)

(18)

3.3 Edge-centered cubic lattice

The edge-centered cubic lattice is shown in Fig. 3, which is a homeomorphic expansion of simple cubic lattice with one vertex (site) inserted on each edge-midpoint. The unit cell is a cube containing four sites \(s = 4 \) numbered 1, 2, 3 and 4. The degree matrix and the adjacency matrices are

\[
D_4 = \begin{pmatrix} 6 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, A(0,0,0) = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix},
\]

(19a)
Also the Laplacian matrix is given by

\[
\mathbf{L}(\theta_1, \theta_2, \theta_3) = \begin{bmatrix}
6 & -1-e^{-i\theta_1} & -1-e^{-i\theta_2} & -1-e^{-i\theta_3} \\
-1-e^{i\theta_1} & 2 & 0 & 0 \\
-1-e^{i\theta_2} & 0 & 2 & 0 \\
-1-e^{i\theta_3} & 0 & 0 & 2
\end{bmatrix},
\]

with \(\det[\mathbf{L}(\theta_1, \theta_2, \theta_3)] = 24 - 8\cos \theta_1 - 8\cos \theta_2 - 8\cos \theta_3\). The Laplacian matrix

\[
A (1,0,0) = A (-1,0,0)^T = \begin{bmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}, \quad (19b)
\]

\[
A (0,1,0) = A (0,-1,0)^T = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}, \quad (19c)
\]

\[
A (0,0,1) = A (0,0,-1)^T = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix} \quad (19d)
\]
L(0,0,0) has the eigenvalues of $\lambda_1 = 8$, $\lambda_2 = \lambda_3 = 2$. Thus the number of spanning trees of the edge-centered cubic lattice is

$$N_{ST}(L_{\text{edge cubic lattice}}) = \frac{32}{4N_1N_2N_3} \prod_{(\ell_1, \ell_2, \ell_3 \neq 0)}^{N_1-1} \prod_{\ell_i=0}^{N_3} \left(24 - 8\cos \frac{2\pi \ell_1}{N_1} - 8\cos \frac{2\pi \ell_2}{N_2} - 8\cos \frac{2\pi \ell_3}{N_3} \right)$$

As an example, we compute the number of spanning trees of a finite edge-centered cubic lattice with $N_1 = N_2 = N_3 = 2$.

$$N_{ST}(L_{\text{edge cubic lattice}}) = \prod_{(\ell_1, \ell_2, \ell_3 \neq 0)}^{1} \left(24 - 8\cos \pi \ell_1 - 8\cos \pi \ell_2 - 8\cos \pi \ell_3 \right)$$

$$= 503316480.$$

The asymptotic growth constant is

$$z_{\text{edge cubic lattice}} = \frac{1}{4} \int_{-\pi}^{\pi} \frac{d\theta_1}{2\pi} \int_{\theta_1}^{\pi} \frac{d\theta_2}{2\pi} \int_{\theta_2}^{\pi} \frac{d\theta_3}{2\pi} \log(24 - 8\cos \theta_1 - 8\cos \theta_2 - 8\cos \theta_3)$$

The numerical evaluation of (23) gives $z_{\text{edge cubic lattice}} = 0.76492094....$. Since the edge-centered cubic lattice is the homeomorphic expansion of the simple cubic lattice ($k = 6$) with $p = 1$ vertex inserted on each edge, one can use Eq. (7) to calculate the asymptotic growth constant of the edge-centered cubic lattice from that of the simple cubic lattice [8,12], we have

$$z_{\text{edge cubic lattice}} = \frac{2\log 2 + z_{\text{simple cubic lattice}}}{4} = 0.765111$$

One can note that inserting vertices on the edges of the simple cubic lattice reduce its asymptotic growth constant.

References

http://dx.doi.org/10.1088/0305-4470/39/20/001

[3] S.-C. Chang and W. Wang, Spanning trees on lattices and integral identities,
Mohammad Q. Owaidat et al.

Received: November 29, 2014; Published: February 17, 2015