Some Integral Inequalities for Convex Functions via Riemann-Liouville Integrals

Jaekeun Park

Department of Mathematics
Hanseo University
Seosan, Choongnam, 356-706, Korea

Copyright © 2015 Jaekeun Park. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, by setting up a generalized integral identity for differentiable functions via Riemann-Liouville fractional integrals, the author derive new estimates on generalization of Hermite-Hadamard and Ostrowski types inequalities for functions whose derivatives in the absolute value at certain powers are convex.

Mathematics Subject Classification: 26A51, 26A33, 26D10

Keywords: Hermite-Hadamard type inequality, Simpson inequality, Ostrowski inequality, Riemann-Liouville fractional integrals, Hölder’s inequality, mean-power integral inequality

1 Introduction

Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a function defined on the interval \(I \) of real numbers. Then \(f \) is called to be convex on \(I \) if the following inequality

\[
 f(ta + (1-t)b) \leq tf(a) + (1-t)f(b)
\]

for all \(a, b \in I \) and \(t \in [0, 1] \). There are many results associated with convex functions in the area of inequalities, but some of those is the classical Hermite-Hadamard inequality and Ostrowski inequality, respectively [10, 13]:
Theorem 1.1. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a convex function defined on the interval \(I \) of real numbers and \(a, b \in I \) with \(a < b \). Then following double inequality holds:

\[
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}.
\]

(1)

Theorem 1.2. [11] Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) and \(a, b \in I^0 \) with \(a < b \). If \(|f'(x)| \leq M, x \in [a,b] \), then the following inequality holds:

\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \leq \frac{M}{b-a} \left[\frac{(x-a)^2 + (b-x)^2}{2} \right].
\]

(2)

Definition 1. The beta function, also called the Euler integral of the first kind, is a special function defined by

\[
\beta(x,y) = \int_0^1 t^{x-1}(1-t)^{y-1} \, dt, \ x, y > 0,
\]

and

\[
\beta(a,x,y) = \int_0^a t^{x-1}(1-t)^{y-1} \, dt, 0 < a < 1, x, y > 0,
\]

is incomplete Beta function.

Definition 2. A function \(f : [a,b] \to (0,\infty) \) is said to be \(s \)-convex in the second sense if the following inequality

\[
f(ta + (1-t)b) \leq t^s f(a) + (1-t)^s f(b)
\]

holds for all \(a, b \in I, t \in [0,1], \) and \(s \in (0,1] \).

We give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used throughout this paper.

Definition 3. Let \(f \in L([a,b]) \). The symbols \(J_{a^+}^\alpha f \) and \(J_{b^-}^\alpha f \) denote the left-side and right-side Riemann-Liouville integrals of the order \(\alpha \) and are defined by

\[
J_{a^+}^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t) \, dt \quad (0 \leq a < x),
\]

and

\[
J_{b^-}^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (t-x)^{\alpha-1} f(t) \, dt, \quad (0 < x < b),
\]

respectively, where \(\Gamma(\alpha) \) is the Gamma function defined by

\[
\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha-1} \, dt
\]

and \(J_{a^+}^\alpha f(x) = J_{b^-}^\alpha f(x) = f(x) \).
In the case of $\alpha = 1$, the fractional integrals reduces to the classical integral. Recently, many authors have studied a number of inequalities by using the Riemann-Liouville fractional integrals, see [1-9,12,14-17] and the references cited therein.

Especially, in [2, 12], İmdat Işcan, Noor, and Awan proved a variant of Hermite-Hadamard and Ostrowski type inequalities which hold for the convex functions via Riemann-Liouville fractional integrals.

Theorem 1.3. Let $f : [a, b] \rightarrow \mathbb{R}$ be twice differentiable function on (a, b) with $a < b$. If $f'' \in L([a, b])$ and $|f''|$ is convex on $[a, b]$, then we have the following inequality for fractional integrals:

$$
\left| \frac{2^{\alpha-1}\Gamma(\alpha + 1)}{(b-a)^\alpha} \left\{ J_{\frac{a+b}{2}}^{\alpha} f(a) + J_{\frac{a+b}{2}}^{\alpha} f(b) \right\} - f\left(\frac{a+b}{2} \right) \right|
\leq \frac{(b-a)^2}{2^\alpha(\alpha+1)} \left\{ \frac{1}{2^{\alpha+3}} \beta(2, \alpha+2) + \frac{\Gamma(\alpha+3)}{\Gamma(\alpha+4)} \right\} \left[|f''(a)| + |f''(b)| \right].
$$

Theorem 1.4. Let $f : [a, b] \rightarrow \mathbb{R}$ be twice differentiable function on (a, b) with $a < b$. If $f'' \in L([a, b])$ and $|f''|$ is convex on $[a, b]$, then we have the following inequality for fractional integrals:

$$
\left| \frac{2^{\alpha-1}\Gamma(\alpha + 1)}{(b-a)^\alpha} \left\{ J_{\frac{a+b}{2}}^{\alpha} f(a) + J_{\frac{a+b}{2}}^{\alpha} f(b) \right\} - f\left(\frac{a+b}{2} \right) \right|
\leq \frac{(b-a)^2}{2^{\alpha+3/2}(\alpha+1)} \left(\frac{1}{\alpha+1} + 1 \right)^{1/2} \left\{ \left\{ 3|f''(a)|^q + |f''(b)|^q \right\}^{1/2} + \left\{ |f''(a)|^{1/q} + 3 |f''(b)|^{1/q} \right\} \right\}.
$$

In this paper, we give some generalized inequalities connected with Hermite-Hadamard-like type for differentiable functions whose derivatives in the absolute value are convex via fractional integrals.

2 Lemmas

Now we turn our attention to establish integral inequalities of Hermite-Hadamard and Ostrowski inequality type for convex functions via Riemann-Liouville fractional integrals, we need the lemmas below:

Lemma 1. Let $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function on the interior I^0 of an interval I such that $f' \in L([a, b])$, where $a, b \in I$ with $a < b$. Then for
any \(\lambda, \mu \in \mathbb{R} \) and \(x \in [a, b] \) the following identity holds:

\[
I(f; \alpha; \lambda, \mu; x) \\
\equiv \left(\frac{\lambda}{x-a} + \frac{1-\mu}{b-x} \right) f(x) + \left(\frac{1-\lambda}{x-a} \right) f(a) + \left(\frac{\mu}{b-x} \right) f(b) \\
- \Gamma(\alpha + 1) \left\{ \frac{1}{(x-a)^{\alpha+1}} J_+^\alpha f(a) + \frac{1}{(b-x)^{\alpha+1}} J_+^\alpha f(b) \right\} \\
= \int_0^1 (t^\alpha - 1 + \lambda) f'(tx + (1-t)a) \, dt + \int_0^1 (\mu - t^\alpha) f'(tx + (1-t)b) \, dt. \tag{4}
\]

Proof. Integrating by parts and changing variable of definite integral, we have:

\[
\int_0^1 (t^\alpha - 1 + \lambda) f'(tx + (1-t)a) \, dt \\
= \lambda \frac{f(x)}{x-a} + (1-\lambda) \frac{f(a)}{x-a} - \frac{\Gamma(\alpha + 1)}{(x-a)^{\alpha+1}} J_+^\alpha f(a).
\]

Similarly, we have

\[
\int_0^1 (\mu - t^\alpha) f'(tx + (1-t)b) \, dt \\
= (1-\mu) \lambda \frac{f(x)}{b-x} + \mu \frac{f(b)}{b-x} - \frac{\Gamma(\alpha + 1)}{(b-x)^{\alpha+1}} J_+^\alpha f(b).
\]

Adding these two equalities leads to Lemma 1.

Lemma 2. For \(0 \leq \xi \leq 1 \), one has

\[
(a) \int_0^1 |\xi - t^\alpha|^q \, dt \equiv \delta_1(\alpha, \xi, q) \\
\equiv \frac{\xi^q + \frac{1}{\alpha}}{\alpha} \left\{ \beta(\frac{1}{\alpha}, 1+q) + \beta(-q - \frac{1}{\alpha}, 1+q) - \beta(\xi, -q - \frac{1}{\alpha}, 1+q) \right\},
\]

\[
(b) \int_0^1 |\xi - t^\alpha|^q t \, dt \equiv \delta_2(\alpha, \xi, q) \\
\equiv \frac{\xi^q + \frac{2}{\alpha}}{\alpha} \left\{ \beta(\frac{2}{\alpha}, 1+q) + \beta(-q - \frac{2}{\alpha}, 1+q) - \beta(\xi, -q - \frac{2}{\alpha}, 1+q) \right\}. \tag{5}
\]

Proof. These equalities follows from a straightforward computation of definite integrals.
3 Some inequalities of Hermite-Hadamard and Ostrowski type

Now we turn our attention to establish new integral inequalities of Hermite-Hadamard and Ostrowski type for convex functions via fractional integrals.

Theorem 3.1. Let $f : I \subseteq R \to R$ be a differentiable function on the interior I^0 of an interval I and $f' \in L([a, b])$, where $a, b \in I$ with $a < b$ and $\lambda, \mu \in [0, 1]$. If $|f'|^q$ is convex on $[a, b]$ for $q \geq 1$ with $\frac{1}{p} + \frac{1}{q} = 1$, then the following inequality holds:

$$
\left| I_{f}(f; \alpha; \lambda, \mu; x) \right| \\
\leq \delta_{p}^{\frac{1}{p}}(\alpha, 1 - \lambda, 1) \\
\times \left\{ \delta_{2}(\alpha, 1 - \lambda, 1)|f'(x)|^{q} + (\delta_{1}(\alpha, 1 - \lambda, 1) - \delta_{2}(\alpha, 1 - \lambda, 1))|f'(a)|^{q} \right\}^{\frac{1}{q}} \\
+ \delta_{p}^{\frac{1}{p}}(\alpha, \mu, 1)\left\{ \delta_{2}(\alpha, \mu, 1)|f'(x)|^{q} + (\delta_{1}(\alpha, \mu, 1) - \delta_{2}(\alpha, \mu, 1))|f'(b)|^{q} \right\}^{\frac{1}{q}}.
$$

Proof. Suppose that $q > 1$. From Lemma 1, the convexity of $|f'|^q$ on $[a, b]$, and the noted power-mean integral inequality, we have

$$
\left| I_{f}(f; \alpha; \lambda, \mu; x) \right| \\
\leq \int_{0}^{1} |t^{\alpha} - 1 + \lambda| |f'(tx + (1 - t)a)|^{q} dt \\
+ \int_{0}^{1} |\mu - t^{\alpha}| |f'(tx + (1 - t)b)|^{q} dt \\
\leq \left(\int_{0}^{1} |t^{\alpha} - 1 + \lambda|^{\frac{1}{p}} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} |t^{\alpha} - 1 + \lambda| |f'(tx + (1 - t)a)|^{q} dt \right)^{\frac{1}{q}} \\
+ \left(\int_{0}^{1} |\mu - t^{\alpha}|^{\frac{1}{p}} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} |\mu - t^{\alpha}| |f'(tx + (1 - t)b)|^{q} dt \right)^{\frac{1}{q}}. \quad (6)
$$

In virtue of Lemma 2, a direct calculation yields

$$
\int_{0}^{1} |t^{\alpha} - 1 + \lambda| |f'(tx + (1 - t)a)|^{q} dt \\
\leq \int_{0}^{1} |t^{\alpha} - 1 + \lambda| \left\{ t |f'(x)|^{q} + (1 - t)|f'(a)|^{q} \right\} dt \\
= \delta_{2}(\alpha, 1 - \lambda, 1)|f'(x)|^{q} + (\delta_{1}(\alpha, 1 - \lambda, 1) - \delta_{2}(\alpha, 1 - \lambda, 1))|f'(a)|^{q}, \quad (7)
$$

and

$$
\int_{0}^{1} |\mu - t^{\alpha}| |f'(tx + (1 - t)b)|^{q} dt \\
\leq \delta_{2}(\alpha, \mu, 1)|f'(x)|^{q} + (\delta_{1}(\alpha, \mu, 1) - \delta_{2}(\alpha, \mu, 1))|f'(b)|^{q}. \quad (8)
$$
By substituting the above inequalities (7) and (8) into (6), we get the desired result for $q > 1$.

Suppose that $q = 1$. From Lemma 1 and 2 it follows that

$$
\left| I_f(f; \alpha; \lambda, \mu; x) \right|
\leq \int_0^1 |t^\alpha - 1 + \lambda| |f'(tx + (1 - t)a)| dt
+ \int_0^1 |\mu - t^\alpha| |f'(tx + (1 - t)b)| dt
\leq \int_0^1 |t^\alpha - 1 + \lambda| \{t |f'(x)| + (1 - t)|f'(a)|\} dt
+ \int_0^1 |\mu - t^\alpha| \{t |f'(x)| + (1 - t)|f'(b)|\} dt
= \delta_2(\alpha, 1 - \lambda, 1) |f'(x)|
+ (\delta_1(\alpha, 1 - \lambda, 1) - \delta_2(\alpha, 1 - \lambda, 1)) |f'(a)|
+ \delta_2(\alpha, \mu, 1) |f'(x)|
+ (\delta_1(\alpha, \mu, 1) - \delta_2(\alpha, \mu, 1)) |f'(b)|,
$$

which completes the proof.

If taking $x = \frac{a + b}{2}$ in Theorem 3.1, we derive the following corollary:

Corollary 3.1. Let $f : I \subseteq R \to R$ be a differentiable function on the interior I^0 of an interval I and $f' \in L([a, b])$, where $a, b \in I$ with $a < b$ and $\lambda, \mu \in [0, 1]$. If $|f'|^q$ is convex on $[a, b]$ for $q \geq 1$ with $\frac{1}{p} + \frac{1}{q} = 1$, then the following inequality holds:

$$
\left| I_f(f; \alpha; \lambda, \mu; \frac{a + b}{2}) \right|
= \frac{b - a}{2} \left| (1 - \lambda)f(a) + \mu f(b) + (1 - \mu + \lambda)f(\frac{a + b}{2}) \right|
- \left(\frac{2}{b - a} \right)^\alpha \Gamma(\alpha + 1) \left\{ J_{(\frac{a + b}{2})} f(a) + J_{(\frac{a + b}{2})} f(b) \right\}
\leq \delta_1(\alpha, 1 - \lambda, 1) \left\{ \delta_2(\alpha, 1 - \lambda, 1) |f'(\frac{a + b}{2})|^q \right. \\
+ (\delta_1(\alpha, 1 - \lambda, 1) - \delta_2(\alpha, 1 - \lambda, 1)) |f'(a)|^q \right\}^{\frac{1}{q}}
+ \delta_1^p(\alpha, \mu, 1) \left\{ \delta_2(\alpha, \mu, 1) |f'(\frac{a + b}{2})|^q \right. \\
+ (\delta_1(\alpha, \mu, 1) - \delta_2(\alpha, \mu, 1)) |f'(b)|^q \right\}^{\frac{1}{q}}.
$$

If taking $\lambda = \mu$ in Theorem 3.1, we derive the following corollary:
Corollary 3.2. Let \(f : I \subseteq R \to R \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) and \(f' \in L([a, b]) \), where \(a, b \in I \) with \(a < b \) and \(\lambda \in [0, 1] \). If \(|f'|^q \) is convex on \([a, b] \) for \(q \geq 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then the following inequality holds:

\[
\left| I_f(f; \alpha; \lambda; x) \right| \\
\leq \delta_1^\frac{1}{p} (\alpha, 1-\lambda, 1) \\
\times \left\{ \delta_2(\alpha, 1-\lambda, 1) |f'(x)|^q + \left(\delta_1(\alpha, 1-\lambda, 1) - \delta_2(\alpha, 1-\lambda, 1) \right) |f'(a)|^q \right\}^{\frac{1}{q}} \\
+ \delta_1^\frac{1}{p} (\alpha, 1-\lambda, 1) \left\{ \delta_2(\alpha, 1-\lambda, 1) |f'(x)|^q + \left(\delta_1(\alpha, 1-\lambda, 1) - \delta_2(\alpha, 1-\lambda, 1) \right) |f'(b)|^q \right\}^{\frac{1}{q}}.
\]

Corollary 3.3. Let \(f : I \subseteq R \to R \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) and \(f' \in L([a, b]) \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \) is convex on \([a, b] \) for \(q \geq 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then the following inequality holds:

\[
\left| I_f(f; \alpha; \frac{1}{2}; \frac{1}{2}; x) \right| \\
\leq \delta_1^\frac{1}{p} (\alpha, \frac{1}{2}, 1) \left\{ \delta_2(\alpha, \frac{1}{2}, 1) |f'(x)|^q + \left(\delta_1(\alpha, \frac{1}{2}, 1) - \delta_2(\alpha, \frac{1}{2}, 1) \right) |f'(a)|^q \right\}^{\frac{1}{q}} \\
+ \delta_1^\frac{1}{p} (\alpha, \frac{1}{2}, 1) \left\{ \delta_2(\alpha, \frac{1}{2}, 1) |f'(x)|^q + \left(\delta_1(\alpha, \frac{1}{2}, 1) - \delta_2(\alpha, \frac{1}{2}, 1) \right) |f'(b)|^q \right\}^{\frac{1}{q}},
\]

where

\[
\delta_1(\alpha, \frac{1}{2}, 1) = \frac{1}{1 + \alpha} \left\{ \alpha \left(\frac{1}{2} \right)^{\frac{1}{q}} + \frac{1-\alpha}{2} \right\},
\]

\[
\delta_2(\alpha, \frac{1}{2}, 1) = \frac{1}{2 + \alpha} \left\{ \alpha \left(\frac{1}{2} \right)^{1+\frac{1}{q}} + \frac{2-\alpha}{4} \right\}.
\]

Corollary 3.4. Let \(f : I \subseteq R \to R \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) and \(f' \in L([a, b]) \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \) is convex on \([a, b] \) for \(q \geq 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then the following inequality holds:

\[
\left| I_f(f; \alpha; \frac{2}{3}; \frac{2}{3}; x) \right| \\
\leq \delta_1^\frac{1}{p} (\alpha, \frac{1}{3}, 1) \left\{ \delta_2(\alpha, \frac{1}{3}, 1) |f'(x)|^q + \left(\delta_1(\alpha, \frac{1}{3}, 1) - \delta_2(\alpha, \frac{1}{3}, 1) \right) |f'(a)|^q \right\}^{\frac{1}{q}} \\
+ \delta_1^\frac{1}{p} (\alpha, \frac{2}{3}, 1) \left\{ \delta_2(\alpha, \frac{2}{3}, 1) |f'(x)|^q + \left(\delta_1(\alpha, \frac{2}{3}, 1) - \delta_2(\alpha, \frac{2}{3}, 1) \right) |f'(b)|^q \right\}^{\frac{1}{q}},
\]
where

\[
\begin{align*}
\delta_1(\alpha, \frac{1}{3}, 1) &= \frac{\alpha}{1 + \alpha} \left\{ 2\alpha \left(\frac{1}{3} \right)^{1+\frac{1}{\alpha}} + \frac{2 - \alpha}{3} \right\}, \\
\delta_1(\alpha, \frac{2}{3}, 1) &= \frac{\alpha}{1 + \alpha} \left\{ 2\alpha \left(\frac{2}{3} \right)^{1+\frac{1}{\alpha}} + \frac{1 - 2\alpha}{3} \right\}, \\
\delta_2(\alpha, \frac{1}{3}, 1) &= \frac{1}{2 + \alpha} \left\{ \alpha \left(\frac{1}{3} \right)^{1+\frac{2}{\alpha}} + \frac{4 - \alpha}{6} \right\}, \\
\delta_2(\alpha, \frac{2}{3}, 1) &= \frac{1}{2 + \alpha} \left\{ \alpha \left(\frac{2}{3} \right)^{1+\frac{2}{\alpha}} + \frac{1 - \alpha}{3} \right\}.
\end{align*}
\]

Corollary 3.5. Let \(f : I \subseteq R \to R \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) and \(f' \in L([a,b]) \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q\) is convex on \([a,b]\) for \(q \geq 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then the following inequality holds:

\[
\left| I_f(f; \alpha; \frac{1}{3}; \frac{1}{3}; x) \right| \\
\leq \delta_1^\frac{1}{p}(\alpha, \frac{2}{3}, 1) \left\{ \delta_2(\alpha, \frac{2}{3}, 1)|f'(x)|^q + (\delta_1(\alpha, \frac{2}{3}, 1) - \delta_2(\alpha, \frac{2}{3}, 1))|f'(a)|^q \right\}^{\frac{1}{q}} \\
+ \delta_1^\frac{1}{p}(\alpha, \frac{1}{3}, 1) \left\{ \delta_2(\alpha, \frac{1}{3}, 1)|f'(x)|^q + (\delta_1(\alpha, \frac{1}{3}, 1) - \delta_2(\alpha, \frac{1}{3}, 1))|f'(a)|^q \right\}^{\frac{1}{q}},
\]

where \(\delta_1 \) and \(\delta_2 \) are defined as in Corollary 3.4.

Theorem 3.2. Let \(f : I \subseteq R \to R \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) and \(f' \in L([a,b]) \), where \(a, b \in I \) with \(a < b \) and \(\lambda, \mu \in [0,1] \). If \(|f'|^q\) is convex on \([a,b]\) for \(q \geq 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then the following inequality holds:

\[
\left| I_f(f; \alpha; \lambda, \mu; x) \right| \\
\leq \left\{ \delta_2(\alpha, 1 - \lambda, q)|f'(x)|^q + (\delta_1(\alpha, 1 - \lambda, q) - \delta_2(\alpha, 1 - \lambda, q))|f'(a)|^q \right\}^{\frac{1}{q}} \\
+ \left\{ \delta_2(\alpha, q)|f'(x)|^q + (\delta_1(\alpha, q) - \delta_2(\alpha, q))|f'(b)|^q \right\}^{\frac{1}{q}}.
\]

Proof. Suppose that \(q > 1 \). By Lemma 1, the convexity of \(|f'|^q\) on \([a,b]\),
and Hölder’s integral inequality, it follows that
\[
|I_f(f; \alpha; \lambda, \mu; x)| \leq \int_0^1 |t^\alpha - 1 + \lambda| |f'(tx + (1 - t)a)| dt \\
+ \int_0^1 |\mu - t^\alpha| |f'(tx + (1 - t)b)| dt \\
\leq \left(\int_0^1 dt \left(\int_0^1 |t^\alpha - 1 + \lambda|^q |f'(tx + (1 - t)a)|^q dt \right) \right)^{\frac{1}{q}} \\
+ \left(\int_0^1 dt \left(\int_0^1 |\mu - t^\alpha|^q |f'(tx + (1 - t)b)|^q dt \right) \right)^{\frac{1}{q}} \\
= \left(\int_0^1 |t^\alpha - 1 + \lambda|^q |f'(tx + (1 - t)a)|^q dt \right)^{\frac{1}{q}} \\
+ \left(\int_0^1 |\mu - t^\alpha|^q |f'(tx + (1 - t)b)|^q dt \right)^{\frac{1}{q}}.
\] (9)

In virtue of Lemma 2, a direct calculation yields
\[
\int_0^1 |t^\alpha - 1 + \lambda|^q |f'(tx + (1 - t)a)|^q dt \\
\leq \int_0^1 |t^\alpha - 1 + \lambda|^q \{t |f'(x)| + (1 - t) |f'(a)| \}^q dt \\
= \delta_2(\alpha, 1 - \lambda, q) |f'(x)|^q + (\delta_1(\alpha, 1 - \lambda, q) - \delta_2(\alpha, 1 - \lambda, q)) |f'(a)|^q, \tag{10}
\]
and
\[
\int_0^1 |\mu - t^\alpha|^q |f'(tx + (1 - t)b)|^q dt \\
\leq \delta_2(\alpha, \mu, q) |f'(x)|^q + (\delta_1(\alpha, \mu, q) - \delta_2(\alpha, \mu, q)) |f'(b)|^q. \tag{11}
\]

By substituting the above inequalities (10) and (11) into (9), we get the desired result for $q > 1$.

For $q = 1$, from Lemma 1 and 2 it follows that
\[
\left| I_f(f; \alpha; \lambda, \mu) \right| \leq \int_0^1 |t^\alpha - 1 + \lambda| \{t |f'(x)| + (1 - t) |f'(a)| \} dt \\
+ \int_0^1 |\mu - t^\alpha| \{t |f'(x)| + (1 - t) |f'(b)| \} dt \\
= \delta_2(\alpha, 1 - \lambda, 1) |f'(x)| + (\delta_1(\alpha, 1 - \lambda, 1) - \delta_2(\alpha, 1 - \lambda, 1)) |f'(a)| \\
+ \delta_2(\alpha, \mu, 1) |f'(x)| + (\delta_1(\alpha, \mu, 1) - \delta_2(\alpha, \mu, 1)) |f'(b)|,
\]
which completes the proof.
Corollary 3.6. Let \(f : I \subseteq R \rightarrow R \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) and \(f' \in L([a, b]) \), where \(a, b \in I \) with \(a < b \) and \(\lambda, \mu \in [0, 1] \). If \(|f'|^q \) is convex on \([a, b]\) for \(q \geq 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then the following inequality holds:

\[
\left| I_f(f; \alpha; \lambda, \mu; \frac{a + b}{2}) \right| \\
= \frac{b - a}{2} \left| (1 - \lambda)f(a) + \mu f(b) + (1 - \mu + \lambda)f\left(\frac{a + b}{2}\right) \right| \\
- \left(\frac{2}{b - a} \right)^\alpha \Gamma(\alpha + 1) \left\{ f_{\left(\frac{2\alpha + 1}{\alpha + 1}\right)}' a + f_{\left(\frac{2\alpha + 1}{\alpha + 1}\right)}' (b) \right\} \\
\leq \left\{ \delta_2(\alpha, 1 - \lambda, q)|f'(\frac{a + b}{2})|^q \\
+ (\delta_1(\alpha, 1 - \lambda, q) - \delta_2(\alpha, 1 - \lambda, q))|f'(a)|^q \right\}^{\frac{1}{q}} \\
+ \left\{ \delta_2(\alpha, \mu, q)|f'(\frac{a + b}{2})|^q \\
+ (\delta_1(\alpha, \mu, q) - \delta_2(\alpha, \mu, q))|f'(b)|^q \right\}^{\frac{1}{q}}.
\]

If taking \(\lambda = \mu \) in Theorem 3.1, we derive the following corollary:

Corollary 3.7. Let \(f : I \subseteq R \rightarrow R \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) and \(f' \in L([a, b]) \), where \(a, b \in I \) with \(a < b \) and \(\lambda \in [0, 1] \). If \(|f'|^q \) is convex on \([a, b]\) for \(q \geq 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then the following inequality holds:

\[
\left| I_f(f; \alpha; \lambda, \lambda; x) \right| \\
\leq \left\{ \delta_2(\alpha, 1 - \lambda, q)|f'(x)|^q + (\delta_1(\alpha, 1 - \lambda, q) - \delta_2(\alpha, 1 - \lambda, q))|f'(a)|^q \right\}^{\frac{1}{q}} \\
+ \left\{ \delta_2(\alpha, \lambda, q)|f'(x)|^q + (\delta_1(\alpha, \lambda, q) - \delta_2(\alpha, \lambda, q))|f'(b)|^q \right\}^{\frac{1}{q}}.
\]

Corollary 3.8. Let \(f : I \subseteq R \rightarrow R \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) and \(f' \in L([a, b]) \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \) is convex on \([a, b]\) for \(q \geq 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then the following inequality holds:

\[
\left| I_f(f; \alpha; \frac{1}{2}, \frac{1}{2}; x) \right| \\
\leq \left\{ \delta_2(\alpha, \frac{1}{2}, q)|f'(x)|^q + (\delta_1(\alpha, \frac{1}{2}, q) - \delta_2(\alpha, \frac{1}{2}, q))|f'(a)|^q \right\}^{\frac{1}{q}} \\
+ \left\{ \delta_2(\alpha, \frac{1}{2}, q)|f'(x)|^q + (\delta_1(\alpha, \frac{1}{2}, q) - \delta_2(\alpha, \frac{1}{2}, q))|f'(b)|^q \right\}^{\frac{1}{q}}.
\]
Corollary 3.9. Let \(f : I \subseteq R \rightarrow R \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) and \(f' \in L([a, b]) \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \) is convex on \([a, b]\) for \(q \geq 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then the following inequality holds:

\[
\left| I_f(f; \alpha; \frac{2}{3}; \frac{2}{3}; x) \right| \leq \left\{ \delta_2(\alpha; \frac{1}{3}, q)|f'(x)|^q + (\delta_1(\alpha; \frac{1}{3}, q) - \delta_2(\alpha; \frac{1}{3}, q))|f'(a)|^q \right\}^{\frac{1}{q}} + \left\{ \delta_2(\alpha; \frac{2}{3}, q)|f'(x)|^q + (\delta_1(\alpha; \frac{2}{3}, q) - \delta_2(\alpha; \frac{2}{3}, q))|f'(b)|^q \right\}^{\frac{1}{q}}.
\]

Theorem 3.3. Let \(f : I \subseteq R \rightarrow R \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) and \(f' \in L([a, b]) \), where \(a, b \in I \) with \(a < b \) and \(\lambda, \mu \in [0, 1] \). If \(|f'|^q \) is convex on \([a, b]\) for \(q > 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then the following inequality holds:

\[
\left| I_f(f; \alpha; \lambda; \mu; x) \right| \leq \delta_1^\frac{1}{q}(\alpha, 1 - \lambda, p)\left\{ \frac{|f'(x)|^q + |f'(a)|^q}{2} \right\}^{\frac{1}{q}} + \delta_1^\frac{1}{q}(\alpha, \mu, p)\left\{ \frac{|f'(x)|^q + |f'(b)|^q}{2} \right\}^{\frac{1}{q}}.
\]

Proof. Suppose that \(q > 1 \). From Lemma 1, the convexity of \(|f'|^q\) on \([a, b]\), and the Hölder’s integral inequality, we have

\[
\left| I_f(f; \alpha; \lambda; \mu; x) \right| \leq \left(\int_0^1 |t^\alpha - 1 + \lambda|^p dt \right)^{\frac{1}{p}} \left(\int_0^1 |f'(tx + (1 - t)a)|^q dt \right)^{\frac{1}{q}} + \left(\int_0^1 |\mu - t^\alpha|^p dt \right)^{\frac{1}{p}} \left(\int_0^1 |f'(tx + (1 - t)b)|^q dt \right)^{\frac{1}{q}} \leq \delta_1^\frac{1}{q}(\alpha, 1 - \lambda, p)\left(\int_0^1 \{ t|f'(x)|^q + (1 - t)|f'(a)|^q \} dt \right)^{\frac{1}{q}} + \delta_1^\frac{1}{q}(\alpha, \mu, p)\left(\int_0^1 \{ t|f'(x)|^q + (1 - t)|f'(b)|^q \} dt \right)^{\frac{1}{q}} \leq \delta_1^\frac{1}{q}(\alpha, 1 - \lambda, p)\left(\frac{|f'(x)|^q + |f'(a)|^q}{2} \right)^{\frac{1}{q}} + \delta_1^\frac{1}{q}(\alpha, \mu, p)\left(\frac{|f'(x)|^q + |f'(b)|^q}{2} \right)^{\frac{1}{q}},
\]

which completes the proof.
References

Received: February 3, 2015; Published: February 23, 2015