A Laplace Type Problem for Irregular Lattice with Fundamental Cell Composed by Three Triangles and a Trapezium

D. Barilla

Department of Economic Science and Quantitative Method
University of Messina - Italy

F. Grasso

Department Cognitive Sciences Educational and Cultural Studies
University of Messina - Italy

Copyright © 2015 D. Barilla and F. Grasso. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In the previous papers, [1], [2], [3], [4],[5], [6], [7], [8], [9], [10], [11], [12], [13] and [14] the authors studies some Laplace problem for different lattices. In this paper we determine the probability that a random segment of constant length intersects a side of the lattice with fundamental cell represented in fig. 1.

Let \(\mathcal{R}(a) \) the lattice with fundamental cell \(C_0 \) represented in fig. 1.
With the rotations of this figure we can write that

\[C_0 = C_{01} \cup C_{02} \cup C_{03} \cup C_{04} \]

and

\[
\begin{align*}
\widehat{ABE} &= \widehat{AEB} = \widehat{DEF} = \frac{\pi}{5}, & \widehat{CBE} = \widehat{DEB} = \widehat{EDF} = \widehat{EFD} &= \frac{2\pi}{5}, \\
\widehat{BCD} &= \widehat{CDE} = \frac{3\pi}{5}, & \widehat{BAG} &= \widehat{EAG} &= \frac{3\pi}{4}, \\
|BG| &= |EG| = a \cos \frac{\pi}{5}, & |BE| &= 2a \cos \frac{\pi}{5}, & |AG| &= a \sin \frac{\pi}{5}, \\
|DF| &= \frac{a}{2 \cos \frac{\pi}{5}}, & \text{area}C_0 &= \frac{a^2}{2} \sin \frac{\pi}{5} \left(2 \cos \frac{\pi}{5} + 1\right)^2.
\end{align*}
\]

We want to compute the probability that a segment \(s \) of random position and of constant length \(l \), with \(l < \frac{a}{4 \cos \frac{\pi}{5}} \), intersects a side of the lattice \(\Re (a) \), i.e. the probability \(P_{int} \) that \(s \) intersects a side of the fundamental cell \(C_0 \). The position of the segment \(s \) is determined by center and by the angle \(\varphi \) that it formed with the line \(CF \).

In order to compute the probability \(P_{int} \) we consider the limit positions of the segment \(s \), for a fixed value of \(\varphi \), in the cells \(C_{0i} \), \((i = 1, 2, 3, 4) \). We have the fig. 2
and the relations

\[area \hat{C}_{01}(\varphi) = areaC_{01} - \sum_{j=1}^{5} areaa_j(\varphi), \] (4)

\[area \hat{C}_{02}(\varphi) = areaC_{02} - \sum_{j=1}^{5} areab_j(\varphi), \] (5)

\[area \hat{C}_{03}(\varphi) = areaC_{03} - \sum_{j=1}^{5} areac_j(\varphi), \] (6)

\[area \hat{C}_{04}(\varphi) = areaC_{04} - \sum_{j=1}^{5} aread_j(\varphi). \] (7)

By fig.1 and fig.2 we have that:

\[areaa_4(\varphi) = \frac{l^2}{4} \sin 2\varphi, \]

\[areaa_3(\varphi) = \frac{al}{2} \cos \frac{\pi}{5} \sin \varphi - \frac{l^2}{4} \cos \varphi, \]

\[areaa_1(\varphi) = \frac{l^2 \cos \varphi \sin \left(\frac{\pi}{5} - \varphi\right)}{2 \cos \frac{\pi}{5}}, \]
\[areaa_2 (\varphi) = \frac{a l}{2} \sin \left(\frac{\pi}{5} - \varphi \right) - \frac{l^2 \cos \varphi \sin \left(\frac{\pi}{5} - \varphi \right)}{2 \cos \frac{\pi}{5}}, \]

\[areaa_5 (\varphi) = \frac{a l}{2} \sin \frac{\pi}{5} \cos \varphi - \frac{l^2}{4} \sin 2\varphi - \frac{l^2 \cos \varphi \sin \left(\frac{\pi}{5} - \varphi \right)}{2 \cos \frac{\pi}{5}}. \]

We obtain that:

\[area\hat{C}_01 = areaC_{01} - A_1 (\varphi), \]

where

\[A_1 (\varphi) = a l \sin \frac{\pi}{5} \cos \varphi - \frac{l^2}{4} \tan \frac{\pi}{5} (1 + \cos 2\varphi). \]

In order to compute \(area\hat{C}_2 (\varphi) \) we have that:

\[areab_4 (\varphi) = \frac{l^2 \sin \varphi \sin \left(\frac{\pi}{5} + \varphi \right)}{2 \sin \frac{\pi}{5}}, \]

\[areab_3 (\varphi) = \frac{a l}{2} \cos \frac{\pi}{5} \sin \varphi - \frac{l^2 \sin \varphi \sin \left(\frac{\pi}{5} + \varphi \right)}{2 \sin \frac{\pi}{5}}, \]

\[areab_1 (\varphi) = \frac{l^2 \cos \varphi \sin \left(\frac{\pi}{5} + \varphi \right)}{2 \cos \frac{\pi}{5}}, \]

\[areab_2 (\varphi) = \frac{a l}{2} \sin \frac{\pi}{5} \cos \varphi - \frac{l^2 \cos \varphi \sin \left(\frac{\pi}{5} + \varphi \right)}{\cos \frac{\pi}{5}}, \]

\[areab_5 (\varphi) = \frac{a l}{2} \sin \left(\frac{\pi}{5} + \varphi \right) - \]

\[\frac{l^2}{2 \sin \frac{2\pi}{5}} \left(1 - \cos \frac{2\pi}{5} \cos 2\varphi + \frac{1}{2} \sin \frac{2\pi}{5} \sin 2\varphi \right). \]

We obtain that:

\[area\hat{C}_02 = areaC_{02} - A_2 (\varphi), \]

where

\[A_2 (\varphi) = a l \sin \left(\frac{\pi}{5} + \varphi \right) - \frac{l^2}{2 \sin \frac{2\pi}{5}} \left(1 - \cos \frac{2\pi}{5} \cos 2\varphi + \frac{1}{2} \sin \frac{2\pi}{5} \sin 2\varphi \right). \]

To compute \(area\hat{C}_03 (\varphi) \) we have that

\[areac_4 (\varphi) = \frac{l^2 \sin \varphi \sin \left(\frac{2\pi}{5} - \varphi \right)}{2 \sin \frac{2\pi}{5}}. \]
A Laplace type problem for irregular lattice

\[\text{area}_{c_3}(\varphi) = \frac{a}{2} \sin \varphi - \frac{l^2 \sin \varphi \sin \left(\frac{2\pi}{5} - \varphi \right)}{2 \sin \frac{2\pi}{5}}, \]

\[\text{area}_{c_1}(\varphi) = \frac{l^2 \sin \varphi \sin \left(\frac{2\pi}{5} + \varphi \right)}{2 \sin \frac{2\pi}{5}}, \]

\[\text{area}_{c_2}(\varphi) = \frac{a}{2} \sin \left(\frac{2\pi}{5} + \varphi \right) - \frac{l^2 \sin \varphi \sin \left(\frac{2\pi}{5} + \varphi \right)}{2 \sin \frac{2\pi}{5}}, \]

\[\text{area}_{c_5}(\varphi) = \frac{a}{2} \sin \left(\frac{2\pi}{5} - \varphi \right) - \frac{l^2 \sin \varphi \sin \left(\frac{2\pi}{5} - \varphi \right)}{2 \sin \frac{2\pi}{5}}, \]

\[\text{area}_{c_6}(\varphi) = al \cos \frac{\pi}{5} \sin \varphi - \frac{l^2 \sin \varphi \sin \left(\frac{2\pi}{5} + \varphi \right)}{2 \sin \frac{2\pi}{5}}. \]

We obtain that

\[\text{area}_{\hat{c}_03}(\varphi) - A_3(\varphi), \]

where

\[A_3(\varphi) = \frac{a}{2} \left[2 \sin \frac{2\pi}{5} \cos \varphi + \left(1 + 2 \cos \frac{\pi}{5} \right) \sin \varphi \right] - \frac{l^2}{2} \sin 2\varphi. \]

To compute now the \(\text{area}_{\hat{c}_04}(\varphi). \)

\[\text{area}_{d_4}(\varphi) = \frac{l^2 \sin \varphi \sin \left(\frac{2\pi}{5} + \varphi \right)}{2 \sin \frac{2\pi}{5}}, \]

\[\text{area}_{d_3}(\varphi) = \frac{a \sin(\varphi)}{4 \cos \frac{\pi}{5}} - \frac{l \sin \left(\frac{2\pi}{5} + \varphi \right)}{\sin \frac{2\pi}{5}}, \]

\[\text{area}_{d_1}(\varphi) = \frac{l^2 \sin \left(\frac{2\pi}{5} - \varphi \right) \sin \left(\frac{2\pi}{5} + \varphi \right)}{2 \sin \frac{\pi}{5}}, \]

\[\text{area}_{d_2}(\varphi) = \frac{a}{2} \sin \left(\frac{2\pi}{5} - \varphi \right) - \frac{l^2 \sin \left(\frac{2\pi}{5} - \varphi \right) \sin \left(\frac{2\pi}{5} + \varphi \right)}{2 \sin \frac{\pi}{5}}, \]

\[\text{area}_{d_5}(\varphi) = \frac{a}{2} \sin \left(\frac{2\pi}{5} + \varphi \right) - \frac{l^2 \sin \left(\frac{2\pi}{5} - \varphi \right) \sin \left(\frac{2\pi}{5} + \varphi \right)}{2 \sin \frac{2\pi}{5}} - \frac{l^2 \sin \varphi \sin \left(\frac{2\pi}{5} + \varphi \right)}{2 \sin \frac{2\pi}{5}}. \]
We obtain that:

\[
\text{area } \hat{C}_{04} (\varphi) = \text{area } C_{04} - \mathcal{A}_4 (\varphi),
\]

where

\[
\mathcal{A}_4 (\varphi) = a l \left(\sin \frac{2\pi}{5} \cos \varphi + \sin \varphi \frac{2\pi}{4 \cos \frac{2\pi}{5}} \right) - \frac{l^2}{4 \sin \frac{2\pi}{5}} \left[\left(2 \cos \frac{\pi}{5} - \cos \frac{2\pi}{5} \right) \cos 2\varphi + \sin \frac{2\pi}{5} \sin 2\varphi + 4 \cos^2 \frac{\pi}{5} + 1 \right].
\]

Denoting with \(M_i \), \(i = 1, 2, 3, 4 \), the set of segments \(s \) that have the center in the cell \(C_{0i} \) and with \(N_i \) the set of the segments \(s \) completely in \(C_{0i} \), we have that [16]:

\[
P_{\text{int}} = 1 - \frac{\sum_{i=1}^{4} \mu (N_i)}{\sum_{i=1}^{4} \mu (M_i)}, \tag{8}
\]

where \(\mu \) is the Lebesgue measure in the euclidean plane.

In order to compute \(\mu (M_i) \) and \(\mu (N_i) \) we use the kinematic measure of Poincaré [15]:

\[
dK = dx \wedge dy \wedge d\varphi,
\]

where \(x, y \) are the coordinates of middle point of \(s \) and \(\varphi \) the fixed angle.

We can write:

\[
\mu (M_i) = \int_0^{\frac{\pi}{5}} d\varphi \int\int_{\{ (x,y) \in \hat{C}_{0i} \}} dx dy = \int_0^{\frac{\pi}{5}} (\text{area } \hat{C}_{0i}) d\varphi = \frac{\pi}{5} \text{area } \hat{C}_{0i}, \quad (i = 1, 2, 3, 4)
\]

and

\[
\mu (N_i) = \int_0^{\frac{\pi}{5}} d\varphi \int\int_{\{ (x,y) \in \hat{C}_{0i} \}} dx dy = \int_0^{\frac{\pi}{5}} \left[\text{area } \hat{C}_{0i} (\varphi) \right] d\varphi =
\]

\[
\int_0^{\frac{\pi}{5}} \left[\text{area } C_{0i} - \mathcal{A}_i (\varphi) \right] d\varphi = \frac{\pi}{5} \text{area } C_{0i} - \int_0^{\frac{\pi}{5}} \mathcal{A}_i (\varphi) d\varphi, \quad (i = 1, 2, 3, 4).
\]

By these two relations give us:

\[
\sum_{i=1}^{4} \mu (M_i) = \frac{\pi}{5} \text{area } C_0, \tag{9}
\]
and
\[
\sum_{i=1}^{4} \mu(N_i) = \frac{\pi}{5} \text{area} C_0 - \int_{0}^{\pi} \left[\sum_{i=1}^{4} A_i(\varphi) \right] d\varphi. \tag{10}
\]
follow that:
\[
\sum_{i=1}^{4} A_i(\varphi) = al \left[\sin \frac{\pi}{5} \left(2 + 3 \cos \frac{\pi}{5} \right) \cos \varphi + \frac{8 \cos^{2} \frac{\pi}{5} + 2 \cos \frac{\pi}{5} + 1}{4 \cos \frac{\pi}{5}} \sin \varphi \right] -
\]
\[
\frac{l^{2}}{4} \left[\left(\tan \frac{\pi}{5} - 3 \csc \frac{2\pi}{5} + \frac{1}{\sin \frac{\pi}{5}} \right) \cos 2\varphi + 2 \sin 2\varphi + 4 \cos^{2} \frac{\pi}{5} + \tan \frac{\pi}{5} + \frac{3}{\sin \frac{2\pi}{5}} \right],
\]
then
\[
\int_{0}^{\pi} \left[\sum_{i=1}^{4} A_i(\varphi) \right] d\varphi = al \left(\frac{9}{4} - 3 \cos^{3} \frac{\pi}{5} - 4 \cos^{2} \frac{\pi}{5} - \frac{9}{2} \cos \frac{\pi}{5} + \frac{1}{4 \cos \frac{\pi}{5}} \right) -
\]
\[
\frac{l^{2}}{4} \left[\left(\frac{9}{2} + \cos \frac{\pi}{5} - 6 \cos^{2} \frac{\pi}{5} + \pi \frac{4 \cos^{2} \frac{\pi}{5} + \tan \frac{\pi}{5} + \frac{3}{\sin \frac{2\pi}{5}} \right) \right]. \tag{11}
\]

We obtain that:
\[
P_{int} = \frac{10}{\pi a^{2} \sin \frac{\pi}{5} \left(2 \cos \frac{\pi}{5} + 1 \right)^{2}} \left\{ al \left(\frac{9}{4} - 3 \cos^{3} \frac{\pi}{5} - 4 \cos^{2} \frac{\pi}{5} - \frac{9}{2} \cos \frac{\pi}{5} + \right.
ight.
\]
\[
\frac{1}{4 \cos \frac{\pi}{5}} \left. - \frac{l^{2}}{4} \left[\left(\frac{9}{2} + \cos \frac{\pi}{5} - 6 \cos^{2} \frac{\pi}{5} + \pi \frac{4 \cos^{2} \frac{\pi}{5} + \tan \frac{\pi}{5} + \frac{3}{\sin \frac{2\pi}{5}} \right) \right] \right\}.
\]

References

Received: February 1, 2015; Published: March 4, 2015