On Pseudo BCH-algebras

Young Bae Jun

Department of Mathematics and Education
Gyeongsang National University, Jinju 660-701, Korea

Sun Shin Ahn*

Department of Mathematics Education
Dongguk University, Seoul 100-715, Korea

Copyright © 2015 Young Bae Jun and Sun Shin Ahn. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

As a generalization of BCH-algebras, the notion of pseudo BH-algebra is introduced, and some of their properties are investigated. The notions of pseudo subalgebra, pseudo ideals, and pseudo atoms in pseudo BCH-algebras are introduced. Characterizations of their properties are provided.

Mathematics Subject Classification: 06F35, 03G25

Keywords: pseudo atom, pseudo subalgebra, pseudo ideal, pseudo BCH-algebra

1 Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras([6,7]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. Q. P. Hu and X. Li([4,5]) introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of

*Corresponding author
BCH-algebras. BCK-algebras have several connections with other areas of investigation, such as: lattice ordered groups, MV-algebras, Wajsberg algebras, and implicative commutative semigroups. J. M. Font et al.([2]) have discussed Wajsberg algebras which are term-equivalent to MV-algebras. D. Mundici([12]) proved MV-algebras are categorically equivalent to bounded commutative BCK-algebra, and J. Meng([10]) proved that implicative commutative semigroups are equivalent to a class of BCK-algebras. G. Georgescu and A. Iorgulescu([3]) introduced the notion of a pseudo BCK-algebra. Y. B. Jun characterized pseudo BCK-algebras. He found conditions for a pseudo BCK-algebra to be ∧-semi-lattice ordered. Y. B. Jun, H.S. Kim, J. Neggers([8]) introduced the notion of a pseudo d-algebra as a generalization of the idea of a d-algebra.

In this paper, we introduce the notion of pseudo BCH-algebra as a generalization of BCH-algebra and investigate some of their properties. We also define the notions of pseudo subalgebra, pseudo ideals, and pseudo atoms in pseudo BCH-algebras and provide characterizations of their properties in pseudo BCH-algebras.

2 Preliminaries

By a BCH-algebra([3]), we mean an algebra \((X; \star, 0)\) of type (2,0) satisfying the following conditions:

(I) \(x \star x = 0\),

(II) \((x \star y) \star z = (x \star z) \star y\),

(III) \(x \star y = 0\) and \(y \star x = 0\) imply \(x = y\), for all \(x, y \in X\).

For brevity, we also call \(X\) a BCH-algebra. In \(X\) we can define a binary operation “\(\leq\)” by \(x \leq y\) if and only if \(x \star y = 0\). The following hold([3]):

(1) \((x \star (x \star y)) \star y = 0\),

(2) \(x \star 0 = 0\) implies \(x = 0\),

(3) \(x \star 0 = x\), for all \(x, y \in X\).

A non-empty subset \(S\) of a BCH-algebra \(X\) is called a subalgebra of \(X\) if, for any \(x, y \in S\), \(x \star y \in S\), i.e., \(S\) is a closed under binary operation.

Definition 2.1. A non-empty subset \(A\) of a BCH-algebra \(X\) is called an ideal([3]) of \(X\) if it satisfies:

(I1) \(0 \in I\).
(I2) $y, x \ast y \in A$ imply $x \in I$ for all $y \in X$.

A non-empty subset A of a BCH-algebra X is called a closed ideal ([1]) of X if it satisfies: (I2) and

(I3) $0 \ast x \in A$ for all $x \in A$.

Since A is non-empty so there is an element $x \in A$. Further (I3) gives $0 \ast x \in A$, whereas (I2) gives $0 \in A$. Moreover if $x, y \in A$, then $(x \ast y) \ast x = 0 \ast y \in A$ and (I2) gives $x \ast y \in A$. Thus every closed ideal in a BCH-algebra X is a subalgebra but converse is not true (see [1]).

3 Pseudo BCH-algebras

Definition 3.1. A pseudo BCH-algebra is a non-empty set X with a constant 0 and two binary operations “\ast” and “\odot” satisfying the following axioms: for any $x, y, z \in X$,

(P1) $x \ast x = x \odot x = 0$;

(P2) $(x \ast y) \odot z = (x \odot z) \ast y$;

(P3) $x \ast y = y \odot x = 0$ imply $x = y$.

For brevity, we also call X a pseudo BCH-algebra. In X we can define a binary operation “\preceq” by $x \preceq y$ if and only if $x \ast y = 0$ if and only if $x \odot y = 0$. Note that if $(X; \ast, 0)$ is a BCH-algebra, then letting $x \odot y := x \ast y$, produces a pseudo BCH-algebra $(X; \ast, \odot, 0)$. Hence every BCH-algebra is a pseudo BCH-algebra in a natural way.

Definition 3.2. Let $(X; \ast, \odot, 0)$ be a pseudo BCH-algebra and let $\emptyset \neq I \subseteq X$. I is called a pseudo subalgebra of X if $x \ast y, x \odot y \in I$ whenever $x, y \in I$. I is called a pseudo ideal of X if it satisfies

(Pi1) $0 \in I$;

(Pi2) $x \ast y, x \odot y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$.

Example 3.3. Let $X := \{0, a, b, c\}$ be a set with the following Cayley tables:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Then \((X; *, 0)\) and \((X; \odot, 0)\) are not BCH-algebras, since \((b*a) * c = a \neq 0 = (b*c)*a\) and \((b \odot a)c = 0 \neq c = (b \odot c) \odot a\). It is easy to check that \((X; *, \odot, 0)\) is a pseudo BCH-algebra. Let \(I := \{0, a\}\). Then \(I\) is both a pseudo subalgebra of \(X\) and a pseudo ideal of \(X\). Let \(J := \{0, a, c\}\). Then \(J\) is a pseudo subalgebra of \(X\), but it is not a pseudo ideal of \(X\) since \(b \odot c = c \in J\) and \(b \ast c = a \in J\), but \(b \notin J\).

Proposition 3.4. Let \(I\) be a pseudo ideal of a pseudo BCH-algebra \(X\). If \(x \in I\) and \(y \leq x\), then \(y \in I\).

Proof. Assume that \(x \in I\) and \(y \leq x\). Then \(y \ast x = 0\) and \(y \odot x = 0\). By (P1) and (P2), we have \(y \in I\). \(\square\)

Proposition 3.5. Let \((X; *, \odot, 0)\) be a pseudo BCH-algebra. Then the following hold: for all \(x, y, z \in X\).

(i) \(x \leq 0\) implies \(x = 0\),

(ii) \(x \ast (x \odot y) \leq y, x \odot (x \ast y) \leq y\),

(iii) \(x \ast 0 = x \odot 0 = x\),

(iv) \(x \ast y \leq z \iff x \odot z \leq y\),

(v) \(0 \ast (x \ast y) = (0 \odot x) \odot (0 \ast y)\),

(vi) \(0 \odot (x \ast y) = (0 \ast x) \odot (0 \odot y)\),

(vii) \(0 \ast x = 0 \odot x\).

Proof. (i) Let \(x \leq 0\). Then \(x \ast 0 = x \odot 0 = 0\). It follows from (P1) and (P2) that \(0 \odot x = (x \ast 0) \odot x = (x \odot x) \ast 0 = 0 \ast 0 = 0\) and \(0 \ast x = (x \odot 0) \ast x = (x \ast x) \odot 0 = 0 \odot 0 = 0\). Using (P3), we have \(x = 0\).

(ii) By (P2) and (P1), we obtain \([x \ast (x \odot y)] \odot y = (x \odot y) \ast (x \ast y) = 0\) and \([x \odot (x \ast y)] \ast y = (x \ast y) \odot (x \ast y) = 0\). Hence \(x \ast (x \odot y) \leq y\) and \(x \ast (x \ast y) \leq y\).

(iii) Using (P2) and (P1), we have \((x \ast 0) \odot x = (x \odot x) \ast 0 = 0 \ast 0 = 0\). By (ii), we obtain \(x \ast (x \odot 0) \leq 0\). It follows from (i) that \(x \ast (x \odot 0) = 0\). Hence \(x \ast 0 = x\) by (P3). By a similar way, we have \(x \odot 0 = x\).

(iv) \(x \ast y \leq z \iff (x \odot y) \odot z = 0 \iff (x \odot z) \ast y = 0 \iff x \odot z \leq y\).

(v) For any \(x, y \in X\), by (P1) and (P2) we have \((0 \odot x) \odot (0 \ast y) = [(x \ast y) \ast (x \ast y)] \odot (0 \odot y) = [(x \odot x) \odot (x \ast y) \ast (x \ast y)] \odot (0 \ast y) = [(0 \odot y) \odot (0 \ast y) \ast (x \ast y) \odot (0 \odot y) = [(0 \ast y) \odot (0 \ast y) \ast (x \ast y) \odot (0 \odot y) = [(x \odot x) \odot (x \ast y) \odot (x \ast y)] \odot (0 \ast y) = [(0 \odot y) \odot (0 \odot y) \ast (x \ast y) \odot (x \ast y) = 0 \odot (x \odot y)\).

(vi) For any \(x \in X\), by (P1) and (P2) we obtain \(0 \ast x = (x \odot x) \ast x = (x \ast x) \odot x = 0 \odot x\). \(\square\)
Theorem 3.6. For any pseudo BCH-algebra X, the set

$$K(X) := \{ x \in X \mid 0 \preceq x \}$$

is a pseudo subalgebra of X.

Proof. Let $x, y \in K(X)$. Then $0 \preceq x$ and $0 \preceq y$. Hence $0 \circ x = 0 \circ 0 = 0$ and $0 \circ y = 0 \circ 0 = 0$. Since $0 \circ (x \circ y) = (0 \circ x) \circ (0 \circ y) = 0 \circ 0 = 0$ and $0 \circ (x \circ y) = (0 \circ x) \circ (0 \circ y) = 0 \circ 0 = 0$, we have $x \circ y, x \circ y \in K(X)$. Thus $K(X)$ is a pseudo subalgebra of X. \qed

Proposition 3.7. Let X be a pseudo BCH-algebra. If $x \in K(X)$ and $y \in X - K(X)$, then $x \circ y \in X - K(X)$ and $x \circ y \in X - K(X)$.

Proof. If $x \circ y \in K(X)$, then $x \circ (x \circ y) \in K(X)$ by Theorem 3.6. Using Proposition 3.5 (ii), we have $0 \preceq x \circ (x \circ y) \preceq y$ and so $y \in K(X)$. This is a contradiction. Now if $x \circ y \in K(X)$, then $x \circ (x \circ y) \in K(X)$ and so $0 \preceq x \circ (x \circ y) \preceq y$ by Proposition 3.5 (ii). Therefore $y \in K(X)$, which is a contradiction. \qed

Theorem 3.8. If I is a pseudo ideal of a pseudo BCH-algebra X, then

(i) $\forall x, y, z \in X, x, y \in I, z \circ y \preceq x \Rightarrow z \in I$,

(ii) $\forall a, b, c \in X, a, b \in I, c \circ b \preceq a \Rightarrow c \in I$.

Proof. (i) Suppose that I is a pseudo ideal of X and let $x, y, z \in X$ be such that $x, y \in I$ and $z \circ y \preceq x$. Then $(z \circ y) \circ x = 0 \in I$. Since $x \in I$ and I is a pseudo ideal of X, we have $z \circ y \in I$. Since $y \in I$ and I is a pseudo ideal of X, we obtain $z \in I$. Thus (i) is valid.

(ii) Let $a, b, c \in X$ be such that $a, b \in I$ and $c \circ b \preceq a$. Then $(c \circ b) \circ a = 0 \in I$ and so $c \circ b \in I$. Since $b \in I$ and I is a pseudo ideal of X, we have $c \in I$. Thus (ii) is true. \qed

Theorem 3.9. Let I be a pseudo subalgebra of a pseudo BCH-algebra X. Then I is a pseudo ideal of X if and only if $\forall x, y \in X, x \in I, y \in X - I \Rightarrow y \circ x \in X - I$ and $y \circ x \in X - I$.

Proof. Assume that I is a pseudo ideal of X and let $x, y \in X$ be such that $x \in I$ and $y \in X - I$. If $y \circ x \notin X - I$, then $y \circ x \in I$. Since I is a pseudo ideal of X, we have $y \in I$. This is a contradiction. Hence $y \circ x \in X - I$. Now if $y \circ x \notin X - I$, then $y \circ x \in I$ and so $y \in I$. This is a contradiction, and therefore $y \circ x \in X - I$.

Conversely, assume that $\forall x, y \in X, x \in I, y \in X - I \Rightarrow y \circ x \in X - I$ and $y \circ x \in X - I$. Since I is a pseudo subalgebra, we have $0 \in I$. Let $x \in I, y \in X$ such that $y \circ x, y \circ x \in I$. If $y \notin I$, then $y \circ x, y \circ x \in X - I$ by assumption. This is a contradiction. Hence $y \in I$. Thus I is a pseudo ideal of X. \qed
Proposition 3.10. Let A be a pseudo ideal of a pseudo BCH-algebra X. If B is a pseudo ideal of A, then it is a pseudo ideal of X.

Proof. Since B is a pseudo ideal of A, we have $0 \in B$. Let $y, x \ast y, x \circ y \in B$ for some $x \in X$. If $x \in A$, then $x \in B$ since B is a pseudo ideal of A. If $x \in X - A$, then $y, x \ast y, x \circ y \in B \subseteq A$ and so $x \in A$ because A is a pseudo ideal of X. Thus $x \in B$ since B is a pseudo ideal of A. This completes the proof.

Proposition 3.11. Let I be a pseudo ideal of a pseudo BCH-algebra X. Then for all $x \in X$, $x \in X$ imply $0 \ast (0 \circ x) \in I$ and $0 \circ (0 \ast x) \in I$.

Proof. Let $x \in I$. Then $0 = (0 \circ x) \ast (0 \circ x) = (0 \ast (0 \circ x)) \circ x$ and $0 = (0 \ast x) \circ (0 \ast x) = (0 \circ (0 \ast x)) \ast x$ which imply that $0 \ast (0 \circ x), 0 \circ (0 \ast x) \in I$. This completes the proof.

Theorem 3.12. Let I be a pseudo ideal of a pseudo BCH-algebra X and let

$$I^\# := \{ x \in X | 0 \ast (0 \circ x), 0 \circ (0 \ast x) \in I \}.$$

Then $I^\#$ is a pseudo ideal of X and $I \subseteq I^\#$.

Proof. Obviously, $0 \in I^\#$. Let $a \in X, y \in I^\#$ such that $a \ast y, a \circ y \in I^\#$. Then $0 \ast ((0 \circ (a \ast y)), 0 \circ (0 \ast (a \circ y)), 0 \ast ((0 \circ (a \circ y))) \in I$, and $0 \circ (0 \ast (a \circ y)) \in I$. Using Proposition 3.5 (v) and (vi), we have $(0 \ast (0 \circ a)) \ast (0 \circ (0 \ast y)) = 0 \circ ((0 \circ a) \circ (0 \ast y)) = 0 \circ (0 \ast (a \ast y)) \in I$ and $(0 \circ (0 \ast a)) \circ (0 \ast (0 \circ y)) = 0 \ast ((0 \ast a) \ast (0 \circ y)) = 0 \ast (0 \circ (a \circ y)) \in I$. Since $0 \ast (0 \circ y), 0 \circ (0 \ast y) \in I$, it follows from (PI2) that $0 \ast (0 \circ a), 0 \circ (0 \ast a) \in I$. Hence $a \in I^\#$. Thus $I^\#$ is a pseudo ideal of X. By Proposition 3.11, we know that $I \subseteq I^\#$. This completes the proof.

4 Pseudo atom

Definition 4.1. An element a of a pseudo BCH-algebra X is called a pseudo atom of X if for every $x \in X$, $x \preceq a$ implies $x = a$.

Obviously, 0 is a pseudo atom of X. Let $L(X)$ denote the set of all pseudo atoms of X, we call it the center of X.

Theorem 4.2. Let X be a pseudo BCH-algebra. Then the following are equivalent: for all $x, y, z, w, u \in X$

(i) w is a pseudo atom,

(ii) $w = x \circ (x \ast w)$ and $w = x \ast (x \circ w)$,

(iii) $(x \ast y) \circ (x \ast w) = w \ast y$ and $(x \circ y) \ast (x \circ w) = w \circ y$,
(iv) \(w \ast (x \odot y) = y \odot (x \ast w) \) and \(w \odot (x \ast y) = y \ast (x \odot w) \),
(v) \(0 \odot (y \ast w) = w \ast y \) and \(0 \ast (y \odot w) = w \odot y \),
(vi) \(0 \odot (0 \ast w) = w \) and \(0 \ast (0 \odot w) = w \),
(vii) \(0 \odot (0 \ast (w \odot z)) = w \odot z \) and \(0 \ast (0 \odot (w \ast z)) = w \ast z \),
(viii) \(z \odot (z \ast (w \odot u)) = w \odot u \) and \(z \ast (z \odot (w \ast u)) = w \ast u \).

Proof. (i) ⇒ (ii): Let \(w \) be a pseudo atom of \(X \). Since \(x \odot (x \ast w) \leq w \) and \(x \ast (x \odot w) \leq w \) by Proposition 3.5 (ii), we have \(w = x \odot (x \ast w) \) and \(w = x \ast (x \odot w) \).

(ii) ⇒ (iii): For every \(x \in X \), we obtain \((x \odot y) \odot (x \ast w) = (x \odot (x \ast w)) \odot y = w \ast y \) and \((x \odot y) \ast (x \odot w) = (x \ast (x \odot w)) \odot y = w \odot y \) by (P2) and (ii).

(iii) ⇒ (iv): Replacing \(y \) by \(x \odot y \) in (iii), we get \(w \ast (x \odot y) = (x \ast (x \odot y)) \odot (x \ast w) = (x \odot (x \ast w)) \odot (x \odot y) = y \odot (x \ast w) \) and \(w \odot (x \odot y) = (x \odot (x \odot y)) \ast (x \odot w) = (x \ast (x \odot w)) \odot (x \odot y) = y \ast (x \odot w) \).

(iv) ⇒ (v): Put \(y := 0 \) in (iv). Then \(w \ast (x \odot 0) = 0 \odot (x \ast w) \) and \(w \odot (x \ast 0) = 0 \ast (x \odot w) \). Hence \(w \ast x = 0 \odot (x \ast w) \) and \(w \odot x = 0 \ast (x \odot w) \) by Proposition 3.5 (iii).

(v) ⇒ (vi): Set \(y := 0 \) in (v). Then \(0 \odot (0 \ast w) = w \ast 0 = w \) and \(0 \ast (0 \odot w) = w \odot 0 = w \) by Proposition 3.5 (iii).

(vi) ⇒ (vii): For any \(w, z \in X \), we have \(0 \odot (0 \ast (w \odot z)) = 0 \ast (0 \odot (w \odot z)) = 0 \ast (0 \odot (w \ast z)) = 0 \ast (0 \odot (0 \ast w)) \odot (0 \ast (0 \odot z)) = w \odot z \) and \(0 \ast (0 \odot (w \odot z)) = 0 \ast (0 \odot (w \ast z)) = 0 \ast (0 \odot (0 \ast w)) \odot (0 \ast (0 \odot z)) = 0 \ast (0 \odot (0 \odot w)) \odot (0 \ast (0 \odot z)) = w \ast z \).

(vii) ⇒ (viii): For any \(u, w, z \in X \), we have \(w \odot u = 0 \odot (0 \ast (w \odot u)) = 0 \odot (z \odot (w \odot u)) = 0 \odot [(z \ast (w \odot u)) \odot z] = (0 \ast (z \ast (w \odot u))) \odot (0 \odot z) = (0 \odot (z \ast (w \odot u))) \odot (0 \odot z) = (0 \odot (0 \odot (z \odot 0))) \odot (z \ast (w \odot u)) = (0 \odot (0 \odot (z \odot 0))) \odot (z \ast (w \odot u)) = (z \odot 0) \odot (z \ast (w \odot u)) = z \odot (z \ast (w \odot u)). \) By a similar way, we obtain \(z \ast (z \odot (w \odot u)) = w \ast u \).

(viii) ⇒ (i): If \(z \ast x = z \odot x = 0 \), then by (viii) we have \(x = x \odot 0 = z \ast (z \odot (x \ast 0)) = z \ast (z \odot x) = z \odot 0 = z \). This shows that \(x \) is a pseudo atom of \(X \). This completes the proof.

Corollary 4.3. Let \(X \) be a pseudo \(BCH \)-algebra. If \(a \) is a pseudo atom of \(X \), then for all \(x \in X \), \(a \ast x \) and \(a \odot x \) are pseudo atoms. Hence \(L(X) \) is a pseudo subalgebra of \(X \).

Corollary 4.4. Let \(X \) be a pseudo \(BCH \)-algebra. For every \(x \in X \), there is a pseudo atom \(a \) such that \(a \leq x \), i.e., every pseudo \(BCH \)-algebra is generated by a pseudo atom.

Proposition 4.5. A non-zero element \(a \in X \) is a pseudo atom of a pseudo \(BCH \)-algebra \(X \) if \(\{0, a\} \) is a pseudo ideal of \(X \).
Proof. Let \(x \leq a \) for any \(x \in X \). Then \(x * a = x \diamond a = 0 \in \{0, a\} \). Since \(x \in \{0, a\} \) is a pseudo ideal of \(X \), we have \(x = 0 \) or \(x = a \). Since \(a \neq 0 \), we obtain \(x = a \). Hence \(a \) is a pseudo atom of \(X \).

Proposition 4.6. If non-zero element of a pseudo BCH-algebra \(X \) is a pseudo atom, then any pseudo subalgebra of \(X \) is a pseudo ideal of \(X \).

Proof. Let \(S \) be a pseudo subalgebra of \(X \) and let \(x, y \in S \). By Theorem 4.2, we have \(y = x * (x \diamond y) = x * ((0 * (y \diamond x)) \diamond x) = 0 \). Thus any pseudo subalgebra of \(X \) is a pseudo ideal of \(X \).

For pseudo atom \(a \) of a Pseudo BCH-algebra \(X \), \(V(a) := \{ x \in X | x \leq a \} \) is called a pseudo branch of \(X \).

Theorem 4.7. Let \(X \) be a pseudo BCH-algebra. Suppose that \(a \) and \(b \) are pseudo atoms of \(X \). Then the following properties hold:

(i) For all \(x \in V(a) \) and all \(y \in V(b) \), \(x * y \in V(a * b) \) and \(x \diamond y \in V(a \diamond b) \).

(ii) For all \(x \) and \(y \in V(a) \), \(x \diamond y, x \ast y \in K(X) \), where \(K(X) = \{ x \in X | 0 \leq x \} \).

(iii) If \(a \neq b \), then for all \(x \in V(a) \) and \(y \in V(b) \), we have \(x \ast y, x \diamond y \in K(X) \).

(iv) For all \(x \in V(b) \), \(a \ast x = a \ast b \) and \(a \diamond x = a \diamond b \).

(v) If \(a \neq b \), then \(V(a) \cap V(b) = \emptyset \).

Proof. (i) For all \(x \in V(a) \) and all \(y \in V(b) \), by Proposition 3.5 and Theorem 4.2 we have \((a \ast b) \circ (x \ast y) = (a \ast ((0 \circ (a \ast b))) \circ x \ast y) = (a \ast ((0 \circ (a \ast b))) \circ x) \ast y = ((a \ast b) \circ x) \ast y = 0 \). Moreover, \((a \circ b) \circ (x \circ y) = (a \circ (b \circ x)) \circ y = (a \circ (b \circ x)) \circ y = (a \circ (b \circ x)) \circ y = 0 \). Hence \(x \ast y \in V(a \ast b) \) and \(x \circ y \in V(a \circ b) \).

(ii) and (iii) are simple consequences of (i).

(iv) For all \(x \in V(b) \), by Theorem 4.2 we have \((a \ast x) \circ (a \ast b) = (a \circ ((a \ast b))) \ast x = b \ast x = 0 \). Moreover, \(a \ast b \) is a pseudo atom by Corollary 4.3. Therefore \(a \ast x = a \ast b \). Also we get \((a \circ x) \circ (a \circ b) = ((a \ast (a \circ b))) \ast x = b \ast x = 0 \). Moreover, \(a \circ b \) is a pseudo atom by Corollary 4.3. Therefore \(a \circ x = a \circ b \).

(v) Let \(a \neq b \) and \(V(a) \cap V(b) \neq \emptyset \). Then there exists \(c \in V(a) \cap V(b) \). By (i), we have \(0 = c \ast c = c \circ c \in V(a \ast b), V(a \circ b) \). Hence \(a \ast b = a \circ b = 0 \), which is a contradiction. Thus (v) is true.
References

Received: February 11, 2015; Published: March 12, 2015