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Use the Refuge to Protect the Food Chain

when the Area Ecosystem is Reduced

Edilber Almanza-Vasquez

Faculty of Exact and Natural Sciences, University of Cartagena
Campus Piedra de Bolivar, Avenue of Consulado

Cartagena de Indias, Bolivar, Colombia

Ruben-Dario Ortiz-Ortiz

Faculty of Exact and Natural Sciences, University of Cartagena
Campus San Pablo, Avenue of Consulado
Cartagena de Indias, Bolivar, Colombia

Ana-Magnolia Marin-Ramirez

Faculty of Exact and Natural Sciences, University of Cartagena
Campus San Pablo, Avenue of Consulado
Cartagena de Indias, Bolivar, Colombia

Copyright c© 2015 Edilber Almanza-Vasquez, Ruben-Dario Ortiz-Ortiz and Ana-Magnolia

Marin-Ramirez. This is an open access article distributed under the Creative Commons At-

tribution License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

Abstract

In this work deterministic continuous-time predator-prey models are
analyzed considering the use of refuge by a part of prey population, when
the area of where inhabit the preys and predators decreases.
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1 Introduction

In earlier works it has been claimed that the prey refuge use exerts a stabilizing
effect in the dynamics of the interacting populations. We show that the above
statement it is true assuming that the quantity, since we demonstrate that
when we include a refuge to the preys we can maintain the equilibrium points
and to maintain the stability. The function refuge given by Almanza-Vásquez
presents the best alternative to preserve the species, relates the size refuge
the capacity and the fraction of land that can trim and stability conditions to
maintain original. Population ecology has given emphasis on the introduction
of natural complexity and realism into the basic Lotka-Volterra framework [1].
The initial steps were to include density-dependent effects on the endogenous
dynamic of predators and prey, and to develop non-linear functions for con-
sumption of prey by predators, the so-called functional response [8, 11]. So,
the predator behavior was explicitly considered in predator-prey models.

More recently, the different behavior of prey and its consequences at the pop-
ulation level has been worked out and incorporated into the predation theory
or in the growth prey function due the Allee effect [4]. In this context, a more
relevant behavioral trait that affect the dynamics of predator-prey systems is
the use of spatial refuges or covers by the prey.

Spatial refuges are found where environmental heterogeneity provides less ac-
cessible sites for predators in which a number of prey can stay, at least tem-
porarily. In this way, some fraction of the prey population is partially protected
against predators and we assume that the refuge is a physical location in which
prey either live or temporally hide [7].

In the ecological literature have studied three types of refuge:

Two refuge types proposed by Maynard-Smith [9]; Xr = σ. The quantity of
hidden prey is a constant number, Xr = α. The quantity of hidden prey is
proportional to the prey population at instant t, Xr = βX.

One proposed by Almanza-Vasquez [2] where analyze the population conse-
quences of refuge use in the Lotka-Volterra model with self-limitation, assum-
ing that the amount of prey in refuge using a saturated function that it is
growing monotonously in the way Xr = αX

X+β

Here α represents the maximum physical capacity of refuge and where the
population’s fraction in cover is falling in the way. β is the quantity of necessary
preys to reach half of the maximum capacity α.

Where X=X(t) represents prey population size for t ≥ 0 and Xr = Xr(t)
belongs to the fraction of the covered population.

According to Taylor [10] the different kinds of refuges can be arranged into
three types:

a) Those which provide permanent spatial protection for small subsets of the
prey population,



Use the refuge to protect the food chain 1953

b) Those which provide temporary spatial protection, and
c) Those which provide a temporal refuge in numbers, i.e., the risk of predation
decreases by increasing the abundance of vulnerable prey.
Frequently, in Population Dynamics it has been claimed that prey refuge use
has a stabilizing effect in interaction [9] and damp predator-prey oscillations:
this affirmation is based on theoretical studies of very simple deterministic
continuous-time predator-prey models [5].
We denote for X(t) = X and Y (t) = Y the population sizes of preys and
predators, respectively for t > 0, considered as continuous variables that can
represent density, biomass or quantity of each population’s individuals; and
Xr(t) = Xr the quantity of prey population that occupies a refuge (hetero-
geneity of the means), the quantity of preys in refuge, then the quantity of
preys that interact with the predators is X −Xr. According to [3] we modi-
fied the functional response of the Lotka-Volterra model when prey refuge is
expressed by the system of self-dimensional differential equations:

dX
dt

= r(1 − X
K

) X − q (X −Xr)Y

dY
dt

= p (X −Xr)Y − c Y
(1)

which is a Kolmogorov type system, where the functional response is linear.
The parameters have the following biological meanings:
r : is the intrinsic per capita prey growth rate;
K : is the prey environmental carrying capacity;
q : is the maximal per capita predator consumption rate;
p: is the efficiency with which predators convert consumed prey into new
predators;
c: is the natural per capita death predator rate.
If assuming that Xr = α, the system ceases to be a Kolmogorov type, but the
positive equilibrium point is globally asymptotically stable [10]
If the prey quantity in refuge Xr = βX, then the system is topologically
equivalent to the original [5], changing only the coordinates of the positive
equilibrium point [6].
Assuming that the amount of prey in refuge is given byXr = αX

X+β
. The positive

equilibrium point can change the stability depending on the parameters.

2 Effect of the refuges on the food chain when

you intervene the area and stay the carrying

capacity. The Models

The behavior of the species can be affected by the effect of ecological variables
(readiness of refuges, formation of defence groups, difficulty of mating, appear-
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ance of other strategies antipredator etc). It is shown the influence that has
the refuge when the area have to be intervened by a civil work, comparing the
stability and values of the equilibrium points of the systems generated when
analyzing all the refuges functions presented in the literature. Maintaining the
carrying capacity.
As q = σ Sy

S
where σ is the fraction of encounters prey-predator where the prey

dies. Sy is the area where each predator looks for the preys and S is the region
where the preys are distributed. And p = ξq where ξ is the quantity of new
predators taken place by each consumed prey.
If we diminish the area, let us say that it exists 0 < φ < 1 such that the not
intervened area is φS < S, the consumption average changes to 1

φ
q > q, then

the rate of conversion of preys in new predators rate changes to 1
φ
p > p.

Now it is shown the influences that have the refuges functions Xr on the vari-
ation of the preys and predators species, in the system of Lotka-Volterra. The
refuges functions increase the variation of the preys, positively and negatively
to the predators.
It is considered that a = 1

φ
. And the refuge function in the system (1)

(a) The system of linear equations when the area is modified from S to φS,
stays the carrying capacity and the Xr = α refuge function proposed by
Maynard-Smith is included [9], it is represented by:

dX
dt

= r(1 − X
K

) X − q XY − (a− 1)qXY + αaqY

dY
dt

= pXY − cY + (a− 1)pXY − αapY
(2)

where the equilibrium points are (0, 0), (K, 0) and

(X∗
2 , Y

∗
2 ) = (φX∗

o + α, (φc+ αp)(Y ∗
o +

r(1 − φ)

q
+
αr

qK
))

where the equilibrium point is into the first quadrant Lotka-Volterra
model.

Theorem 2.1. The nature of the equilibrium points of the system (2).
For all parameter values it has

(a) The singularity (0, 0) is saddle point.

(b) (K, 0) saddle point, if and only if, K > φ c
p

+ α; an attractor point,
if and only if, K < φ c

p
+α and an saddle-node attractor, if and only

if, K ≤ φ c
p

+ α

(c) If K > φ c
p

+ α, the singularity (X∗
2 , Y

∗
2 ) is a locally asymptotically

stable equilibrium point
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Proof. The Jacobian matrix of system (2) is

J(X;Y ) =

[
r(1 − 2X

K
) − aqY −aq(X − α)

apY ap(X − α) − c

]
(a) Evaluating the Jacobian matrix at (0, 0) we have that

J(0, 0) =

[
r aqα
0 −(apα + c)

]
.

The eigenvalues are: λ1 = r > 0 and λ2 = −(apα+ c) < 0, this way
(X∗ = 0, Y ∗ = 0) is hyperbolic saddle

(b) J(K, 0) =

[
−r −aq(K − α)
0 ap(K − α) − c

]
. The eigenvalues are: λ1 =

−r < 0 and λ2 = ap(K − α) − c, then the sign of λ2 depends
on the sign of ap(K − α) − c.

i.e.: hyperbolic saddle for ap(K − α) − c > 0; an attractor point,
for ap(K − α) − c < 0

(c) For the unique equilibrium point at the first quadrant we get:

J(X∗
2 , Y

∗
2 ) =

[
−( r(apα+c)

apK
+ aq( c

a
+ αp)(Y ∗

o + r(a−1)
aq

+ αr
qK

)) −qX∗
o

ap( c
a

+ αp)(Y ∗
o + r(a−1)

aq
+ αr

qK
) 0

]
.

The TraceJ(X∗
2 , Y

∗
2 ) = −( r(apα+c)

apK
+aq( c

a
+αp)(Y ∗

o + r(a−1)
aq

+ αr
qK

)) < 0

and DetJ(X∗
2 , Y

∗
2 ) = apqX∗

o ( c
a

+ αp)(Y ∗
o + r(a−1)

aq
+ αr

qK
) > 0.

Then (X∗
2 , Y

∗
2 ) node attractor.

We can find the relationship between the area that is clipped and the
refuge functions so that it does not change the quantity of preys in the
ecosystem 1

a
X∗
o + α = X∗

o , therefore α = (1 − φ) c
p

(b) The system of linear equations when the area is modified from S to
φS, stays the carrying capacity and the Xr = βX. The system that
incorporates refuge function uses in proportion to the prey size is given
by:

dX
dt

= r(1 − X
K

) X − qXY − (a− 1)qXY + βaqY

dY
dt

= pXY − cY + (a− 1)pXY − βapY
(3)

The equilibrium points:

(0, 0), (K, 0) and (X∗
3 , Y

∗
3 ) = ( 1

a
X∗
o + β

ap(1−β) ,
1

(1−β)2 ( 1
a
Y ∗
o + r(a−1)(1−β)

a2q
−

βr
aq(1−β)2 ))
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Theorem 2.2. For the singularities of the system (3) one has:

(a) The singularity (0, 0) is saddle point for all parameter values.

(b) The equilibrium point (K, 0) is a saddle-node attractor (a nonhyper-
bolic equilibrium point) ap(1− β)K − c > 0; globally asymptotically
stable if and only if, ap(1 − β)K − c < 0; in this case it does not
exist an equilibrium point at interior of the first quadrant.

(c) The unique positive equilibrium point (X∗
3 , Y

∗
3 ) is globally asymptot-

ically stable if and only if, ap(1 − β)K − c > 0; in this case the
equilibrium (K, 0) is saddle point.

Proof. The Jacobian matrix of system (3) is

J(X;Y ) =

[
r(1 − 2X

K
) − aq(1 − β)Y −aq(1 − β)X

ap(1 − β)Y ap(1 − β)X − c

]
(a) Evaluating the Jacobian matrix at (0, 0) we have that J(0, 0) =[

r 0
0 −c

]
. As DetJ(0, 0) = −rc < 0, then (0, 0) is saddle point

(b) J(K, 0) =

[
−r −aq(1 − β)K
0 ap(1 − β)K − c

]
.

The eigenvalues are: λ1 = −r < 0 and λ2 = ap(1 − β)K − c, then
the sign of λ2 depends on the sign of ap(1 − β)K − c.

i.e.: hyperbolic saddle for ap(1 − β)K − c > 0 an attractor point
for, ap(1 − β)K − c < 0

(c) The Jacobian matrix at (X∗
3 , Y

∗
3 )

J(X∗
3 , Y

∗
3 ) =

[
−r −aq(1 − β)X∗

3

ap(1 − β)Y ∗
3 0

]
.

The TraceJ(X∗
3 , Y

∗
3 ) = −r < 0 and DetJ(X∗

3 , Y
∗
3 ) = a2qp(1 −

β)2X∗
3Y

∗
3 > 0.

Then ( c
ap
, r(a

2pK−c
a3pqK

)) an attractor point.

We can find the relationship between the clipped area and the refuge
function so that it doesn’t change the quantity of preys in the equilibrium
point in the quadrant with biological sense.

1
a
X∗
o + β

ap(1−β) = X∗
o . Therefore β = (a−1)c

(a−1)c+1
With the same conditions it

can be a relationship between α of Xr = α and β of Xr = βX. Obtaining
that α = φβ

p(1−β)
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(c) The system of linear equations when the area is modified from S to φS,
stays the carrying capacity and considering the refuge function Xr = αX

X+β

The system is expressed by:
dX
dt

= r(1 − X
K

) X − qXY − (a− 1)qXY + αaq XY
X+β

dY
dt

= pXY − cY + (a− 1)pXY − αap XY
X+β

(4)

The equilibrium points:

(0, 0), (K, 0) and
(X∗

4 ;Y ∗
4 ) = ( r

2apK
(H +

√
H2 + 4acpβ

r2
);

r
2c
H − r2

2acpK
(H2 +H

√
H2 + 4acpβ

r2
+ 2acpβ

r2
))

where

H = (α−β)ap+c
2apK

=
(α−β)+φX∗

0

2K
and α− β > 0.

The following theorem considers that if the reason between the size of the
refuge and the carrying capacity of the system spreads to (1+ β

K
)(Kap−c

r
)

(observes that the area portion that is when clipping the ecosystem ap-
pears), the equilibrium point inside the first quadrant can change its
stability

Theorem 2.3. The nature of the equilibrium points of the system (4)

For all parameter values it has

(a) The singularity (0, 0) is saddle point.

(b) (K, 0) saddle point, if and only if, (1 + β
K

)(Kap−c
r

) − α
K
> 0; an

attractor point, if and only if, (1 + β
K

)(Kap−c
r

) − α
K
< 0 and an

saddle-node attractor, if and only if, (1 + β
K

)(Kap−c
r

) − α
K

≤ 0

(c) For(1 + β
K

)(Kap−c
r

) − α
K
> 0, the singularity (X∗

4 , Y
∗
4 ) one has

(i) If α
K

=
(X∗

4+
β
K
)2

2X∗
4+

β
K
−1

, the system (4) has a unique limit cycle, sur-

rounding the (X∗
4 , Y

∗
4 ), unique equilibrium point at the first quad-

rant.

(ii) Unstable focus, if α
K
>

(X∗
4+

β
K
)2

2X∗
4+

β
K
−1

(iii) If α
K
<

(X∗
4+

β
K
)2

2X∗
4+

β
K
−1

, the singularity (X∗
4 , Y

∗
4 ) of system (4) is

a locally asymptotically stable equilibrium point.

It is observed that the refuge function proposed by Almanza-Vásquez presents
the best alternative to conserve the species, since it relates the size of the refuge,
the carrying capacity and the land fraction that can take off and maintain the
original stability conditions without the intervention.
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