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Abstract

In this paper, a method for calculating powers of general tridiagonal matrices is

introduced. This method employs the close relationship among tridiagonal matrices,

second-order linear homogeneous difference equations, and orthogonal polynomials.

Some examples are included to demonstrate the implementation of the method.
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1 Introduction

It is well known that tridiagonal matrices have been under focus of many researchers recently.

This emerged from the fact that such matrices play important roles in many recent applications,

such as boundary value problems, parallel computing, spline interpolation, numerical solution of

ordinary and partial differential equations, telecommunication system analysis. The calculation

of powers- positive and/or negative- of tridiagonal matrices is therefore needed in order to solve

problems that arise in these important applications. Consequently, a quite large number of

publications that address this subject appeared in recent years. Some of these publications

discuss inversion of these matrices in general, or specially structured types of them [1, 2, 4,
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5, 6, 7, 10, 11], some other publications discuss powers of such specially structured matrices

[8,9,12,13,14,15], and some discuss both inversion and powers of these matrices [3].

This present work employs the close relationship among tridiagonal matrices, second- order

linear homogeneous difference equations, and orthogonal polynomials , in order to derive an

algorithm that does the job in computing powers of tridiagonal matrices with real or complex

entries.

Given a general tridiagonal matrix with real or complex entries, we start by converting this

matrix into a symmetric tridiagonal matrix. The case of a tridiagonal matrix with nonnegative

real entries, which results in a real symmetric matrix, was discussed in detail in [2]. But the

case of a general tridiagonal matrix with entries that can be real- both positive and/or negative-

or possibly complex may result in a symmetric complex or a Hermitian matrix. This work

addresses these two cases, and gives two different schemes that compute powers of the complex

symmetric matrices.

This work parallels the line of [ 2] in the sense that a second- order linear homogeneous

difference equation is used in order to generate a set of orthogonal polynomials of degree n when

the matrix has size nxn. It is known that each polynomial of degree i, i = 1, ..., n, is in fact the

the determinant of the principal ixi submatrix of the nxn tridiagonal matrix given by:



x−a1
b1

1 0 ... 0
c2
b2

x−a2
b2

1 0... 0

0 c3
b3

x−a3
b3

1... 0

... ... ... ... ...

0 cn
bn

x−an
bn

 (1)

The above mentioned difference equation has the form:

pn(x) = x−an
bn

pn−1(x)− cn
bn
pn−2(x),n ≥ 2 (2)

with initial conditions: p0(x) = 1, p1(x) = x−a1
b1

, where an 6= 0, bn 6= 0, cn 6= 0, for all

n ≥ 0,and c1 = bn = 1, and it defines the recursion relation for the set of orthogonal polynomials

{pn(x)}n≥0 on an open interval I with respect to a nonnegative weight function w(t ).

The set of orthogonal polynomials {p0, p1, ..., pn} plays an essential role in the construction

of the eigenvalues and their corresponding eigenvectors of the matrix:

T =


a1 b1 0 ... 0

c2 a2 b2 0

0 c3 a3 b3

... ... ... ... ...

cn an

 (3)
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This matrix T is converted by a similarity transformation into a symmetric real matrix, or

a symmetric complex matrix, or a Hermitian matrix, we denote this matrix by J .

In the cases of a real symmetric matrix, or a Hermitian matrix, we construct the eigende-

composition of the matrix, which in turn is used to compute different powers of the matrix. In

the case of a complex symmetric matrix, it is known that such matrices do not have the same

properties of the other previous two cases of having an eigendecomposition that can be easily

computed, therefore we have to use a different type of factorization, called Takagi factorization,

which is then used to compute powers of the complex symmetric matrix.

This paper is organized as follows: Section 2 contains preliminary mathematical background

needed for this work, section 3 contains the main results of the paper, this section is divided into

three subsections, the first discusses the case of real symmetric matrices, the second discusses

the case of Hermitian matrices, and the third contains the case of complex symmetric matrices,

and section 4 presents some examples that demonstrate the method we introduce in this article

about computing powers of matrices.

2 Preliminaries

Tridiagonal matrices, orthogonal polynomials, and second-order linear homogeneous difference

equations are very much related with each other. Equation (2) above defines the recursion

relation that generates a set of orthogonal polynomials {pn(x)}n�0 on an interval I with respect

to a nonnegative weight function w(x).This is also related with tridiagonal matrices (1) in the

sense that pn(x) is equal to the determinant of the tridiagonal matrix in (1) above [4].

Equation (2) can be rewritten as:

x
bn
pn−1(x) = an

bn
pn−1(x) + cn

bn
pn−2(x) + pn(x)

which in turn can be rewritten in the following matrix form:

x.



1
b1

0 0

0 1
b2

0 0

0 0 1
b3

0

... ... ... ...

0 1
bn




p0(x)

p1(x)

.

.

pn−1(x)

 =



a1
b1

1 0 ... 0
c2
b2

a2
b2

1 0... 0

0 c3
b3

a3
b3

1... 0

... ... ... ... ...

0 cn
bn

an
bn




p0(x)

p1(x)

.

.

pn−1(x)

+


0

0

.

.

pn(x)


or

x.D.p = A.p + eTn .pn(x) (4)

where D = Diag( 1
b1
, 1
b2
, ..., 1

bn
), and p = [p0(x), p1(x), ..., pn−1(x)]T , A =



a1
b1

1 0 ... 0
c2
b2

a2
b2

1 0... 0

0 c3
b3

a3
b3

1... 0

... ... ... ... ...

0 cn
bn

an
bn

 ,and
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en = [0, 0, ..., 1]T ∈ Rn.

It is also known that {pn(x)}n�0 is a set of orthogonal polynomials on an interval I with

respect to a weight function w(x), each polynomial pj(x), 0 ≤ j ≤ n has j distinct real roots in

the interior of the interval I.

So, if x is replaced by xj in(4), where xj is a root of pn(x), then (4) becomes:

xj .D.p(xj) = A.p(xj) (5)

Which implies that xj , j = 1, ..., n,is a solution of the generalized eigevalue problem: λDu =

Au , which is equivalent to (D−1A)u = λu , where D−1A is the tridiagonal matrix:

D−1A = T =


a1 b1 0 ... 0

c2 a2 b2 0

0 c3 a3 b3

... ... ... ... ...

cn an

 (6)

Therefore, xj , j = 1, ..., n,are the eigenvalues of the tridiagonal matrix T , and the vector

[p0(xj), p1(xj), ..., pn−1(xj)]
T is the corresponding eigenvector. Moreover, the matrix B whose

columns are the eigenvectors of T is nonsingular, because the matrix A is also nonsingular, and

consequently, the eigenvectors are linearly independent.

3 Main Results

Let a tridiagonal matrix with real or complex entries be given, then this matrix can be trans-

formed using a similarity transformation into one of the following:

1. A real symmetric matrix when the entries of T are all nonnegative.

2. A Hermitian matrix or a complex symmetric matrix when the entries of T are just real

numbers(both positive and negative) or possibly complex.

This transformation is done in the following theorem:

Theorem 1 Given the tridiagonal matrix T as in (3), and let D1 = Diag(γ1, γ2, ..., γn) be a

diagonal matrix , where the sequence {γi}ni=1 is generated by: γn = 1,and γi =√
ci+1ci+2...cn
bibi+1...bn−1

.i = n−1, n−2, ..., 1. Then the matrix J = D1.T.D
−1
1 is the symmetric tridiagonal

matrix:

J =


a1

√
b1c2 0 ... 0√

b1c2 a2
√
b2c3 0 0

0
√
b2c3 a3 ...

...
√
bn−1cn

0
√
bn−1cn an


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where J is a tridiagonal matrix, and J is one of the following :

1. Either a real symmetric matrix,

2. Or a Hermitian matrix,

3. Or a complex symmetric matrix.

Proof. See [3]. �

Remark 2 The matrices T and J have the same eigenvalues, x1, x2, ..., xn, because they are

similar.

Remark 3 The eigenvector of the matrix J that corresponds to the eigenvalue xj is:

[γ1p0(xj), γ2p1(xj), ..., γn−1pn−1(xj)]
T .

3.1 The Case of a Real Symmetric Matrix

Given the n × n tridiagonal matrix T as in (6), we use the recursion relation in (2) in or-

der to generate the orthogonal polynomials p0(x), p1(x), ..., pn−1(x), pn(x). Then a rootfind-

ing method is used in order to compute the n distinct real roots of pn(x). If the roots are

x1, x2, ..., xn, then these are the eigenvalues of T , and the corresponding eigenvectors are

Pj = [p0(xj), p1(xj), ..., pn−1(xj)]
T , j = 1, 2, ..., n. The next step is to fill in the columns of

the orthogonal matrix U - That is U−1 = UT -, and these columns are assigned the normalized

vectors,
[γ1p0(xj),γ2p1(xj),...,γn−1pn−1(xj)]

T

Nj
, where Nj =

√√√√ n∑
i=1

γ2i p
2
i−1(xj), j = 1, ..., n.

Since T = D−11 .J.D1, and J = U.D2.U
T , where D2= Diag(x1, x2, ..., xn), we have:

T = (D−11 U).D2.(U
TD1)

Thus,

T2 = [(D−11 U).D2.(U
TD1)].[(D

−1
1 U).D2.(U

TD1)] = (D−11 U).D2
2.(U

TD1)

and

Tk = (D−11 U).Dk
2.(U

TD1), (7)

where k is any positive integer, and can be a negative integer when T is nonsingular.
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3.2 The Case of a Hermitian Matrix

This case is very similar to the case of a real symmetric matrix, in the sense that a Hermitian

matrix has the same eigendecomposition which consists of a unitary matrix U,structured the

same way as the case of the orthogonal matrix in the above case, and it is known that the

diagonal matrix D2 contains the eigenvalues of the Hermitian matrix, which are all just real

numbers. So, the computation of powers of T follows almost the same procedure as the case of

a real symmetric matrix.

3.3 The Case of a Complex Symmetric Matrix

Unforunately, there are not much references in the litrature that discuss the diagonalization of

such matrices. One of the earliest articles is [6], which states that complex symmetric matrices

can be diagonalized by a complex(orthogonal) transformation if and only if each eigenspace of

the matrix has an orthonormal basis, which means that no eigenvectors have zero Euclidian

norm are included in the basis, such eigenvectors are called quasi-null vectors, they are nonzero

vectors but with zero norm, such as the vector 1 + i .

[14] discusses this for a special type of complex symmetric matrices, namely the matrices

which have positive definite real and imaginary parts. [22] discusses the same case as well. The

celebrated book of Horn and Johnson[15] gives an extended discussion of this subject in section

(4.4, p201). This good book introduces the so-called Takagi factorization of complex symmetric

matrices, then in further elaboration on the topic, a necessay and sufficient condition for a

complex symmetric matrix A to be diagonalizable is introduced in Theorem 4.4.13, p211. This

condition states that the matrix A must be orthogonally diagonalizable, that is A = SΛS−1,

where Λ is diagonal, and S is nonsingular, and this is also equivalent to A = QΛQT , where Q

is an orthogonal complex matrix, that is QT = Q−1.

To make the discussion complete, we include here Takagi’s factorization lemma-corollary

4.4.4, p204 in [15], and the theorem that gives necessary and sufficient conditions for a complex

symmetric matrix to be diagonalizable- Theorem 4.4.13, p211 in [15].

Lemma 4 (Takagi’s Factorization Lemma): Let A ∈Mn be symmetric, then there exists a

unitary matrix U ∈ Mn and a real nonnegative diagonal matrix Σ = diag(σ1, σ2, ..., σn) such

that A = UΣUT . The columns of U are an orthonormal set of eigenvectors for AA, , and the

corresponding entries of Σ are the nonnegative square roots of the corresponding eigenvalues of

AA.

It is worth to mention at this point that Takagi factorization is a special singular value

decomposition of the symmetric matrix, as a matter of fact, it represents a scaled SVD. For

more details see [ 5, 15].



On powers of general tridiagonal matrices 589

Theorem 5 (Theorem 4.4.13 in [ 15]: Let A ∈Mn be a symmetric matrix. Then A is di-

agonalizable if and only if it is complex orthogonally diagonalizable, that is A = SΛS−1, for a

diagonal Λ ∈Mn and a nonsingular S ∈Mn, if and only if A = QAQT , where Q ∈Mn and

Q satisfies QTQ = I.

It is clear that both the corollary and the theorem do lead to the same conclusion, in the

sense that a complex symmetric matrix can be factorized into the form A = UΣUT , and whence

we obtain this, we can compute any powers of A using (7) above.

4 Examples

Example 6 T =


i i 0 0 0

i −i −i
√

2 0 0

0 − i
2

√
2 i i 0

0 0 i −i − i
2

0 0 0 −2i i

 , this is a complex tridiagonal matrix, Theo-

rem 1 produces the complex symmetric matrix J =


i i 0 0 0

i −i −i 0 0

0 −i i i 0

0 0 i −i −i
0 0 0 −i i

 with D1 = Diag(
√

2,
√

2, 2, 2, 1).

The matrix D2 = Diag(
√

2i,−
√

2i, 2i,−2i, i).The normalized eigenvectors of T give the matrix

U =



−0.6532814822 −0.2705980499 1
2
√
2

1
2
√
6

1√
3

−0.2705980499 0.6532814822 1
2
√
2
−
√
6
4 0

0 0 − 1√
2
− 1√

6
1√
3

−0.2705980499 0.6532814822 − 1
2
√
2

√
6
4 0

0.6532814822 0.2705980499 1
2
√
2

1
2
√
6

1√
3


,

Now, it is easy to compute Tk = (D1−1.U).(D2)k.(UT .D1),for any k.

Remark 7 Notice that this computation uses Theorem 4.4.13 in [15].

Example 8 T =

 1 −1 0

−1 1 1

0 1 1

, this is a real symmetric matrix, so D1 is the identity matrix,

and D2 = Diag(1,1+
√

2, 1−
√

2) , T.T =

 2 −2 −1

−2 3 2

−1 2 2

, the normalized eigenvectors of
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T.T give the matrix U =


1√
2
−1

2 −1
2

0 1√
2
− 1√

2
1√
2

1
2

1
2

 . Now, Tk = U.(D2)k.UT , for any k .

Remark 9 Notice that this computation uses the Takagi factorization lemma.

Example 10 This following example shows that the Takagi factorization is a scaled singular

value decomposition.

A =

[
1 2

2 1

]
, the eigenvalues of AA are 9 and 1 ,the SVD of A =

[
1√
2

1√
2

1√
2
− 1√

2

]T [
3 0

0 1

][
1√
2

1√
2

− 1√
2

1√
2

]
,

which can be scaled to give the Takagi factorization as follows: A =

[
1√
2

i√
2

1√
2
− i√

2

][
3 0

0 1

][
1√
2

1√
2

i√
2
− i√

2

]
,

where the second column of U in the SVD is scaled by multiplication by the scalar −i .

References

1. Aiat Hadj, A. D., and Elouafi, M., A fast numerical algorithm for the inverse of a tridi-

agonal and pentadiagonal matrix, Applied Mathematics and Computation, vol. 202(2),

2008, pp 441-445.

http://dx.doi.org/10.1016/j.amc.2008.02.026

2. Al-Hassan, Q., On powers of tridiagonal matrices with nonnegative entries, Applied Math-

emaical Sciences, Vol. 6, No. 48, 2012, pp2357-2368.

3. Al-Hassan, Q., Tridiagonal matrices and the computaion of Gaussian Quadratures , In-

ternational J. of Pure and Applied Mathematics, Vol.55, No. 3, 2009, pp 301-310.

4. Al-Hassan, Q., An algorithm for computing inverses of tridiagonal matrices with applica-

tions, Soochow Journal of Mathematics, vo. 31, no. 3, 2005, pp 449-466.

5. Bunse-Gerstner, A., and Johnson, C. R., Singular value decomposition of complex sym-

metric matrices, J. of Computational and Applied Mathematics, Vol.21, 1988, pp41-54.

http://dx.doi.org/10.1016/0377-0427(88)90386-x

6. Craven, B. D., Complex symmetric matrices, J. of Australian Mathematical Society, 10,

1969, pp341-354.

http://dx.doi.org/10.1017/s1446788700007588

7. Elouafi, M., and Aiat Hadj, A. D., On the powers and the inverse of a tridiagonal matrix,

Applied Mathematics and Computation, vol. 211, 2009, pp 137-141.

http://dx.doi.org/10.1016/j.amc.2009.01.026



On powers of general tridiagonal matrices 591

8. Elouafi, M., and Aiat Hadj, A. D., A new recursive algorithm for inverting Hessenberg

matrices, Applied Mathematics and Computation, 214(2009), pp497-499.

http://dx.doi.org/10.1016/j.amc.2009.04.017

9. El- Mikkkawy, M., On the inverse of a general tridiagonal matrix, Applied Mathematics

and Computation,150(2004), pp 669-679.

http://dx.doi.org/10.1016/s0096-3003(03)00298-4

10. El- Mikkkawy, M., and Karawia, A., Inversion of general tridiagonal matrices, Applied

Mathematics Letters, 19(2006), pp712-720.

http://dx.doi.org/10.1016/j.aml.2005.11.012

11. El-Shehawey, M. A., El-Shreef, Gh. A., and Al-Henawy, A. Sh., Analytical inversion of

general periodic tridiagonal matrices, Journal of Mathematical Analysis and Applications,

345(2008), pp123-134.

http://dx.doi.org/10.1016/j.jmaa.2008.04.002

12. Gutierrez-Gutierrez, J., Positive integer powers of certain tridiagonal matrices, Applied

Mathematics and Computation, 202(2008), pp133-140.

http://dx.doi.org/10.1016/j.amc.2008.01.022

13. Gutierrez-Gutierrez, J., Powers of tridiagonal matrices with constant diagonals, Applied

Mathematics and Computation, 206(2008), pp885-891.

14. Higham, N. J., Factoring complex symmetric matrices with positive definite real and imag-

inary parts, Mathematics of Computation, Vol. 67, No.224, 1998, pp1591-1599.

http://dx.doi.org/10.1090/s0025-5718-98-00978-8

15. Horn, R. A., and Johnson, C. R., Matrix Analysis, Cambridge University Press, 1990.

16. Hou-Biao Li, Ting-Zhu Huang, Xing-Ping Liu, and Hong Li, On the inverses of general

tridiagonal matrices, Linear Algebra and Its Applications, 433(2010), pp 965-983.

http://dx.doi.org/10.1016/j.laa.2010.04.042

17. Kilic, Emrah, Explicit formula for the inverse of a tridiagonal matrix by backward contin-

ued fractions, Applied Mathematics and Computation, 197(2008), pp 345-357.

http://dx.doi.org/10.1016/j.amc.2007.07.046

18. Rimas, Jonas, On computing of arbitrary positive integer powers for one type of symmetric

tridiagonal matrices of even order-I, Applied Mathematics and Computation,168(2005),

pp 783-787.

http://dx.doi.org/10.1016/j.amc.2004.09.017



592 Qassem M. Al-Hassan

19. Rimas, Jonas, On computing of arbitrary positive integer powers for one type of symmetric

tridiagonal matrices of odd order-I, Applied Mathematics and Computation,171(2005),

pp 1214-1217.

http://dx.doi.org/10.1016/j.amc.2005.01.108

20. Rimas, Jonas, On computing of arbitrary positive integer powers for tridiagonal matrices

with elements 1, 0,0,...,0,1 in

principal and 1,1,...1 in neighbouring diagonals-II, Applied Mathematics and Computa-

tion, 187(2007), pp 1472-1475.

http://dx.doi.org/10.1016/j.amc.2006.09.078

21. Rimas, Jonas, On computing of positive integer powers for tridiagonal matrices with ele-

ments -1, 0,0,...,0,1 in principal and 1,1,...1 in neighbouring diagonals-II, Applied Math-

ematics and Computation, 188(2007), pp 2020-2024.

http://dx.doi.org/10.1016/j.amc.2006.11.086

22. Serbin, S. M., On factoring a class of complex symmetric matrices without pivoting, Math-

ematics of Computation, Vol. 35, No. 152, 1980, pp1231-1234.

http://dx.doi.org/10.2307/2006388

Received: November 16, 2014; Published: January 9, 2015


