Graceful Labeling of Roman Rings
Having Cycle with 6 Vertices

G. Sathiamoorthy
School of Humanities and Sciences, SASTRA University, India

T. N. Janakiraman
Department of Mathematics, NIT Trichy, India

Copyright © 2014 G. Sathiamoorthy and T. N. Janakiraman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Roman rings can be obtained by introducing n copies of cycle C_6 with 6 vertices, which are merged respectively to n teeth of comb graph $P_n \odot L_1$. In this paper, it is proved Roman rings with cycle C_6 are graceful.

Mathematics Subject Classification: 05C78

Keywords: Graceful labeling, Roman rings, cycle graph

1 Introduction

Graphs considered in this paper are simple finite and undirected. In general $G(V, E)$ denotes the graph G with vertex set $V(G)$, edge set $E(G)$, such that $|V(G)| = p$ vertices $|E(G)| = q$ edges. A labeling of the vertices of G with the numbers from 0 to q is an injective map $\phi : V \rightarrow \{0, 1, ... q\}$. A graph G is graceful if there exists a labeling of its vertices such that the map $\phi^* : E \rightarrow \{1, 2, ... q\}$ given by $\phi^*(uv) = |\phi(u) - \phi(v)|$, where $u, v \in V$ and $uv \in E$ is a bijection.

A graph that admits graceful labeling is called graceful graph. The notation
graceful labeling was introduced by Rosa [3] with the name valuation. Gallian [2] gives the extensive survey of contributions to graceful labeling of variety of graphs. Rosa [3], [4] showed that the cycle C_n is graceful if and only if $n = 0$ or $3 \pmod{4}$. Bhat-Nayak and Selvam [1] have shown that the n-cone (also called the n-point suspension of C_m) $C_m + K_n$ is graceful when $m = 0$ or $3 \pmod{12}$. They also proved the gracefulness of $C_4 + K_n$, $C_5 + K_2$, $C_7 + K_n$, $C_9 + K_2$, $C_{11} + K_n$ and $C_{19} + K_n$. Seo [5] proved Gracefulness of the union of cycles and paths.

2 Main Result

Let R_1, R_2, ..., R_n be n copies of cycle C_6 (we term here as rings). Let the supporting points on the n rings R_1, R_2, ..., R_n be t_1, t_2, ..., t_n, which are merged respectively to n teeth of comb graph $P_n \odot L_1$. Let b_1, b_2, b_3, ..., b_n be base points of the comb graph from which n rings of equal length say m, are hanging, each of which at a tooth of n teeth respectively. The resulting structure is called Roman rings $R(6, n)$. Let the points of i^{th} ring be c_{i1}^1, c_{i2}^1, ..., c_{im-1}^1 for $i = 1, 2, ..., n$.

From the above definition of $R(6, n)$ graph, $|V(R(6, n))| = 7n$. Also, the number of edges of $R(6, n)$ is $|E(R(6, n))| = 8n - 1$.

Theorem 2.1. The Roman rings $R(6, n)$ is graceful.

![Figure 1: General form of R (6, n)](image)

The labeling of $(n - 1)$ rings are as follows:-

Step 1 : $\phi (b_1) = 0$, $\phi (t_1) = q$. $\phi (c_{11}^1) = 1$, $\phi (c_{21}^1) = 2$.

Step 2 : $\phi (b_2) = q - 3$, $\phi (t_2) = 3$. $\phi (c_{12}^2) = q - 1$, $\phi (c_{22}^2) = q - 2$.

(Let $n = 2\lambda + 1$ for odd and $n = 2\lambda$ for even)

Case 1: n is odd, then
Step 3 : \(\phi(b_{2i+1}) = \phi(b_{2i-1}) + 4, 1 \leq i \leq \lambda - 1. \)

Step 4 : \(\phi(t_{2i+1}) = q - \phi(b_{2i+1}), 1 \leq i \leq \lambda - 1. \)

Step 5 : \(\phi(b_{2i+2}) = \phi(b_{2i}) - 4, 1 \leq i \leq \lambda - 1. \)

Step 6 : \(\phi(t_{2i+2}) = \phi(t_{2i}) + 4, 1 \leq i \leq \lambda - 1. \)

Case 2: \(n \) is even, then

Step 3 : \(\phi(b_{2i+1}) = \phi(b_{2i-1}) + 4, 1 \leq i \leq \lambda - 1. \)

Step 4 : \(\phi(t_{2i+1}) = q - \phi(b_{2i+1}), 1 \leq i \leq \lambda - 1. \)

Step 5 : \(\phi(b_{2i+2}) = \phi(b_{2i}) - 4, 1 \leq i \leq \lambda - 1. \)

Step 6 : \(\phi(t_{2i+2}) = \phi(t_{2i}) + 4, 1 \leq i \leq \lambda - 1. \)

Step 7 : \(\phi(c_3^{1}) = (n - 2) 2 + 12, \phi(c_3^{1}) = \phi(c_3^{1}) + 2. \)

Step 8 : \(\phi(c_3^{2}) = (n - 3) 6 + 7, \phi(c_3^{2}) = \phi(c_3^{2}) + 2. \)

Case 1: \(n \) is odd (continue), then

Step 9 : \(\phi(c_3^{2i+1}) = \phi(c_3^{2i-1}) + 8, 1 \leq i \leq \lambda - 1. \)

Step 10 : \(\phi(c_4^{2i+1}) = \phi(c_4^{2i-1}) + 8, 1 \leq i \leq \lambda - 1. \)

Step 11 : \(\phi(c_3^{2i+2}) = \phi(c_3^{2i}) - 8, 1 \leq i \leq \lambda - 1. \)

Step 12 : \(\phi(c_4^{2i+2}) = \phi(c_4^{2i}) - 8, 1 \leq i \leq \lambda - 1. \)

Case 2: \(n \) is even (continue), then

Step 9 : \(\phi(c_3^{2i+1}) = \phi(c_3^{2i-1}) + 8, 1 \leq i \leq \lambda - 1. \)

Step 10 : \(\phi(c_4^{2i+1}) = \phi(c_4^{2i-1}) + 8, 1 \leq i \leq \lambda - 1. \)

Step 11 : \(\phi(c_3^{2i+2}) = \phi(c_3^{2i}) - 8, 1 \leq i \leq \lambda - 1. \)

Step 12 : \(\phi(c_4^{2i+2}) = \phi(c_4^{2i}) - 8, 1 \leq i \leq \lambda - 1. \)

The remaining \((n - 1) 2 + 7\) edges starting from 1 to \(2(n - 3) + 12\). Let \(e_i = 2(n - 3) + 12 \). The remaining edges formed in \(n \) pair relations starting from \((e_i, e_i - 2), (e_i - 1, e_i - 3), (e_i - 4, e_i - 6), (e_i - 5, e_i - 7), \ldots \). The labeling of \(\phi(c_5) \) are as follows :-

Step 13 : select maximum edge value pair among \((\phi(c_3^{i}), \phi(c_4^{i}))\), \(i = 1 \) to \(n - 1 \).

Step 14 : substitute maximum edge value pair and the resultant vertex lies in \(3(n - 2) + 1 \) to \(q - 2(n - 1) \).
Step 15: if not continue with other decreasing order of vertex pairs.

Step 16: select 2nd edge pair and continue the above steps.

The remaining 7 edges consists of \((n-1)\)th pair in the above \(n\) pairs and remaining edges from 1 to 7.

Last ring consists of 6 edges.

Now, induced edge labeling are as follows :-

1: \(\phi^* (b_1t_1) = q\). 2: \(\phi^* (t_1c_1^1) = q - 1\). 3: \(\phi^* (t_1c_2^1) = q - 2\).

4: \(\phi^* (b_1b_2) = q - 3\). 5: \(\phi^* (t_2c_1^2) = q - 4\). 6: \(\phi^* (t_2c_2^2) = q - 5\).

7: \(\phi^* (b_2t_2) = q - 6\). 8: \(\phi^* (b_2b_3) = q - 7\).

Case 1: \(n\) is odd, then

Induced edge labeling of odd segment are as follows :-

9: \(\phi^* (b_{2d+1}t_{2d+1}) = q - 8d, 1 \leq d \leq \lambda - 1\).

10: \(\phi^* (t_{2d+1}c_{1}^{2d+1}) = q - 1 - 8d, 1 \leq d \leq \lambda - 1\).

11: \(\phi^* (t_{2d+1}c_{2}^{2d+1}) = q - 2 - 8d, 1 \leq d \leq \lambda - 1\).

12: \(\phi^* (b_{2d+1}b_{2d+2}) = q - 3 - 8d, 1 \leq d \leq \lambda - 1\).

Induced edge labeling of even segment are as follows :-

13: \(\phi^* (t_{2d+2}c_{1}^{2d+2}) = q - 4 - 8d, 1 \leq d \leq \lambda - 1\).

14: \(\phi^* (t_{2d+2}c_{2}^{2d+2}) = q - 5 - 8d, 1 \leq d \leq \lambda - 1\).

15: \(\phi^* (b_{2d+1}t_{2d+2}) = q - 6 - 8d, 1 \leq d \leq \lambda - 1\).

16: \(\phi^* (b_{2d+2}b_{2d+3}) = q - 7 - 8d, 1 \leq d \leq \lambda - 1\).

Case 2: \(n\) is even, then

Induced edge labeling of odd segment are as follows :-

9: \(\phi^* (b_{2d+1}t_{2d+1}) = q - 8d, 1 \leq d \leq \lambda - 1\).

10: \(\phi^* (t_{2d+1}c_{1}^{2d+1}) = q - 1 - 8d, 1 \leq d \leq \lambda - 1\).

11: \(\phi^* (t_{2d+1}c_{2}^{2d+1}) = q - 2 - 8d, 1 \leq d \leq \lambda - 1\).

12: \(\phi^* (b_{2d+1}b_{2d+2}) = q - 3 - 8d, 1 \leq d \leq \lambda - 2\).

Induced edge labeling of even segment are as follows :-

13: \(\phi^* (t_{2d+2}c_{1}^{2d+2}) = q - 4 - 8d, 1 \leq d \leq \lambda - 2\).

14: \(\phi^* (t_{2d+2}c_{2}^{2d+2}) = q - 5 - 8d, 1 \leq d \leq \lambda - 2\).
Graceful labeling of Roman rings having cycle with 6 vertices

15: \(\phi^*(b_{2d+1}t_{2d+2}) = q - 6 - 8d, 1 \leq d \leq \lambda - 2. \)

16: \(\phi^*(b_{2d+2}b_{2d+3}) = q - 7 - 8d, 1 \leq d \leq \lambda - 2. \)

Step a: select maximum edge value from the available assigned values of pair adjacent vertices \(((c^i_3), (c^i_4)), i = 1 \) to \(n - 1. \)

Step b: substitute maximum edge value pair and the resultant vertex value lies in the vertex set from \(3(n - 2) + 1 \) to \(q - 2(n - 1). \)

Step c: if not continue with other decreasing order of vertex pairs.

Step d: select 2nd edge pair and continue the above steps.

The remaining 7 edges consists of \((n - 1)^{th} \) pair in the above \(n \) pairs and remaining edges from 1 to 7 substituted in the last ring.

![Figure 2: Example for R(6, 6)](image)

3 Conclusion

Using the above procedure, it is proved that Roman rings R(6, n) is graceful.

References

Received: November 16, 2014, Published: January 7, 2015