A Note on the Degenerate High Order Daehee Polynomials

Jin-Woo Park
Department of Mathematics Education
Daegu University, Gyeongsan, 712-714, Korea

Jongkyum Kwon\footnote{Corresponding author}
Department of Mathematics
Kyungpook National University
Daegu, 702-701, Korea

Copyright © 2015 Jin-Woo Park and Jongkyum Kwon. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we consider the degenerate high order Daehee polynomials which are derived from p-adic invariant integral on \mathbb{Z}_p and investigate some properties of those polynomials.

Mathematics Subject Classification: 05A10, 05A19

Keywords: Bernoulli polynomial of order r, Daehee polynomials, degenerate high order Daehee polynomials

1. Introduction

Let p be a fixed prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p and \mathbb{C}_p will denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_p. The p-adic norm is normally defined by $|p|_p = \frac{1}{p}$. Let $f(x)$ be a uniformly differentiable function on \mathbb{Z}_p. Then the
\[p\text{-adic invariant integral on } \mathbb{Z}_p \text{ is defined as} \]
\[\int_{\mathbb{Z}_p} f(x) d\mu_0(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N-1} f(x) d\mu_0(x + p^N \mathbb{Z}_p) \]
\[= \lim_{N \to \infty} \frac{1}{p^N} \sum_{n=0}^{p^N-1} f(x), \text{(see [12, 13, 15])}. \]

From (1.1), we have
\[I_0(f_1) - I_0(f) = f'(0). \]

As is well known, the Bernoulli polynomials are defined by the generating function to be
\[\left(\frac{t}{e^t - 1} \right)^r e^{xt} = \sum_{n=0}^{\infty} B_n^{(r)}(x) \frac{t^n}{n!}, \text{(see [1-2, 4-12])}. \]

When \(x = 0, B_n = B_n(0), (n \geq 0), \) are called the ordinary Bernoulli numbers.

In [2], L. Carlitz consider the degenerate Bernoulli polynomials which are given by the generating function to be
\[\frac{t}{(1 + \lambda t)^x - 1} = \sum_{n=0}^{\infty} \beta_n(x|\lambda) \frac{t^n}{n!}. \]

When \(x = 0, \beta_n(\lambda) = \beta_n(0|\lambda) \) are called the degenerate Bernoulli numbers. Note that \(\lim_{\lambda \to 0} \beta_n(\lambda) = B_n. \)

The Daehee polynomials of order \(r \) are defined by
\[D_n(x) = \int_{\mathbb{Z}_p} (x+y)_n d\mu_0(y), \text{ (n \geq 0), (see [6, 9, 10])}. \]

From (1.2) and (1.5), we can derive the generating function to be
\[\sum_{n=0}^{\infty} D_n^{(r)}(x) \frac{t^n}{n!} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (1 + t)^{x_1 + \cdots + x_r + x} d\mu_0(x_1) \cdots d\mu_0(x_r) \]
\[= \left(\frac{\log(1 + t)}{t} \right)^r (1 + t)^x, \text{(see [6, 9])}. \]

(see [6, 9]).

By (1.3) and (1.6), it is not difficult to show that
\[\left(\frac{\log(1 + t)}{t} \right)^r (1 + t)^{x-1} = \sum_{n=0}^{\infty} B_n^{(n+r+1)}(x) \frac{t^n}{n!}, \text{(see [6])}. \]

In this paper, we consider the degenerate high order Daehee numbers and polynomials which are derived from \(p\text{-adic invariant integral integral on } \mathbb{Z}_p \) and investigate some properties of those polynomials.
2. DEGENERATE DAEEHE POLYNOMIALS

Let us assume that $\lambda, t \in \mathbb{C}_p$ with $|\lambda t|^p < p^{-\frac{1}{r}}$. We define the *degenerate high order Daehee polynomials* by the generating function as follows:

$$
\sum_{n=0}^{\infty} D^{(k)}_{n,\lambda}(x) \frac{t^n}{n!} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(1 + \log(1 + \lambda t)^{\frac{1}{x}}\right)^{x_1 + \cdots + x_k + x} d\mu_0(x_1) \cdots d\mu_0(x_k)
= \left(\log \left(1 + \log(1 + \lambda t)^{\frac{1}{x}}\right)\right)^k \left(1 + \log(1 + \lambda t)^{\frac{1}{x}}\right)^x.
$$

(2.1)

When $x = 0, k = 1$, $D_{n,\lambda} = D_{n,\lambda}(0)$ are called the *n-th degenerate Daehee numbers*.

It is well-known fact that the generating function of the Stirling number of the first kind is given by

$$(\log(1 + t))^m = m! \sum_{l=m}^{\infty} S_1(l, m) \frac{t^l}{l!}, \text{ (see } [3, 8, 14]),$$

(2.2)

and the Stirling number of the second kind is defined by the generating function to be

$$(e^t - 1)^n = \sum_{m=n}^{\infty} S_2(m, n) \frac{t^m}{m!}, \text{ (see } [3, 14]).$$

By (2.1) and (2.2), we observe that

$$
\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(1 + \log(1 + \lambda t)^{\frac{1}{x}}\right)^{x_1 + \cdots + x_k + x} d\mu_0(x_1) \cdots d\mu_0(x_k)
= \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(x_1 + \cdots + x_k + x\right)^n d\mu_0(x_1) \cdots d\mu_0(x_k) \lambda^{-n} (\log(1 + \lambda t))^n
= \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \lambda^{n-l} S_1(n, l) \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (x_1 + \cdots + x_k + x) \frac{d\mu_0(x_1) \cdots d\mu_0(x_k)}{n!}\right) \frac{t^n}{n!}.
$$

(2.3)

Thus, by (2.1) and (2.3), we obtain the following theorem.

Theorem 2.1. For $n \geq 0$, we have

$$D^{(k)}_{n,\lambda}(x) = \sum_{l=0}^{n} \lambda^{n-l} S_1(n, l) \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (x_1 + \cdots + x_k + x) \frac{d\mu_0(x_1) \cdots d\mu_0(x_k)}{n!}.$$
\[
\int_{Z_p} \cdots \int_{Z_p} (1 + t)^{x_1 + \cdots + x_k + x} d\mu_0(x_1) \cdots d\mu_0(x_k)
= \sum_{n=0}^{\infty} \left(\int_{Z_p} \cdots \int_{Z_p} (x_1 + \cdots + x_k + x)^n d\mu_0(x_1) \cdots d\mu_0(x_k) \right) \frac{t^n}{n!} \quad (2.4)
= \sum_{n=0}^{\infty} D_n^{(k)}(x) \frac{t^n}{n!}.
\]

Therefore, by Theorem 2.1 and (2.4), we obtain the following corollary.

Corollary 2.2. For \(n \geq 0 \), we have

\[
D_{n,\lambda}^{(k)}(x) = \sum_{l=0}^{n} \lambda^{n-l} S_1(n, l) D_l^{(k)}(x).
\]

By replacing \(t \) by \(\frac{1}{\lambda}(e^{\lambda t} - 1) \) in (2.1), we get

\[
\int_{Z_p} \cdots \int_{Z_p} (1 + t)^{x_1 + \cdots + x_k + x} d\mu_0(x_1) \cdots d\mu_0(x_k)
= \sum_{n=0}^{\infty} D_{n,\lambda}^{(k)}(x) \frac{1}{n!} \lambda^{-n} (e^{\lambda t} - 1)^n
= \sum_{n=0}^{\infty} D_{n,\lambda}^{(k)}(x) \frac{1}{n!} \lambda^{-n} \sum_{m=n}^{\infty} S_2(m, n) \frac{(\lambda t)^m}{m!}
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} D_{m,\lambda}^{(k)}(x) \frac{1}{n!} \lambda^{n-m} S_2(n, m) \right) \frac{t^n}{n!}. \quad (2.5)
\]

By (1.6) and (2.5), we obtain the following corollary.

Corollary 2.3. For \(n \geq 0 \), we have

\[
D_n^{(k)}(x) = \sum_{m=0}^{n} D_{m,\lambda}^{(k)}(x) \frac{1}{n!} \lambda^{n-m} S_2(n, m).
\]
By (1.7), we can derive the following equations easily:

\[
\left(\frac{\log \left(1 + \log(1 + \lambda t)^{\frac{1}{x}} \right)}{\log(1 + \lambda t)^{\frac{1}{x}}} \right)^k \left(1 + \log(1 + \lambda t)^{\frac{1}{x}} \right)^x
\]

\[
= \sum_{n=0}^{\infty} B_n^{(n+k+1)}(x+1) \frac{1}{n!} \left(\log(1 + \lambda t)^{\frac{1}{x}} \right)^n
\]

\[
= \sum_{n=0}^{\infty} B_n^{(n+k+1)}(x+1) \lambda^{-n} \sum_{l=n}^{\infty} S_1(l, n) \frac{(\lambda t)^l}{l!}
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} B_m^{(m+k+1)}(x+1) \lambda^{n-m} S_1(n, m) \right) \frac{t^n}{n!}.
\]

By (2.1) and (2.6), we obtain the following theorem.

Theorem 2.4. For \(n \geq 0 \), we have

\[
D_{n,\lambda}^{(k)}(x) = \sum_{m=0}^{n} B_m^{(m+k+1)}(x+1) \lambda^{n-m} S_1(n, m).
\]

We can observe that

\[
\left(\frac{\log \left(1 + \log(1 + \lambda t)^{\frac{1}{x}} \right)}{\log(1 + \lambda t)^{\frac{1}{x}}} \right)^k \left(1 + \log(1 + \lambda t)^{\frac{1}{x}} \right)^x
\]

\[
= \left(\sum_{n=0}^{\infty} D_{n,\lambda}^{(n+k+1)} \frac{t^n}{n!} \right) \left(\sum_{n=0}^{\infty} \binom{x}{n} \left(\frac{1}{\lambda} \log(1 + \lambda t) \right)^n \right)
\]

\[
= \left(\sum_{n=0}^{\infty} D_{n,\lambda}^{(n+k+1)} \frac{t^n}{n!} \right) \left(\sum_{m=0}^{\infty} \binom{m}{k} \sum_{k=0}^{m} \lambda^{-k}(x)_k S_1(m, k) \frac{(\lambda t)^m}{m!} \right)
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \sum_{l=0}^{m} D_{n-m,\lambda}^{(k)} \binom{x}{l} \binom{n}{m} \lambda^{m-l} S_1(m, l) \right) \frac{t^n}{n!}.
\]

Thus, by (2.1) and (2.7), we obtain the following theorem.

Theorem 2.5. For \(n \geq 0 \), we have

\[
D_{n,\lambda}^{(k)}(x) = \sum_{m=0}^{n} \sum_{l=0}^{m} D_{n-m,\lambda}^{(k)} \binom{x}{l} \binom{n}{m} \lambda^{m-l} S_1(m, l) D_{n-m,\lambda}^{(k)}.
\]
It is well-known that the high order Daehee polynomials of the second kind are defined by the generating function to be

\[
\int_{Z_p} \cdots \int_{Z_p} (1 + t)^{-\left(x_1 + \cdots + x_k + x\right)} d\mu_0(x_1) \cdots d\mu_0(x_k)
= \left(\frac{\log(1 + t)}{1 - (1 + t)^{-1}} \right)^k (1 + t)^x
= \sum_{n=0}^{\infty} \hat{D}_{n,k}(x) \frac{t^n}{n!},
\]

(see [6, 9, 10]).

From now on, we consider the degenerate high order Daehee polynomials of the second kind which are defined by the generating function to be

\[
\sum_{n=0}^{\infty} \hat{D}_{n,k}(x) \frac{t^n}{n!}
= \int_{Z_p} \cdots \int_{Z_p} \left(1 + \log(1 + \lambda t)^{\frac{1}{\lambda}} \right)^{-x_1 - x_k + x} d\mu_0(x_1) \cdots d\mu_0(x_k)
= \left(\frac{\log \left(1 + \log(1 + \lambda t)^{\frac{1}{\lambda}} \right)}{1 - \left(1 + \log(1 + \lambda t)^{\frac{1}{\lambda}} \right)^{-1}} \right)^k \left(1 + \log(1 + \lambda t)^{\frac{1}{\lambda}} \right)^x.
\]

(2.10)

By (2.10), we observe that

\[
\int_{Z_p} \cdots \int_{Z_p} \left(1 + \log(1 + \lambda t)^{\frac{1}{\lambda}} \right)^{-x_1 - x_k + x} d\mu_0(x_1) \cdots d\mu_0(x_k)
= \sum_{n=0}^{\infty} \int_{Z_p} \cdots \int_{Z_p} \left(-x_1 - x_k + x \right)^{n} d\mu_0(x_1) \cdots d\mu_0(x_k)
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \lambda^{n-m} S_1(n, m) \int_{Z_p} \cdots \int_{Z_p} (-x_1 - x_k + x)^{m} d\mu_0(x_1) \cdots d\mu_0(x_k) \right) \frac{t^n}{n!}.
\]

(2.11)

By (2.10) and (2.11), we obtain the following theorem.

Theorem 2.6. For \(n \geq 0 \), we have

\[
\hat{D}_{n,k}(x) = \sum_{m=0}^{n} \lambda^{n-m} S_1(n, m) \hat{D}_{m}(x).
\]
By (2.10), we have
\[
\left(\frac{\log \left(1 + \log(1 + \lambda t)^{\frac{1}{\lambda}} \right)}{\log(1 + \lambda t)^{\frac{1}{\lambda}}} \right)^k \left(1 + \log(1 + \lambda t)^{\frac{1}{\lambda}} \right)^x
\]
\[
= \sum_{n=0}^{\infty} B_n^{(n+k+1)}(x+2) \left(\log(1 + \lambda t)^{\frac{1}{\lambda}} \right)^n \frac{n!}{n!}
\]
\[
= \sum_{n=0}^{\infty} B_n^{(n+k+1)}(x+2) \lambda^{-n} S_1(l, n) \left(\frac{\lambda t^l}{l!} \right)
\]
\[
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} B_m^{(m+k+1)}(x+2) \lambda^{n-m} S_1(n, m) \right) \frac{t^n}{n!}.
\]
(2.12)

Therefore, by (2.12), we obtain the following theorem.

Theorem 2.7. For \(n \geq 0 \), we have
\[
\hat{D}_{n, \lambda}^{(k)}(x) = \sum_{m=0}^{n} B_m^{(m+k+1)}(x+2) \lambda^{n-m} S_1(n, m).
\]

From (2.10) and (2.11), we have
\[
\hat{D}_{n, \lambda(k)}(x)
\]
\[
= \sum_{m=0}^{n} \lambda^{n-m} S_1(n, m) \int_{z_p} \cdots \int_{z_p} (-x_1 \cdots - x_k + x)_m d\mu_0(x_1) \cdots d\mu_0(x_k)
\]
\[
= \sum_{m=0}^{n} \lambda^{n-m} S_1(n, m) (-1)^m \int_{z_p} \cdots \int_{z_p} (x_1 \cdots + x_k - x + m - 1)_m d\mu_0(x_1) \cdots d\mu_0(x_k)
\]
\[
= \sum_{m=0}^{n} \lambda^{n-m} S_1(n, m) (-1)^m m! \int_{z_p} \cdots \int_{z_p} \binom{m-1}{m-l} (x_1 \cdots + x_k - x)_l d\mu_0(x_1) \cdots d\mu_0(x_k)
\]
\[
= \sum_{m=0}^{n} \lambda^{n-m} S_1(n, m) (-1)^m m! \int_{z_p} \cdots \int_{z_p} \sum_{l=0}^{m-l} (x_1 \cdots + x_k - x)_l d\mu_0(x_1) \cdots d\mu_0(x_k)
\]
\[
= \sum_{m=0}^{n} \lambda^{n-m} S_1(n, m) (-1)^m m! \int_{z_p} \cdots \int_{z_p} \sum_{l=0}^{m-l} (x_1 \cdots + x_k - x)_l D_l^{(k)}(-x)
\]
(2.13)

By (2.13), we obtain the following theorem.
Theorem 2.8. For \(n \geq 0 \), we have

\[
\hat{D}_{n,\lambda}^{(k)}(x) = \sum_{m=0}^{n} \sum_{l=1}^{m} \frac{(-1)^m}{l!} m! \lambda^{n-m} S_1(n, m) \binom{m-1}{m-l} D_l^{(k)}(-x).
\]

REFERENCES

Received: June 17, 2015; Published: June 27, 2015