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Abstract

The objective of the present work is to find an optimal path for
a mobile of four wheels. The kinematic model related to the studied
engine is a nonlinear system, where several nonlinear objective functions
must be optimized in a conflicting situation. Under these circumstances,
we propose to apply the algorithm studied in [13] for the planification
of this optimal trajectory. For more efficiency, we took advantage of
artificial neural networks parallelism by using neurons commonly used
seen in [14], [13] and some other new created ones. Also a Matlab
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simulation has been programmed in the last section toward observing
the convergence of the results obtained.

Keywords: Optimal path, Mobile Robot, Nonlinear equality constrained
multiobjective optimization problem, Neural networks, Simulation

1 Introduction

In robotics field, path planning has long been a fundamental problem. Al-
though many solutions have been proposed [11], [10], there is always room
for more research to reduce the cost and time calculation. The problem is to
find an optimal trajectory leading the robot from an initial configuration to
an arrival one within the constraints and taking into account the geometrical
uncertainties. The main cause limiting the development of robotic systems
is the computational complexity [16]. Direct application of classic optimiza-
tion methods to Nonlinear Equality Constrained Multiobjective Optimization
Problems [13] is mostly difficult and complicated to solve. These methods
often makes use of very complex mathematical tools, also the amount of com-
putation required may grow exponentially with the problem size. A number of
new approaches using genetic algorithms has been proposed in several manners
to solve NECMOP (for example, see [1] - [7]). Unfortunately, when the con-
straints of the problem considered becomes too laborious to satisfy or when the
objective space is non convex, the multiobjective genetic algorithms converge
with arduousness to optimal pareto front [2] and [9]. Besides, the algorithm
we are using in this study has brought some advances in terms of swiftness and
simplicity. This approach makes use of decomposition coordination principle
which allows nonlinearity to be treated at a local level and where coordination
is achieved through use of Lagrange multipliers [15]. Artificial neural network
are commonly used in the area of different classes of optimization problems.
Analog neural networks has the faculty to process a large number of variables
simultaneously, which makes possible to find solutions for complex multiob-
jective optimization problems in real time. In furtherance of simplifying the
use of the algorithm studied in this paper and to subsequently put the mobile
robot studied theoretically into practice in a real operational environment, we
have developed a simulation comprising two examples of optimal trajectory
using the Matlab software. The complete Matlab code has a cinch structure
using basic functions. The scientific contribution of this study is the appli-
cation of a new method of resolution of NECMOPs in order to conceive an
optimal path. To reduce the time and complexity of computation, we used the
artificial neural network inside an architecture based on simple circuit. The
remainder of this paper will be as follows: The second section concerns the
planification path of the robot studied, then in a third section the resolution
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of the kinematic model seen in section one according to the decomposition-
coordination method. The forth section is for the construction of the neural
network Architecture and finally a fifth section for the Matlab simulation.

2 PLANNING PATH FOR A MOBILE ROBOT

2.1 Study of the environment and its constraints

The studied robot is considered as rigid and is evolving on a plane. It has
conventional wheels: the contact point between the wheel and the ground is
reduced to a point I and the wheel is subjected to the constraint of rolling
without slipping. Under good conditions, there is rolling without sliding of the
wheel on the ground, however, the relative velocity of the wheel in relation to
ground at the point of contact is zero.
Let P be the wheel center, Q the contact point linking the wheel with the
ground, ψ is the wheel’s clean rotation angle and θ the angle between the wheel
plane and the ground one(O,−→x ,−→z ) (See fig.1). The nullity of the relative

speed
−→
V Q(wheel/ground) at the contact point gives a vector relationship between

the speed
−→
V P of the wheel’s center P and the vector speed of wheel’s rotation−→

W : −→
V Q =

−→
V P +

−→
W ∧

−→
PQ =

−→
0 (1)

2.2 Kinematic model of a mobile robot of four wheels

Take as a reference point (x, y) the mid-axis wheels of the rear axle where both
wheels matrices is located (see fig.2). We introduce here the notion of direc-
tor wheel center. Its introduction can simplify the equations by disregarding
the steering wheels coupling mechanism to observe the rolling without slip-
ping constraints and considering only one steering angle. The corresponding
kinematic model: 

ẋ = V cos θ

ẏ = V sin θ

θ̇ =
V

L
tanψ

ψ̇ = W

(2)

With (ẋ, ẏ, θ̇, ψ̇) the first derivative with respect to time. where L represents
the distance between the front axes and rear wheels, Ψ is the steering angle
which is formed by the front wheels and the vehicle main axis, V is the linear
velocity, and W is the angular velocity according to the vertical axis of the
steering wheel relative to the vehicle body.
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2.3 Nonlinear formatting of the Kinematic model

Our aim is to compute an optimal path in a short time following a specialized
algorithm solving nonlinear systems with multiple constraints. This algorithm
will be used for the first time in robotics field.
In what follows we notice the transformation of the kinematic model (2) with
respect to NECMOP system format [13]. We converted the system of differ-
ential equations (derivations with respect to time) into an appropriate system
of difference equations using the forward Euler rule as follows:

xk+1 = Vk cos θkδt

yk+1 = Vk sin θkδt

θk+1 =
Vk
L

tanψkδt+ θk

ψk+1 = Wkδt+ ψk

(3)

As a matter of simplification we put:

qk+1 = f(qk, uk) (4)

with qk =


xk
yk
θk
ψk

 and Uk =

(
Vk
Wk

)
.

Uk represents the control function and qk denotes the state of the system at
time k.

3 Resolution of the nonlinear system

3.1 Analysis of the problem

With the objective of applying the algorithm that solves nonlinear systems
with multiple constraints, we set the following system:

minE(q, u)

Zk = f(qk, uk) k = 0, 1, ..., N − 2

and

qk = Zk−1 k = 1, 2, ..., N − 1

with

q0 = q(0)

(5)

where :
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• E(q,u) represent the energy function

• q = [qT0 , q
T
1 , ..., q

T
N ]T and u = [uT0 , u

T
1 , ..., u

T
N−1]

T

• Zk is the output of the system and q(0) is the given initial condition

For the moment, we proceed with the construction of the ordinary Lagrange
function:

L =
N−1∑
k=0

Lk =
N−1∑
k=0

1

N
E(q, u) + µTk (f(qk, uk)− Zk) + βTk (qk − Zk−1) (6)

µk and βk are composed of four components and represents the Lagrange
multiplier Vectors, their main function is to manage the equality constraints
in (5). we note that qk and f(qk, uk) are also composed of four components,
where uk is composed of two:

qTk = (xk, yk, θk, ψk), u
T
k = (Vk,Wk) (7)

and

f(qk, uk) = (f1(qk, uk), f2(qk, uk), f3(qk, uk), f4(qk, uk)) (8)

The derivations of the ordinary Lagrange function enable us to transform
the equality constrained minimization problem (5) into a set of differential
equations. An equilibrium point (q∗k, u

∗
k, µ

∗
k, β

∗
k , Z

∗
k), with respect to the KKT

conditions [12], satisfies the following equations:

∇qkL =
1

N

δE

δqk
+
δfT

δqk
µ∗
k + β∗

k = 0

For 1 ≤ k ≤ N − 1

(9)

∇ukL =
1

N

δE

δuk
+
δfT

δuk
µ∗
k = 0

For 0 ≤ k ≤ N − 1

(10)

∇zkL = −µ∗
k − β∗

k = 0

For 0 ≤ k ≤ N − 2
(11)

∇µkL = f(q∗k, u
∗
k)− Z∗

k = 0

For 0 ≤ k ≤ N − 1
(12)

∇βkL = q∗k − Z∗
k−1 = 0

For 1 ≤ k ≤ N − 1
(13)
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These five differential equations above (9)-(13) serves as the key of solving the
equality constrained minimization problem (5).
In consonance with the kinematic model of the mobile robot studied here. We
listed below all the derivations seen in the differential equations:

Derivation of the function f with respect to qk

δf

δqk
=

(
δf1
δqk

,
δf2
δqk

,
δf3
δqk

,
δf4
δqk

)
(14)

with:

δf1(q
∗
k, u

∗
k)

δqk
=


1
0

−Vk sin θkδt
0

 (15)

δf2(q
∗
k, u

∗
k)

δqk
=


0
1

Vk cos θkδt
0

 (16)

δf3(q
∗
k, u

∗
k)

δqk
=


0
0
1

Vk
L

(1 + (tanψk)
2)δt

 (17)

δf4(q
∗
k, u

∗
k)

δqk
=


0
0
0
1

 (18)

Derivation of the function f with respect to uk

δf

δuk
=

(
δf1
δuk

,
δf2
δuk

,
δf3
δuk

,
δf4
δuk

)
(19)

with :
δf1(q

∗
k, u

∗
k)

δuk
=

(
cos θkδt

0

)
(20)

δf2(q
∗
k, u

∗
k)

δuk
=

(
sin θkδt

0

)
(21)

δf3(q
∗
k, u

∗
k)

δuk
=

(
tanψk

L
δt

0

)
(22)

δf4(q
∗
k, u

∗
k)

δuk
=

(
0
δt

)
(23)
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Regarding the energy function E, which is expressed by only the control func-
tion uk, we notice its derivation with respect to qk:

δE(q∗k, u
∗
k)

δqk
=


0
0
0
0

 (24)

Derivation of the energy function E with respect to uk:

δE(q∗k, u
∗
k)

δuk
=

1

2

(
Vk
Wk

)
(25)

3.2 Decomposition-coordination solving method

The only efficient method for solving the equality constrained minimization
problem (5) enclose the decomposition of the associated treatment system
into differential equations (9)-(13) between two levels. The processing of the
system (9)-(13) is partioned into two levels. The upper level is in charge of
equations (11) and (13) to fix Zk(0 ≤ k ≤ N − 2) and βk(1 ≤ k ≤ N − 1) and
then propose it to the lower level. However each subproblem becomes:

Zk(k = 1, 2, ..., N − 2) and βk(k = 1, 2, ..., N − 2)

Which is given by the upper level

minimize E(q, u) + βTk qk − βTk Zk−1

subject to Zk = f(qk, uk)

(26)

Resultantly, the solution of each sub problem is equal to the processing of
equations (9), (10) and (12) for Zk(k = 0, 1, ..., N −2) and βk(k = 1, ..., N −1)
supplied by the upper level. Hence, with the application of a gradient method
we obtain the system of difference equations using the Forward Euler rule:

q
(l+1)
ks = q

(l)
ks − λq

(
1

N

δE(l)

δqks
+

4∑
i=1

δf
(l)
i

δqks
µ
(l)
ki + β

(j)
ks

)
k = 1, ..., N − 1 and s = 1, ..., 4

(27)

u
(l+1)
ks = u

(l)
ks − λu

(
1

N

δE(l)

δuks
+

4∑
i=1

δf
(l)
i

δuks
µ
(l)
ki

)
k = 1, ..., N − 1 and s = 1, 2

(28)

µ
(l+1)
ks = µ

(l)
ks + λµ

(
fs(q

(l)
k , u

(l)
k )− Z(j)

ks

)
k = 0, ..., N − 1 and s = 1, ..., 4

(29)
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Where λq, λu, λµ are all stricly positive. This system of difference equations

(27)-(29) can only be solved locally if the necessary information about β
(j)
k (k =

1, ..., N − 1) and Z
(j)
k (k = 0, ..., N − 2) sent from the upper level is attainable.

The upper level works simultaneously on β
(j)
k (k = 1, ..., N − 1) and Z

(j)
k (k =

0, ..., N − 2), which make up the coordination parameters. These coordina-
tion are considered as known within the lower level, allowing local resolution
of the system of difference equations (27)-(29) and determination of the vari-

ables q∗k(Z
(j)
k , β

(j)
k ), u∗k(Z

(j)
k , β

(j)
k ) and µ∗

k(Z
(j)
k , β

(j)
k ) which respectively satisfy

equations (9), (10) and (12). The results q∗k(Z
(j)
k , β

(j)
k ) and µ∗

k(Z
(j)
k , β

(j)
k ) are

supplied for the upper level which verifies if the previously supplied informa-
tion was correct and corrects it if necessary. At this stage the lower level can
recommence its work with information of increased validity. This correction is
necessary for the evolution and satisfaction of equations (11) and (13).
The upper level proceeds progressively making the necessary correction to the
coordination parameters in order to approach the satisfaction of coordination
equations (9) and (11). Though, the coordination parameters at iteration j+1
are improvements of the coordination parameters at iteration j (see fig.3).

Z
(j+1)
ks = Z

(j)
ks − λZ(−µ∗

is(Z
(j)
k , β

(j)
k )− β(j)

k+1,s)

k = 0, 1, ..., N − 2 and s = 1, 2, ..., 4.
(30)

β
(j+1)
ks = β

(j)
ks + λβ(q∗ks(Z

(j)
k , β

(j)
k )− Z(j)

k−1,s)

k = 1, 2, ..., N − 1 and s = 1, ..., 4
(31)

with λZ and λβ strictly positive.

The solution of the system (27)-(29) is repeated until we reach the coordi-
nation satisfactory ,i.e satisfaction of equations (11) and (13).

3.3 Analysis of the stability

Regarding the convergence, we have seen according to [13] that the two suffi-
cient conditions for stability were:

1. Only one of the matrices
δG∗T

k

δvk
(k=0,1,...,N-1) must be absolutely positive

definite against the other matrices can be only positive semi-definite.
Where:

Gk =

(
∇qkL
∇ukL

)
and vk =

(
qk
uk

)
(32)

2. The adaptive coefficient λ must be chosen in a way that:

0 < λ <

∣∣∣∣B(j)

A(j)

∣∣∣∣ (33)
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Where:

A(j) =
N−1∑
k=0

H
(j)T
k H

(j)
k +R

(j)T
k R

(j)
k (34)

and

B(j) =
N−1∑
k=0

(−e(j)Tzk

δH∗
k

δµk
e(j)µk − e

(j)T
zk

δH∗
k

βk+1

e
(j)
βk+1

δR∗
k

δvk
e(j)vk

+ e
(j)T
βk

δR∗
k

δzk−1

e
z
(j)
k−1

)

(35)

with Hk = ∇zkL and Rk = ∇βkL

and e
(j)
vk , e

(j)
Zk

, e
(j)
βk

, e
(j)
µk designate the errors calculated at iteration j of the

coordination loop. For this second condition, we took a variable adaptive co-
efficient λ that is adjusted at each iteration j of the coordination loop, with α
a parameter which can take any value within the open interval ]1; 0[ so that:

λ = α

∣∣∣∣B(j)

A(j)

∣∣∣∣ (36)

The convergence speed of the algorithm depends essentially on how adaptive
coefficient λ is chosen at each iteration of the coordination loop.

4 Modeling algorithm using Artificial Neural

Networks

4.1 Neural networks used

The neural network here studied is composed of multiple networks such as
weighted network (WN), the Jacobian network, the lower and upper level
network and the Input network. Each network is himself composed of some
specific and common neurons.
The WN network is specialized in computing the weighted sum of objective
functions E(q, u). This network is realized by incorporating adaptive nonlinear
building blocks and a linear neuron. The linear neuron is commonly used in
neural networks applications [14], [13], [15]. It’s representation is shown in
Fig.4, where y is the output, θ (θ ∈ <) is the external threshold, wi are the
synaptic weights, xi are the inputs (i = 1, 2, ..., n) and n is the number of
inputs. The linear neuron sums the n weighted inputs and pass the result
through a linear activation function according to the equation:

y = φL

(
n∑
i=1

wixi − θ

)
(37)
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where φL is the linear activation function, defined by φL(x) = x.
The two Jacobian networks JNN developed in [15] are used for the final ar-
chitecture (see fig.5) and are respectively related to the calculation of the
jacobians JF and JE specific to the dynamic system and the energy function
given in (5).
The Jacobians matrices JF and JE are defined respectively as the (4 + 2)× 4
and (4 + 2)× 1 matrices:

JF =



δf1
δxk

δf1
δyk

δf1
δθk

δf1
δψk

δf1
δVk

δf1
δWk

δf2
δxk

δf2
δyk

δf2
δθk

δf2
δψk

δf2
δVk

δf2
δWk

δf3
δxk

δf3
δyk

δf3
δθk

δf3
δψk

δf3
δVk

δf3
δWk

δf4
δxk

δf4
δyk

δf4
δθk

δf4
δψk

δf4
δVk

δf4
δWk


(38)

and

JE =
(
δE
δxk

δE
δyk

δE
δθk

δE
δψk

δE
δVk

δE
δWk

)
(39)

The input network is realized by using the switched capacitor techniques
putting into practice some elementary and simple elements as seen in [13].
Concerning the Upper level and lower level networks, their architecture fol-
low the exact reasoning and the same concatenation seen in Fig.3. The
decomposition-coordination method illustrated in Fig.3 can be executed prac-
tically by using switched capacitor techniques [15]. The final architecture of
the neural network is detailed in Fig.5.

5 Simulation of the decomposition-coordination

algorithm by matlab

The simulation will be elaborated with the Matlab software. During this study
we observed that the coordination parameter (λ) and the shape of the trajec-
tory change constantly according to the initial condition values and number of
steps chosen. Therefore, we took two different examples that gives us two dif-
ferent trajectories (see Fig.6, Fig.7) and two variations of λ (see Fig.8, Fig.9).
Indeed, as explained before, the curves (Fig.8)-(Fig.9) show that under the
conditions of stability, convergence is guaranteed. The method implemented
for selecting adaptive coefficients λ has greatly improved the convergence speed
and performs the algorithm stability calculation speed compromise with much
information and not intuitive way.
The analysis therefore shows that if λ is chosen too small, the convergence
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can be very slow, so it is advantageous to initially choose λ sufficiently large.

Since initially the ratio
∣∣∣B(0)
A(0)

∣∣∣ is sufficiently high, the initial value chosen for λ

is large enough.

6 Conclusion

The aim of our research in the present paper is about the theoretical imple-
mentation of the decomposition-coordination method for the case of a mobile
robot with four wheels for the sake of planning an optimal path.
The conventional optimization techniques are established commonly on a global
treatment inserted within an iterative process. The modification of the entire
problem and its resolution are in most of the case an expensive stage in time
and memory space of the treatment process, making it almost impossible to
treat these problems in real time.
With regard to overcome the constraint of time and memory, we used the ar-
tificial neural networks in order to process in a parallel and appropriate time.
The neural network architecture is based on simple circuit element according
to VLSI techniques.
Finally we implemented the decomposition-coordination method in Matlab
software by taking two effective examples with a view to test the evolution of
the coordination parameter and to evaluate the optimal path resulted.

Figure 1: Characterization of
rolling without slipping

Figure 2: A robot of four wheels (car
type)
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Figure 3: Coordination between Upper and Lower Level

Figure 4: Linear Neuron
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Figure 5: Architecture of the Final Network
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Figure 6: Optimal Trajectory-
example 1

Figure 7: Optimal Trajectory-
example 2

Figure 8: Evolution of Coordi-
nation parameter-example 1

Figure 9: Evolution of Coordination
parameter-example 2

References

[1] M.A. Abido, Multiobjective Evolutionary Algorithms for Electric Power
Dispatch Problem, IEEE Transactions on Evolutionary Computation, 10
(2006), no. 3, 315-329. http://dx.doi.org/10.1109/tevc.2005.857073

[2] A. Abraham, L. Jain and R. Goldberg, Eds., Evolutionary Multiobjective



Planification of an optimal path using neural networks 651

Optimization: Theoretical Advances and Applications, Springer-Verlag,
2005. http://dx.doi.org/10.1007/1-84628-137-7

[3] S.F. Adra, T.J. Dodd, I.A. Griffin and P.J. Fleming, Convergence
Accelaration Operator for Multiobjective Optimization, IEEE Trans-
actions on Evolutionary Computation, 13 (2009), no. 4, 825-847.
http://dx.doi.org/10.1109/tevc.2008.2011743

[4] E. Aggelogiannaki and H. Sarimveis, A simulated annealing algorithm
for prioritized multiobjective optimization implementation in an adap-
tive model predictive control configuration, IEEE Transactions on Sys-
tems, Man and Cybernetics Part B-Cybernetics, 37 (2007), no. 4, 902-915.
http://dx.doi.org/10.1109/tsmcb.2007.896015

[5] S. Agrawal, B.K. Panigrahi and M.K. Tiwari, Multiobjective particle
swarm algorithm with fuzzy clustering for electrical power dispatch, IEEE
Transactions on Evolutionary Computation, 12 (2008), no. 5, 529-541.
http://dx.doi.org/10.1109/tevc.2007.913121

[6] S. Agrawal, Y. Dashora, M.K. Tiwari and Y.J. Son, Interactive Par-
ticle Swarm: A Pareto-Adaptive Metaheuristic to Multiobjective Opti-
mization, IEEE Transactions on Systems, Man and Cybernetics Part A-
Systems and Humans, 38 (2008), no. 2, 258-277.
http://dx.doi.org/10.1109/tsmca.2007.914767

[7] A.A. Aguilar-Lasserre, L. Piboleau, C. Azzaro-Pantel and S. Domenech,
Enhanced genetic algorithm-based fuzzy multiobjective strategy to mul-
tiproduct batch plant design, Applied Soft Computing, 9 (2009), no. 4,
1321-1330. http://dx.doi.org/10.1016/j.asoc.2009.05.005

[8] H.E. Aguirre and K. Tanaka, Working principles, behavior and perfor-
mance of MOEAs on MNK-landscapes, European Journal of Operational
Research, 181 (2007), no. 3, 1670-1690.
http://dx.doi.org/10.1016/j.ejor.2006.08.004

[9] C.W. Ahn, Ed., Advances in Evolutionary Algorithms: Theory, Design
and Practice, Springer-Verlag, New York, USA, 2006.
http://dx.doi.org/10.1007/3-540-31759-7

[10] K. Fujimura and H. Samet, A hierarchical strategy for path planning
among moving obstacles (mobile robot), IEEE Transactions on Robotics
and automation, 5 (2002), no. 1, 61-69.
http://dx.doi.org/10.1109/70.88018



652 M. Khouil, I. Sanou, M. Mestari and A. Aitelmahjoub

[11] S.S. Ge and Y.J. Cui, New Potential Functions for Mobile Robot Path
Planning, IEEE Transactions on Robotics and Automation, 16 (2000),
no. 5, 615-620. http://dx.doi.org/10.1109/70.880813

[12] H.W. Kuhn and A.W. Tucker, Nonlinear Programming, Proceeding of the
Second Berkeley Symposium on Mathematical Statistics and Probability,
1950, 481-492. University of California Press, Berkeley and Los Angeles,
1951.

[13] M. Mestari, M. Benzirar, N. Saber and M. Khouil, Solving Nonlinear
Equality Constrained Multiobjective Optimization Problems Using Neu-
ral Networks, IEEE Transactions Neural Networks and Learning Systems,
26 (2015), no. 10, 2500-2520.
http://dx.doi.org/10.1109/tnnls.2015.2388511

[14] M. Mestari, An Analog Neural Network Implementation in Fixed Time of
Adjustable-Order Statistic Filters and Applications, IEEE Transactions
on Neural Networks, 15 (2004), no. 3, 766-785.
http://dx.doi.org/10.1109/tnn.2003.820656

[15] M. Mestari, A. Namir, and J. Abouir, Switched capacitor neural networks
for optimal control of nonlinear dynamic systems: Design and stability
analysis, Systems Analysis Modelling Simulation, 41 (2001), no. 3, 559-
591.

[16] A. Stenz, Optimal and efficient path planning for partially-known envi-
ronments, IEEE International Conference on Robotics and Automation,
(1994), 3310-3317. http://dx.doi.org/10.1109/robot.1994.351061

Received: November 2, 2015; Published: March 1, 2016


