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Abstract 

 
For more than one and a half century, the effect of locomotory activity on skeletal 
muscle structure and function has been studied. It is clear that these changes 
depend on the mode of activity. Resistance and endurance exercise training differ 
in their intensity and duration as well as effects on metabolic pathways, structures 
of skeletal muscle, protein synthesis and degradation rate, neuromuscular 
junctions and muscle spindles. The purpose of this review was to compare 
differences and similarities in structural-functional rearrangements in skeletal 
muscle in endurance and resistance training and the effect of these changes on 
endurance and strength capacity. The main purpose of the study was to compare 
changes in mitochondrial and myofibrillar compartments and also changes in 
neuromuscular junctions in extra- and intrafusal muscle fibers. The comparison of 
morpho-functional changes in different skeletal muscle fiber types may help an  



 

252                                                                                Teet Seene and Priit Kaasik 
 
 
exercise biologist, sport physician, endurance and strength specialist to better 
understand the nature of specificity of different training modes on the functional 
capacity of an organism and build up exercise training strategies for both 
recreational and top athletes. 
 
Keywords: muscle structure and function; adaptation to exercise training mode 
 
 
Introduction 
 
It is a well-known fact that a reciprocal relationship exists between structure and 
function in an organism. Structure creates function and function designs structure. 
The significance of this relationship increases in situations of increased functional 
demands such as exercise training. The effect of increased functional activity on 
morpho-functional changes has been successfully studied during the last one and a 
half century. 
Endurance training (ET) influences the enzyme system of the Krebs cycle, 
electron transport chain, capillary supply, changes in key metabolic enzymes 
involved in fatty acid activation, and increased oxygen uptake in skeletal muscle 
[43,44,105]. ET does not result in hypertrophy of skeletal muscle fibers as the 
level of force production is relatively small compared to their maximal force 
generation [6]. Training in the aerobic zone of metabolism promotes a transition 
from type II to type I fibers in skeletal muscle, which occurs at the expense of 
type II fiber population [104]. The transition process is related to the myofibrillar 
apparatus as myosin is the regulator in the conversion of chemical energy into 
mechanical activity.  
Protein synthesis is an energy consuming process that is related to the recovery 
period after exercise. A low cellular energy level induces activation of the 
5’adenosine monophosphate-activated protein kinase (AMPK). AMPK reduces 
translational processes and a low energy status is associated with a high rate of 
protein turnover, which limits the increase of fiber size [110]. Lack of recovery 
also leads to changes in the skeletal muscle myofibrillar apparatus, particularly the 
destruction of contractile proteins and decreased exercise performance [83,84,91]. 
The decline in performance is largely related to skeletal muscle damage and a 
decrease in muscle oxidative capacity [42,91]. 
High volume ET disrupts body homeostasis and the body has to recover. 
Therefore, two responses must be paid attention to: the musculoskeletal system’s 
response to an appropriate or inappropriate training load, and the effect this 
response or adaptation has on injury or the potential of injury. An inappropriate 
volume or intensity of exercise may cause a maladaptive cellular or tissue 
response due to an imbalance between load and recovery [27]. 
Resistance training (RT) improves muscle main function and mass as a result of 
an anabolic effect primarily in fast-twitch (FT) fibers [31]. Muscle hypertrophy is 
effectively achieved with loads exceeding 60% of maximal strength [60] as 
muscle protein synthesis rate increases due to a complex of translation of  
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mechanical signals [107]. At the same time, the downregulation of proteolytic 
genes has been shown [69]. RT expands the amount of the myofibrillar apparatus 
in order to enlarge fiber cross-sectional area [5] and a concomitant alteration in 
contractile protein phenotype and metabolic enzyme levels occurs in accordance 
with activity-induced changes in the muscle’s fiber-type profile [75,89]. The 
repetition regime in the RT protocol plays an important role in the hypertrophy of 
muscle fibers. High numbers of repetitions in RT did not cause any significant 
hypertrophy of muscle fibers [15].  
It is still not fully known how skeletal muscle responds to an increase in 
mechanical load. Compensatory hypertrophy is characterized by an increase in 
muscle mass, muscle protein content, and contractile force, and by a shift from the 
fast-to-slow myosin isoform type in FT muscles [75], but the exact mechanism of 
changed myosin isoforms during RT is poorly understood. In comparison with 
myosin heavy chain (MyHC) isoforms, much less is known about changes in 
myosin light chain (MyLC) isoforms during adaptation to RT. 
The purpose of this review is to compare differences and similarities in structural 
and functional rearrangements in skeletal muscle in endurance and resistance 
exercise training. Attention has mainly been paid to the comparison of changes in 
the mitochondrial and myofibrillar compartments and also on the changes in 
neuromuscular junctions in extra- and intrafusal muscle fibers and the effect of 
these changes on endurance and strength capacity. A comparative study of 
morpho-functional changes during endurance and resistance training gives us 
better understanding about skeletal muscle adaptability to high volume and high 
intensity/power training and enables to create a basis for building up concurrent 
endurance and resistance exercise training strategy. 
 
 
2. The effect of training volume and intensity on skeletal muscle 
fibers  
 
Athletes’ responses to exercise training are highly complex and individual 
[11,27]. The main problem is either finding the optimal training volume in case of 
endurance athletes [46], or the training intensity and power in case of speed and 
strength athletes [24,29]. Establishing the optimal training regimen is complicated 
as both the volume and intensity of the training and recovery period that are 
optimal for performance improvement in exercise training are also highly 
individual [7,64]. In athletes, the skeletal muscle response shows whether the 
training load is appropriate or inappropriate. An appropriate training regimen 
leads to performance improvement through a cascade of structural and functional 
changes (Fig. 1). 
Adaptation of skeletal muscle to exercise depends on the training volume, 
intensity, frequency, and the half-life of the protein [18]. A unique ability to adapt 
and remodel during exercise training also includes changes in the transcription of 
a range of protective proteins [17]. 
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2.1. Effect of training volume 
The most typical structural changes occurred in ET in type I and IIA muscle fibers 
(Fig. 2). The lesions in myosin and actin filaments, the distributed regularity of Z-
disc in sarcomeres, the swelling and destruction of mitochondria, and the dilation 
of the terminal cristernae of the sarcoplasmic reticulum and T-system tubules are 
examples of these changes [68,87]. During ET, structural changes are 
considerably less evident in fibers, which have low oxidative capacity than in 
fibers with relatively high oxidative capacity (type I and IIA). ET also causes the 
most essential destruction in the myofibrillar apparatus of the nuclear-bag 
intrafusal muscle fibers in the region of type I fibers (Fig. 2). The increase in the 
number of satellite cells under the basal lamina of all muscle fibers studied in ET 
is a source of renewal of damaged structures [68,87]. 
 
 
2.2. Effect of training intensity 
Typical destructive changes in fibers with low oxidative capacity have been 
registered in RT (Fig. 2). These changes include twisting of the myofibrils in a 
small area due to overtension in muscle fibers and loss of contact with the 
adjacent structures [87]. 
During RT, skeletal muscles show marked gains in strength in the group with less 
repetitions and a slower increase in power per training session [88]. This is due to 
both neuronal adaptations and an increase in the cross-sectional area (CSA) of 
muscle. There is consensus in literature that the gain in the CSA of muscle during 
RT is mainly due to an increase in myofibrillar proteins. The CSA of all fiber 
types has been shown to increase after RT with a tendency for larger increases in 
type II than in type I fibers [48]. Both slow-twitch (ST) and FT muscles 
hypertrophy in conditions when the power of exercise does not increase fast 
enough and the number of repetitions per training session is not high enough [88]. 
In the case of high repetitions and a rapid increase in training power, there is no 
hypertrophy of muscles or gain in strength. Testosterone concentration increases 
during RT, but the high level of corticosterone in the group with the rapid increase 
in training power and volume is responsible for the increased catabolism of 
muscle protein in this group [88]. If the power of RT is increased up to five 
percent per training session, there is less degradation of muscle protein. It means 
that in this case RT has an anticatabolic effect on skeletal muscle as the decrease 
of proteinase activity in muscle shows. A significant increase of FT fibers’ CSA 
and the number of myonuclei without changes in the myonuclear domain size 
show the adaptation of skeletal muscle to RT [85]. The maintained myonuclear 
domain size tells us about the functional significance of myonuclear domain size 
in FT and ST muscle fibers during adaptation to RT. 
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3. Structural rearrangements in skeletal muscle fibers   
 
3.1. Endurance training 
In addition to the large mitochondria tightly packed with cristae in muscle fibers 
with higher oxidative capacity, small forms of mitochondria containing relatively 
few cristae also occur [87]. The intensive development of the mitochondrial 
apparatus in the post-training period vividly reflects the adaptive processes in ET, 
which is intended to supply the increased energy requirements of muscle cells 
with higher oxidative capacity [83]. In the peripheral sarcoplasm, both type I and 
type IIA muscle fibers contain short canals of the granular sarcoplasmic reticulum 
as well as polyribosomes and several Golgi complexes near the nucleus. The day 
following ET, significant destructive changes appeared in myofibrils in type I and 
type IIA muscle, including damage of myosin and actin filaments and the 
disturbance of the regularity of the Z-line in some sarcomeres [68]. The 
destruction of myofibrils is characteristic of both fiber types with relatively high 
oxidative potential, but it is still more typical of type I muscle fibers. In the A-
disc, some myosin filaments in sarcomeres are absent and the destruction of these 
myofilaments may cover the whole sarcomere. During ET, actin filaments are less 
damaged than myosin filaments [87]. These structural changes are in accordance 
with biochemical ones, such as the increase in actin turnover rate after ET 
[68,85,86]. Relatively small structural rearrangements take place in type IIX/IIB 
muscle fibers during ET as these fibers are recruited less. A characteristic change 
in type IIX/IIB fibers is the focal destruction of myofibrils. The number of 
mitochondria in type IIX/IIB fibers did not increase significantly after ET. 
Mitochondria in type IIB fibers are located in small groups near nuclei and 
between myofibrils on the level of the Z-line but not in each sarcomere [87].  
 
3.2. Resistance training 
In type IIB muscle fibers, most structural changes are caused by speed and heavy 
RT [75,103]. Damaged myofibrils in a relatively small area, where myofibrils 
have twisted and lost the connection with the neighboring structures, are typical 
changes in type IIB fibers [87].  
The morphological adaptations to RT involve an increase in the CSA of the whole 
muscle and individual muscle fibers, and an increase in myofibrillar size and 
number. The hypertrophy response is related to the activation of satellite cells in 
the early stages of training [26]. RT also causes other morphological adaptations, 
such as hyperplasia, changes in muscle fine architecture, myofilament density and 
the structure of connective tissue [26]. Changes induced by RT at the muscle-fiber 
level have been related to hypertrophy of different types of muscle fibers. RT 
causes an increase in the CSA of IIX and IIA fiber types, but in some human 
studies type IIX fibers have been shown to decrease [3]. 
Exercise-induced muscle damage often follows unaccustomed and sustained 
metabolically demanding activities [57]. The cellular damage in muscular tissue is 
caused by excessive strain in the contracting fiber, not the absolute force  
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developed in the fiber or the muscle [58]. The anatomic site of myofibrillar injury 
is the attachment of the myofibrils to the extrasarcolemic cytoskeleton [28]. Some 
degree of skeletal muscle adaptation occurs in response to each dose of exercise, 
whether normal or abnormal, and there can be various degrees of adaptation 
[58,68]. Well-trained athletes show increased neuromuscular excitability; reduced 
neuromuscular excitability shows an impaired signal transmission to target organs 
and is a parameter of peripheral fatigue [63,68]. 
Structural changes in skeletal muscle during exercise training with different 
duration and intensity are fiber specific (Fig. 2). FT fibers are more vulnerable to 
exercise damage than ST fibers [94]. The focal denervation of muscle fibers 
during exercise training was reversible and accompanied by the regeneration of 
new axonal terminals growing into pre-existing synaptic grooves [87]. Exercise 
training may cause complete and focal injuries of some muscle fibers as well as 
partial denervation of individual muscle fibers, which could be factors for the 
activation of satellite cells [68,89,108]. 
 
 
4. Relationship between mitochondria and myofibrillar apparatus 
in muscle fibers 
 
In the heart muscle, which has high oxidative capacity, intracellular 
phosphotransfer systems constitute a major mechanism linking the mitochondria 
and ATPases within specific structures − intracellular energetic units [82,93]. 
Mitochondria are precisely positioned between the myofilaments in muscle fibers 
with high or higher oxidative capacity [111]. The effectiveness of metabolic 
signaling strongly depends on structural-functional relationships of the interaction 
between mitochondria and sarcomeres [92]. Under conditions of hypoxia, the 
connections between mitochondria and sarcomeres are disturbed as sarcomeric 
components disintegrate the muscle cell structure and cause cell injury and death 
[92]. The activation of apoptosis may be partly responsible for the initiation of 
protein degradation and loss of muscle nuclei associated with local atrophy [23]. 
For example, the disruption of desmin impairs the linking of mitochondria to Z-
disc and skeletal muscle exhibits impaired oxidative phosphorylation [81]. The 
5’adenosine monophosphate-activated protein kinase (AMPK) becomes activated 
in skeletal muscle during acute bouts of exercise [4]. AMPK’s main function is to 
monitor the energy status of muscle fibers and maintain muscle energy 
homeostasis [74].   
Long-lasting endurance type exercise may lead to the depletion of the energy 
system, neuromuscular fatigue and muscle damage [1]. Children have less muscle 
mass than adults and generate lower absolute power during high-intensity 
exercise. Children’s muscles were better equipped for oxidative than glycolytic 
pathways during exercise and had lower ability to activate their type II muscle 
fibers [77]. Skeletal muscle oxidative capacity increases with ET and an age-
associated decline in oxidative capacity is related to the reduction in fitness [80].  
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Aerobic ET can positively influence structural changes to capillarity [37].  Type 
IIX/IIB muscles exhibit increased ADP concentrations in response to an increased 
workload, which conforms to the respiratory control theory in skeletal muscles 
[81].   
 
 
5. Changes in neuromuscular apparatus  
 
Exercise-caused synaptic remodeling is characterized by an impressive degree of 
specificity and sensitivity not only among different muscles but also among 
different fiber types within the same muscle [22]. Exercise training does not only 
result in the prevention of motor neuron loss or muscle fiber degeneration but 
supports a partial reversal of structural alterations that have already occurred 
[109]. Neuregulin has shown to support skeletal muscle adaptation to exercise 
training via metabolic regulation [33]. 
 
5.1. The effect of endurance training on neuromuscular junctions 
The neuromuscular apparatus, which controls phasic motor impulses as well as 
neurotrophic influences, provides the plastic activity of the muscle tissue. 
Exercise training affects the structure of mammalian neuromuscular junctions 
with changes depending on age, type of muscle and character of exercise [87]. 
After one week of ET, a lot of neuromuscular terminals start branching [87]. ET 
causes the heterogeneity of the structures of the neuromuscular synapses, which is 
clearly expressed in type IIA muscle fibers (Fig. 3). The synapses of type IIA 
muscle fibers cover a large postsynaptic area as the well-developed synaptic 
apparatus provides intensive renewal of the structures of the muscle fiber [89].  
The axon terminals of type I muscle fibers are relatively small, round or oval 
shaped and closely located. The surface of the neighboring neuromuscular 
contacts is smooth. The sarcoplasm near the terminals of the muscle fiber contains 
a great number of mitochondria, which contain a lot of cristae [87]. The axon 
terminals of type IIB fibers are elliptical and their synaptic vesicles are more 
generously provided with acetylcholine and other trophic factors. At the same 
time, the postsynaptic folds of the neighboring synapses have linked with each 
other. In comparison with type IIA muscle fibers, the postsynaptic folds of type 
IIB fibers are longer and more regular and they cover a much larger area of the 
sarcoplasm [87]. In type IIB fibers, the contact area is the largest between the 
ending and the surface of the muscle fiber.  
In type IIB fibers, the postsynaptic folds extend near myofibrils and are separated 
from contractile structures by a thin sarcoplasmic layer. There is a large number 
of glycogen granules, few mitochondria and rarely any lysosomes in the terminals 
of neuromuscular synapses and in the postsynaptic area [87]. Coated vesicles 
appear in the sarcoplasm of the postsynaptic area of type IIA muscle fibers [87]. 
The occurrence of coated vesicles is not only related to the resynthesis of 
acetylcholine in nerve endings, but these vesicles also carry the proteins of 
choline receptors onto the postsynaptic membrane [87]. The connection with the  



 

258                                                                                Teet Seene and Priit Kaasik 
 
 
rough sarcoplasmic reticulum influences the regulation of muscle fiber protein 
metabolism [21]. If subsynaptic folds open into T-tubules, they participate in the 
formation of intermyofibril triads [19]. T-tubules in the sole plate form an 
extensive network, which together with the sarcoplasmic reticulum can form 
triads, the position of which makes them unusable for triggering muscle 
contraction [20].  
 
 
6. Structural rearrangements in neuromuscular spindles  
 
Muscle spindles monitoring muscle stretch are composed of nuclear bag1 
(dynamic bag1), nuclear bag2 (static bag2), and chain fibers (static chain). During 
adaptation to increased motor activity, intrafusal muscle fibers show metabolic 
changes but do not cause hypertrophy [49]. Neuromuscular spindles are able to 
contract in the end regions and shorten simultaneously with muscle shortening 
during exercise. This allows the transmission of information about muscle length 
and the speed of contraction to higher centers of motor control at any time during 
exercise training. The motor zone of neuromuscular spindles is located near the 
poles, where the space under the capsules significantly diminishes. Each intrafusal 
fiber type has a distinct MyHC composition and a distribution of different MyHC 
isoforms along the whole length of intrafusal fibers [97]. Intrafusal fibers exhibit 
great variability in phenotypic expression. This variability is related to the 
plasticity of muscle precursor cells as muscle diversification apparently depends 
on heritable lineage derived properties interacting with environmental influences 
to give each muscle fiber its distinctive characteristics [95]. During muscle 
spindle regeneration, intrafusal satellite cells develop into extrafusal-like muscle 
fibers probably due to their motor innervation [96]. 
ET does not change the myosin isoform profile in bag1 and bag2 fibers but does 
so in chain fibers [117]. At the intensity of 60−75% of VO2max, a correlation was 
found between the recruitment of bag1 and extrafusal type I fibers, between bag2 
and type IIA fibers and between nuclear chain and IIB fibers [118]. ET causes 
essential destruction in the myofibrillar apparatus of nuclear bag spindles (Fig. 2). 
Focal destruction of myofibrils occurs both in the extrafusal and intrafusal fibers 
[90]. Mainly peripheral myofibrils lyse [87]. There are sarcomeres in intrafusal 
fibers, where only single thick filaments are missing on the border of the H-zone. 
At the same time, there are sarcomeres where the majority of thick filaments in 
the A disc have completely lysed [87]. This gives an impression that actin 
filaments are more resistant to proteolytic enzymes also in intrafusal muscle fibers 
[90]. Muscle spindle sensitivity to RT was shown about three decades ago and as 
a result, the mechanical response of extrafusal muscle fibers or the respective 
motor units improved [35]. During brief intensive exercise, bag2 fibers play the 
most important role in the early phase of training [119]. Despite clearly expressed 
destructive processes in the fibers of spindles, the regeneration potential has been 
preserved therein. This is confirmed by a large number of polyribosomes, which  
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form numerous rosettes in the sarcoplasm between myofibrils and in the 
peripheral sarcoplasm [87]. 
 
 
7. Changes in nerve endings of neuromuscular spindles  
 
The fibers of the neuromuscular spindle have separate motor neurons from 
extrafusal muscle fibers and the motor neurons controlling extrafusal muscle 
fibers are larger (alpha motor neurons), whereas the motor neurons that innervate 
the muscle spindles (gamma motor neurons) are smaller. The interaction of the 
alpha and gamma systems during muscle contraction in the training process is 
important because the central part of the intrafusal fibers must not become slack at 
any time [87]. 
There are two types of motor nerve endings of the intrafusal nuclear bag static 
muscle fiber. Those located near the centre of the spindle have postsynaptic 
membranes and they form postsynaptic folds around the gamma-axon terminal 
[87,90]. The synaptic cleft filled with the basal membrane is between pre- and 
postsynaptic membranes of synapses. The axon terminal contains a lot of round 
mitochondria, which are full of cristae. There are small vesicles containing 
acetylcholin located between mitochondria, and very few mitochondria in the 
postsynaptic area [90]. As intrafusal muscle fibers are destined to become slack 
when the extrafusal fibers shorten, unless they also shorten to the same degree due 
to the gamma motoneurons, these ultrastructural changes during ET and RT 
support the idea of an increase of alpha-gamma coactivation during regular 
exercise training [87]. Intrafusal muscle fibers located in the region of type I 
extrafusal muscle fibers adapt themselves to ET by using a response reaction very 
similar to that of extrafusal fibers. When comparing these structural 
rearrangements in the nerve-muscle synapses of the extra- and intrafusal muscle 
fibers, it is obvious that destructive changes occurring in the intrafusal fibers are 
considerably smaller than similar changes in the synapses of extrafusal fibers [87]. 
The reason for this is the effect of tension, which in case of ET in the synapses of 
intrafusal muscle fibers is much lower than in the synapses of extrafusal fibers 
[90]. The comparison of changes in the ultrastructure of different types of 
extrafusal and intrafusal muscle fibers, and their innervation and regeneration 
potential during ET and RT gives ground to conclude that all these links function 
in a mutual relationship depending on the character of exercise training (Fig. 2, 3).   
 
 
8. Relationship between muscle fiber oxidative capactity and 
contractile apparatus 
 
Skeletal muscle fibers with higher oxidative capacity are relatively small 
compared to fibers with low oxidative capacity pointing to an increase in 
relationships between fiber CSA and VO2max [110]. It is significant that only  
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cardiocytes have high oxidative capacity among striated muscle cells, while 
skeletal muscle fibers have low (type IIB/X) and higher oxidative capacity (type I 
and IIA) [82,83,87,92]. 
VO2max is proportional to succinate dehydrogenase (SDH) activity [8] or 
oxoglutarate dehydrogenase activity [9] and consequently to the number of 
mitochondria [47,78]. Muscle fibers with a relatively large CSA had low SDH 
activity and vice versa [56,79]. Fibers with higher oxidative capacity contain 
higher quantities of satellite cells, myonuclei, mitochondria, mRNA, and total 
ribosomal RNA content (i.e. components of the transcription machinery). Insulin-
like growth factor 1 (IGF-1) expression, a stimulator of myofibrillar protein 
synthesis, is also higher in type I fibers [10,101]. Myostatin, the expression 
inhibitor of muscle hypertrophy, is higher in type II fibers [62,120]. At the same 
time, the components of the degradation machinery of muscle proteins, such as 
ubiquitin ligases MAFbx and MuRF, are about twofold higher in fibers with 
higher oxidative capacity [110]. The higher rate of protein degradation in muscle 
fibers with higher oxidative capacity is balanced by a high rate of synthesis. This 
may be an important factor limiting the size of these fibers [110]. As a result of 
that steady state, protein turnover rate is faster in muscle fibers with higher 
oxidative capacity. In these fibers, the half-life of mitochondrial proteins is the 
shortest although the turnover of cytochrome C is higher in the low oxidative 
fibers [41]. ET stimulates mitochondrial biogenesis and improves its functional 
parameters [45,66].  
 
 
9. Adaptability of different fiber types to endurance training 
 
ET programs, in a variety of forms, improve the energetic potential of skeletal 
muscle and result in the effective functioning of the muscle contractile apparatus 
for longer periods of time [37,100,116]. High intensity interval training 
supplemented into the already high training volumes elicits improvements in 
skeletal muscle both during short-lasting intense and prolonged exercise 
performance [61]. It has been shown that low volume high intensity interval 
training maintains an athlete’s endurance performance and muscle oxidative 
potential and increases intense exercise performance [50,51]. AMPK is activated 
in response to endurance training [114] and related to the metabolic adaptation of 
skeletal muscle. AMPK function includes induction of glucose transport, 
glycogen metabolism, fatty acid oxidation and transcriptional regulation of 
structural muscle genes [36]. The α1 isoform of AMPK has shown to be the 
regulator of skeletal muscle growth, while the α2 isoform regulates metabolic 
adaptation [70]. The peroxisome proliferator-activated receptor isoform δ (PPAR 
δ) is an important regulator of skeletal muscle endurance capacity as the Ppar δ 
gene increases skeletal muscle oxidative capacity by increasing type I fibers and 
by decreasing type II glycolytic fibers [67,113]. 
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Aerobic exercise stimulates protein turnover by increasing muscle protein 
degradation and synthesis rate in the recovery phase after exercise [16]. Protein 
turnover is a rapid way for the redistribution of amino acids into new proteins as 
they are required because amino acids are derived from protein breakdown and 
incorporated into the newly synthesized protein. Protein turnover rate in skeletal 
muscle is relatively slow, particularly contractile proteins. The turnover rate of 
MyHC and MyLC isoforms provides a mechanism, by which the type and amount 
of protein can be changed in accordance with the needs of the contractile 
machinery during adaptation to ET [2,85]. Activity patterns of muscle fibers 
where MyHC I and IIa isoforms are dominant have relatively high oxidative 
capacity and are recruited during endurance exercise [86]. It has been shown that 
in rat FT plantaris (Pla) and extensor digitorum longus (EDL) muscles, the 
difference in oxidative capacity is about 10% [83]. Endurance exercise training 
increased the oxidative capacity in Pla muscle by 16% and in EDL muscle by 
12% [83]. How much of gene expression of MyHC isoforms is due to genetic 
predisposition and how much to the specificity of training is unresolved [5]. 
Differences in MyHC isoforms’ turnover rate between FT muscles show that the 
turnover rate is faster in muscles where oxidative capacity is higher [83]. Changes 
in MyHC isoforms’ turnover rate in FT muscles during ET also characterize 
changes in the myofibrillar apparatus through protein metabolism. The latitude of 
changes in myosin isoforms’ turnover rate also shows the significance of MyHC 
isoforms in the process of adaptation to ET (Fig. 3). Although the exact role of 
MyLC isoforms in FT muscles during ET is not fully known, changes in MyLC 
isoforms’ relative content and their relation with the character of training show 
that they play an important role in the process of modulation of the contractile 
machinery during ET [2]. There is still no answer to the question whether other 
myofibrillar proteins can modulate the functional properties of myosin during ET 
and if it is dependent on the training volume. C-protein, which binds either 
myosin and actin or affects the mechanical properties of myosin cross-bridges by 
linking the S2 segment of myosin to the backbone of the thick filament [38], has 
shown to be very sensitive to high training volume [84]. C-protein together with 
MyHC isoforms plays the key role in changes of functional properties of the 
contractile machinery during an excessive increase in ET volume [84]. 
 
 
10. Adaptability of different fiber types to resistance training 
 
Resistance exercise has become one of the fastest growing forms of physical 
activity for different purposes: improving athletic performance, enhancing general 
health and fitness, rehabilitation after surgery or an injury, or just for the pleasure 
of exercise [30]. The nervous system has shown to have an important role in 
athletes’ training process leading to the peak in their maximal strength [34] and 
explosive exercise facilitates the neuromuscular system in this [65]. RT is a strong 
stimulus for growth of adult skeletal muscle due to muscle fiber hypertrophy [98]  
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and promoting signaling events arising from mechanical deformation of fibers, 
hormones and immuno/inflammatory responses [98]. Differences in resting and 
post-exercise concentrations of skeletal muscle testosterone and steroidogenic 
enzymes may be caused from species dependent reasons in muscle testosterone 
production, for example differences between humans and rats [112]. RT promotes 
protein synthesis due to increased transcription and translation [98]. RT enhances 
the synthesis rate of myofibrillar proteins but not that of sarcoplasmic proteins 
[73] and this is related to the mammalian target of rapamycin by activating 
proteins within the nitrogen-activated proteinkinase signaling [72]. A significant 
difference was observed between previously trained young and old participants in 
recovery from resistance training [71]. These results suggest a more rapid 
recovery in the young group. It seems that recovery from more damaging 
resistance exercise is slower as a result of age, whereas there are no age-related 
differences in recovery from less damaging metabolic fatigue [25]. Recovery from 
RT, during which the power of exercise increased less than 5% per session, 
caused hypertrophy of both FT and ST muscle fibers, an increase in the 
myonuclear number via fusion of satellite cells with damaged fibers or the 
formation of new muscle fibers as a result of myoblasts’ fusion in order to 
maintain myonuclear domain size [88]. 
Contractile proteins turned over faster in type I and IIA fibers than in IIX/IIB 
fibers and the turnover rate of skeletal muscle proteins in skeletal muscle depends 
on the functional activity of the muscle [87]. RT increases of the turnover rate of 
skeletal muscle contractile proteins (Fig. 3). Adaptational changes first appeared 
in newly formed or regenerating fibers and these changes lead to the remodeling 
of the contractile apparatus and an increase in the strength generating capability of 
muscle. These changes are more visible in muscle fibers with higher oxidative 
capacity [88]. 
The recovery of skeletal muscle mechanical properties depends on the structural 
and metabolic peculiarities of the skeletal muscle and the character of RT [87]. 
For example, exhaustive RT results in a reduction in resting concentration of IGF-
1 and an elevation in its binding protein 3 (IGF BP -3). This reaction may be seen 
as a compensatory reaction to accommodate the reduction in IGF-1 to preserve 
IGF availability [53]. 
 
 
11. Adaptability of hybrid fibers to exercise training 
 
It is well known that physiological function of muscle fiber type is an outcome of 
MyHC isoform expressed within fiber. Some fibers, the so-called hybrid fibers, 
express a combination of two or more MyHC isoforms [13,99]. Laboratory animal 
experiments have shown that the relative proportions of hybrid fibers vary 
significantly from muscle to muscle [13]. In human skeletal muscle, hybrid fiber 
types represent a significant population of fibers, but the stability of this fiber 
phenotype is currently unclear. For example, electrical stimulation increases the 
proportion of hybrid fibers [76] and mechanical load and thyroid hormone  
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changes the proportion of hybrid fibers in skeletal muscle [14]. Running exercise 
decreases hybrid fibers in human skeletal muscle [59], whereas muscle hybrid 
fibers are relatively refractory to the effect of exercise in mice [32]. It is not clear 
yet what role hybrid fibers play in endurance and resistance training of athletes, 
particularly in changes of skeletal muscle oxidative capacity.  
 
 
12. Concurrent endurance and strength training 
 
It was shown about three decades ago that concurrent training for endurance and 
strength decreases the gain in muscle mass in comparison with training for 
strength alone [40]. This effect was explained by AMPK blocking the activation 
of the mammalian target of rapamycin complex-1 (TORC 1) by phosphorylating 
and activating the tuberous sclerosis complex-2 (TSC 2) [52]. This interference in 
skeletal muscle strength development was also explained by alterations in the 
protein synthesis induced by the high volume of endurance exercise or by frequent 
exercise training sessions [74] or related to the impairment of neural adaptations 
[12]. Based on recent studies, it seems that the effect of concurrent ET and RT on 
strength and endurance capacity depends on the trainability of athletes. Both, 
maximal and explosive strength training performed concurrently with ET have 
proved to be effective in improving strength, power and muscular activation in 
recreational endurance athletes [102]. Concurrent training improved performance 
in all occupational tasks and did not interfere with improvements in strength, 
power and endurance measures compared to ET or RT alone in recreational 
athletes [39]. 
Concurrent RT and ET in elderly men has shown that strength gain was similar to 
that observed with RT alone, although the volume of training was half of that in 
RT alone [115]. Using lower training volumes in concurrent training in older men 
[54] in comparison with ET and RT alone leads to similar strength enhancement 
with no presence of interference in this population [55]. It seems that the effect of 
concurrent ET and RT may be different in top athletes and recreational and 
elderly exercising subjects. The main complication in the current understanding 
about the concurrent training effect on skeletal muscle is that we do not know 
whether a muscle fiber is capable to undergo hypertrophy and maintain endurance 
capacity at the same time, and why it is different in top athletes and recreational 
athletes. 
 
 
13. Conclusions 
 
Athletes’ responses to endurance and resistance training are individual. To find 
optimal training volume or intensity/power is complicated and the optimal 
recovery period for performance improvement is also individual. Only an 
appropriate training regimen leads to performance improvement through a  
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cascade of structural-functional changes. For both recreational and top athletes, 
the ratio between training load and recovery in endurance training has to support 
the development of the mitochondrial apparatus, which is able to supply the 
increased energy requirement of muscle fibers with higher oxidative capacity. 
Appropriate resistance training has to support an increase in the cross-sectional 
area of the whole muscle and individual fibers, an increase in myofibrillar size 
and number. The most remarkable structural changes in resistance training occur 
in fast-twitch muscle fibers as these fibers are more vulnerable to exercise damage 
than slow-twitch fibers. An inappropriate endurance and resistance training 
regimen leads to depletion of the muscle energy system, causes muscle damage 
and neuromuscular fatigue. 
Skeletal muscle fibers with higher oxidative capacity are relatively small 
compared to fibers with low oxidative capacity. These fibers also have a faster 
protein turnover rate, higher 5’adenosine monophosphate-activated protein kinase 
activity, higher content of peroxisome proliferator-activated receptor isoforms δ, 
and faster skeletal muscle regeneration capacity. For designing and implementing 
training programs, it is suggested that coaches and athletes take into account 
physiological significance of structural-functional peculiarities of different muscle 
fibers, their specificity of adaptability to mode of exercise, and regeneration 
capacity.  
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Figure 1. Performance improvement through a cascade of strength and 

endurance training effects in skeletal muscle 
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Figure 2. Destruction in extrafusal and intrafusal muscle fibers during 

resistance and endurance training 
All these changes in skeletal muscle are specific and happen in a 
mutual relationship with training mode 
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Figure 3. Structural-functional rearrangements in skeletal muscle during 

resistance and endurance training 
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