Three Lorentz Transformations

Considering Two Rotations

Mukul Chandra Das*

Singhania University, Rajasthan, India
mukuldas.100@gmail.com

Rampada Misra

Department of electronics, Vidyasagar University
West Bengal, India

Abstract

A formulation for combination of three Lorentz transformations considering two rotations has been developed in this paper. This procedure physically means the composition of three linear velocities in different directions resulting in a single velocity. The same process has been applied to a particle or body possessing three simultaneous rotational motions having mutual effects. This leads to the assumption that a body may possess three simultaneous superimposed spins.

Key words: superimposed rotational motions, superimposed spins.

1. Introduction

One of the basic questions in Lorentz transformation is velocity addition. According to Einstein’s relativistic theorem, we have the well known formula of co-linear velocity addition[1], \(u = \frac{u' + v}{1 + u'v/c^2} \). Møller extended this approach to develop the velocity addition formula for combining two velocities in different directions in planar motion [2]. Chandrau Iyer and G.M Probhhu describe the \(LRL \) transformation for composition of two Lorentz boosts in different directions in plane [3]. This means the composition of two velocities \(u \) and \(v \) resulting in a single velocity \(w \). In this paper we first develop the \(LRLRL \) transformations yielding a

*Communication address: Satmile High School, P.O. – Satmile 721452, W.B., India
single resultant Lorentz boost through a proper way. We extend this to compose three superimposed motions in different directions into a resultant velocity and following this constructive method we show that a body or particle may possess three simultaneous superimposed spins.

2. LRLRL Transformations

In this section we want to derive the matrix for a conventional Lorenz transformation L_{xw} followed by a planar rotation of the XY plane (R_θ) and then followed by another conventional Lorenz transformation L_{xy} which is again followed by a planar rotation of the XY plane (R_ψ) and then by another conventional Lorenz transformation L_{sw}. For clarity, we may visualize six inertial frames S, S_1, S_2, S_3, S_4 and S_5 in three dimensional space. Frames S and S_1 have both their co-ordinate axes aligned and S_1 is moving at a velocity u along X_1 axis as observed by S. The inertial frame S_1 has another co-ordinate reference frame S_2, where X_2 axis of S_2, are rotated by an angle θ counter clockwise with respect to S_1 on X_1Y_1 plane. Frames S_2 and S_3 have both their co-ordinate axes aligned and S_3 is moving at a velocity v along X_3 axis as observed by S_2. The inertial frame S_3 has another coordinate reference frame S_4 where X_4 axis of S_4 are rotated by an angle ψ counter clockwise with respect to S_3 on X_3Y_3 plane. Frames S_4 and S_5 have both their co-ordinate axes aligned and S_5 is moving at a velocity w along X_5 axis as observed by S_4. Then the transformation of co-ordinates of an event from frame S to frame S_5 is given by 4×4 order matrix M_{ij} which is equal to the matrix product $L_{xw} R_{xz(\psi)} L_{xv} R_{xy(\theta)} L_{wu}$. The matrix $L_{xw}, R_{xy(\theta)}, L_{sv}, R_{xz(\psi)}$ and L_{sw} are as specified in (1), (2), (3), (4) and (5) respectively.
Lorentz transformations

\[
\begin{pmatrix}
1 & 2 & 1 \\
1 & 2 & 1 \\
1 & 2 & 1 \\
1 & 2 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 2 & 1 \\
1 & 2 & 1 \\
1 & 2 & 1 \\
1 & 2 & 1 2
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 0 & 0 & -u \gamma_u \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\frac{u \gamma_u}{c^2} & 0 & 0 & \gamma_u
\end{pmatrix}
\]

\[
\begin{pmatrix}
x_1 \\
y_1 \\
z_1 \\
t_1
\end{pmatrix} =
\begin{pmatrix}
\gamma_u & 0 & 0 & -u \gamma_u \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\frac{u \gamma_u}{c^2} & 0 & 0 & \gamma_u
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
t
\end{pmatrix} (1),
\begin{pmatrix}
x_2 \\
y_2 \\
z_2 \\
t_2
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & \sin \theta & 0 & 0 \\
-\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
y_1 \\
z_1 \\
t_1
\end{pmatrix} (2)
\]

\[
\begin{pmatrix}
x_3 \\
y_3 \\
z_3 \\
t_3
\end{pmatrix} =
\begin{pmatrix}
\gamma_v & 0 & 0 & -v \gamma_v \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\frac{v \gamma_v}{c^2} & 0 & 0 & \gamma_v
\end{pmatrix}
\begin{pmatrix}
x_2 \\
y_2 \\
z_2 \\
t_2
\end{pmatrix} (3),
\begin{pmatrix}
x_4 \\
y_4 \\
z_4 \\
t_4
\end{pmatrix} =
\begin{pmatrix}
\cos \psi & 0 & \sin \psi & 0 \\
0 & 1 & 0 & 0 \\
-\sin \psi & 0 & \cos \psi & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x_3 \\
y_3 \\
z_3 \\
t_3
\end{pmatrix} (4)
\]

\[
\begin{pmatrix}
x_5 \\
y_5 \\
z_5 \\
t_5
\end{pmatrix} =
\begin{pmatrix}
\gamma_w & 0 & 0 & -w \gamma_w \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\frac{w \gamma_w}{c^2} & 0 & 0 & \gamma_w
\end{pmatrix}
\begin{pmatrix}
x_4 \\
y_4 \\
z_4 \\
t_4
\end{pmatrix} (5)
\]

The inverse of this operation is given by

\[
N_{ij} = L_{x(-u)} R_{xy(-\theta)} L_{x(-v)} R_{xz(-\psi)} L_{x(-w)}
\]

Matrices \(M_{ij}\) and \(N_{ij}\) turn out as

\[
M_{ij} = L_{sw} R_{xz(\psi)} L_{xy(\theta)} L_{sx(\psi)} L_{sw} =
\]

\[
\begin{pmatrix}
\gamma_w & 0 & 0 & -w \gamma_w \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\frac{w \gamma_w}{c^2} & 0 & 0 & \gamma_w
\end{pmatrix}
\begin{pmatrix}
\cos \psi & 0 & \sin \psi & 0 \\
0 & 1 & 0 & 0 \\
-\sin \psi & 0 & \cos \psi & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\gamma_v & 0 & 0 & -v \gamma_v \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\frac{v \gamma_v}{c^2} & 0 & 0 & \gamma_v
\end{pmatrix}
\]

\[
\begin{pmatrix}
\cos \theta & \sin \theta & 0 & 0 \\
-\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\gamma_u & 0 & 0 & -u \gamma_u \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\frac{u \gamma_u}{c^2} & 0 & 0 & \gamma_u
\end{pmatrix}
\]
Similarly \(N_{ij} = L_{x(-u)} R_{xy(-\theta)} L_{x(-v)} R_{xz(-\psi)} L_{x(-w)} \) =

\[
\begin{pmatrix}
\gamma_u & 0 & 0 & u\gamma_u \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{u\gamma_u}{c^2} & 0 & 0 & \gamma_u
\end{pmatrix}
\begin{pmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
\frac{v\gamma_u}{c^2} & 0 & 0 & \gamma_u
\end{pmatrix}
\begin{pmatrix}
\gamma_v & 0 & 0 & v\gamma_v \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\frac{w\gamma_v}{c^2} & 0 & 0 & \gamma_v
\end{pmatrix}
\begin{pmatrix}
\cos \psi & 0 & -\sin \psi & 0 \\
0 & 1 & 0 & 0 \\
\sin \psi & 0 & \cos \psi & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\gamma_w & 0 & 0 & w\gamma_w \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\frac{w\gamma_w}{c^2} & 0 & 0 & \gamma_w
\end{pmatrix}
\]
3. Resultant velocity due to composition of three velocities

For composition of three velocities we may visualize six inertial frames as discussed in section-2 where, the co-ordinate of an event at any point on S_5 with respect to S would be written as

$$ H = N_{ij} K $$

where, $H = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$, $K = \begin{pmatrix} x_5 \\ y_5 \\ z_5 \\ t_5 \end{pmatrix}$

Equation (8) gives the relations as
From spherical coordinate system one can also write

\[
\frac{dx}{dt_5} = w\sin(90^\circ - \psi)\cos \theta = w\cos \theta \cos \psi \\
\frac{dy}{dt_5} = w\sin(90^\circ - \psi)\sin \theta = w\sin \theta \cos \psi \\
\frac{dz}{dt_5} = w\cos(90^\circ - \psi) = w\sin \psi
\]

Following equations (9) and (10) we could find out the resultant velocity 'G' of the event of S_i as observed by S_j whose magnitude also can be evaluated by considering the motion of the origin of S_j (x_j = 0, y_j = 0, z_j = 0) as

\[
G = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}
\]

This may be written as

\[
G = \sqrt{P^2 + Q^2 + R^2} \\
\frac{T}{T}
\]

where,

\[
P = N_{11}w\cos \theta \cos \psi + N_{12}w\sin \theta \cos \psi + N_{13}w\sin \psi + N_{14} \\
Q = N_{21}w\cos \theta \cos \psi + N_{22}w\sin \theta \cos \psi + N_{23}w\sin \psi + N_{24} \\
R = N_{31}w\cos \theta \cos \psi + N_{32}w\sin \theta \cos \psi + N_{33}w\sin \psi + N_{34} \\
T = N_{41}w\cos \theta \cos \psi + N_{42}w\sin \theta \cos \psi + N_{43}w\sin \psi + N_{44}
\]

When \(\theta = \psi = 90^\circ \) then the resultant velocity G would be given by

\[
G' = (u^2 + v^2 + w^2 + \frac{u^2v^2w^2}{c^4} - \frac{u^2v^2}{c^2} - \frac{v^2w^2}{c^2} - \frac{w^2u^2}{c^2})^{\frac{1}{2}}
\]

\[
(13)
\]
4. Resultant velocity due to three rotational motions

From the above discussion it is seen that u, v, and w are the velocities in three different directions where, angle between u and v is θ, between v and w is ψ and that between w and u is ϕ which depends on θ and ψ. In that sense for composition or addition of three simultaneous superimposed rotational motions we can consider the velocity addition formula (12). For clarity we may visualize six inertial frames as discussed in section-2, but S_1, S_3 and S_5 don’t move with rectilinear motion. They move only with angular velocity ω_1, ω_2 and ω_3 respectively, about X_1, X_3 and X_5 axes as observed by S and others (i.e. S_2 and S_4) be same as discussed in section-2, When origins of frames are same with respect to S, then the resultant velocity of an event of S_5 will be same as G in (12) as observed by S where, $\vec{u} = \omega_1 \times \vec{r}$, $\vec{v} = \omega_2 \times \vec{r}$ and $\vec{w} = \omega_3 \times \vec{r}$ become separately relativistic velocities and \vec{r} is the position vector of the event in S_5. It is to be mentioned that if a body or particle be present at the origin of S_5 then it will possess three simultaneous superimposed spins as observed by S.

5. Conclusions

The above derivations and discussions reveal the field of relativistic effects on a body due to three motions. The expression for resultant velocity shows that it is dependent upon all the linear velocities arising from the rotations (viz.equation (12))

References

ISBN 978 8126511006

Received: September, 2011