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Abstract 

 
Fundamentals of the new theory for the processes of transition from deterministic 
state to the chaos state (turbulence) for non-isothermal flows are presented. 
According to this theory, systems of stochastic equations of energy, momentum 
and mass are applied for non-isothermal flows. Then the analytical dependence 
for estimation of the value of the critical Reynolds number and the value of the 
critical point of regime change for non-isothermal and compressible flows are 
written. As an example, consider the classic flow of a Newtonian medium in the 
circular smooth tube. The values of the critical point of the beginning of the 
transition from laminar (deterministic) to turbulent motion for non-isothermal 
flows in the pipe are predicated. It is shown, that predicated values of the critical 
Reynolds numbers are in satisfactory agreement with the classical data. 
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1 Introduction  
 
As known, the impact of initial fluctuations on the final solution of the equations, 
which are used to describe turbulent processes, is significantly. However, 
numerous private numerical solutions do not allow define the essence of the phe- 
nomenon of turbulence till today. Also numerous private numerical solutions do 
not allow to provide the answer, which will propose the physical regularity for the 
turbulence onset and present the mathematical method to describe the pheno- 
menon on the basis of this physical regular pattern. 
 In the theory, which was developed in works [1 - 3], along with the new 
stochastic equations for a continuous medium also was obtained the new physical 
regularity for the studied phenomenon of turbulence. This regularity was installed 
theoretically and was called as an equivalence of measures between determi - 
nistic movement and random movement. The new results for an incompressible 
fluid were obtained for critical Reynolds number [1], for profiles of  the velocity 
and for correlation of the second order in  function of initial turbulence for the 
flow in the tube[2, 3], on the flat plate, in the plane jet, around a circular cylinder, 
near the rotating disk [3]. Here the regular pattern of the equivalence of measures 
and new systems of the stochastic equations for non - isothermal flow are 
presented. The obtained solutions show the possibilities of an application of the 
proposed theory in a wide range of the velocity and the temperature of flows 
taking into account an influence of an initial turbulence of each fields.  
 
2 The Formulation of the Problem 
 
In according to [1-3] considered the physical process is represented as a 
nonequilibrium thermodynamic system with i - subsets, which is characterized  

by the values  of energy ( )U
ni

i
sti gE

=

, momentum ( )U
ni

i
sti gMU

=

and mass ( )U
ni

i
stgM

=

 . 

The phenomenological law of conservation and transformation of energy during the 
evolution of a random system — the first law of thermodynamics — is written as 
 

( ) ( ) ( ) ( )))()(()( int,)(int,)( 



−−⋅−⋅+++=

=

extstcrcrextсol

ni

i
sti xrxrLQLQEd col ττδδδδδ rr

U

( ) ( )( ) ( ) ( ))()(}{
0

0 


−⋅−⋅+−
=

=

=
= crcrstisti
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The same equations of conservation of momentum and mass were written [1, 3]. 

Here Ui  is the speed. ( )U
ni

i
sti gE

=

-the energy stochastic field (index gst);  
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( )U
ni

i
sti colE

=

-the part of the energy field, its deterministic component (index col st), 

having the stochastic component measures null; ( )U
ni

i
stiE

=
 -part of the energy field, 

in fact stochastic component of the field (index st).                    
Similarly, identify the components of the momentum and mass (ρ - density).  

int)()(
сol

LQ δδ + and 
int)()(

st
LQ δδ + - deterministic and stochastic components 

of  the internal (int) heat and work. Also here deterministic and stochastic compo- 
nents of the external (ext) heat and work и0)()( =+ extсolLQ δδ 0)()( =+ extstLQ δδ . 

 
Also in [1-3], subject to analysis [4-20], the equivalence of measures and the 
correlation function for an interaction between deterministic (laminar) and chaotic 
(turbulent) movement were obtained. This correlation function in the critical point 
of space-time cici rr ττ →∆→ ;  for the parameter ci mm→  can be written in form [1 - 3]: 

 

{ ( ) ( ) } 0);;( ***
, ** =⋅−=

→∆→→∑∑∑ ZTmRYTZTmLimLimLimmrD M

YTZT

NM

rrmm
ij

ccjcNM
j

NM

cicicji
Iττ

τ

Index j is determined parameters mcj (j=3 means: mass, momentum, energy). In 
the case of the binary intersections X = Y + Z + W. Here a subset of Y, Z, W are  
сalled extended to X, if the measures( )Υm , ( )Zm , )(Wm have the property [1, 3]: 
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1
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))(()()()( 3

1

0

* knk
nk

k
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−=

=

+== U  and wandering subset )(( 3

1

0

WGTm knk
nk

k

⊂−
−=
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U .   

This correlation function produces the system of equations of equivalent measures 
  

         ( ) ( ) ( )YTmRZTm N

YZTT

M

mn
NM

,
= , ( ) 10 ≤≤

YZTT NMR .              

 

Here 
YZTT NMR  is a fractal correlation function, and then we assume it is equal to 

the unit to obtain analytical solutions. Therefore for the pair (N, M)=(1, 0) 

( ) ( ) ( )TYmRZm
mnZTY ,

= , and for (N, M)=(1, 1)  ( ) ( ) ( )TYmRТZm
mnТZTY ,

= . 

Here 
n
Т  is a conservative transformation of X for all n, then there exists n> nd, 

such that there
n
Т  is dissipation and transformation for Х⊂Υ*  and ХZ ⊂*

. 
Then corresponds to the set X value the total energy of the stochastic field 
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 ( )U
ni

i
sti gE

=
.Corresponds to a subset Х⊂Υ  energy ( )U

ni

i
sti colE

=

 
-deterministic component of the stochastic field, wandering subset nG1 extended 

subset Х⊂Υ*  placed respectively
int)()(

сol
LQ δδ + ; subset ХZ⊂ of the 

measure m (Z)> 0 is placed under the actual value of the energy ( )U
ni

i
stiE

=
- 

stochastic component; respectively wandering subset nG2  of the extended 

subset ХZ⊂  is put under
int)()(

st
LQ δδ + ; a subset W 

 
Х⊂   and wandering 

subset nG3  put the value of the ( )U
ni

i
sti corE

=
. Also corresponds to the 

transformation 
n
Т  the set of differential operators









τd

d
d ; . In [1], for the 

transfer of substantial values F (the mass (the density-ρ), the momentum (ρU
r

), 
the energy (E)) of deterministic (laminar) motion into random (turbulent) motion 
( for the area 1) the beginning of the generation of turbulence, the pair (N, M) = 
(1,0), equivalence of measures was written as ( ) ( )ststcol Rd Φ−=Φ 0,10,1,  and 








 Φ−=






 Φ

cor

ststcol R
d

d

ττ 0,1

0,1

,)( .Also in [1], for «correlator» );;();;( 1,1, ccicccicMN mrDmrD ττ = ,  

the pair (N,M)=(1,1) it was written ( ) ( )ststcol dRd Φ−=Φ 1,11,1,
,












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





 Φ
ττ d

d
R

d

d
ststcol

1,1

1,1

,)( .                                                  

0,1R 1,1,R - fractal coefficients. For example, to obtain the new analytical dependen- 

-ces, these coefficients are taken equal unit. Here indexes “cr” or “c” refer to criti- 
cal point - r (xcr, τcr) or rc: the point of the space-time of the beginning of the 
interaction between of deterministic field and random field which leads to 
turbulence.  
 
3 The System of Equations 
    
Stochastic equations of conservation, defined in [1 - 3] for an isothermal and non- 
conducting medium, in the absence of external forces, radiation, chemical reac- 
tions, baro - and thermal diffusion [4, 10, 16, 21], for non-isothermal condition 
take the form [1 - 3]: equation of mass (continuity)  
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the momentum equation 
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stjidiv )()(),( −−+ ,

 

    (2)              
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jilji uuuU ,,,,,,,, ττµρ
→

-density, velocity vector, the velocity component in the 

direction xi, xj, xl (i, j, l = 1, 2, 3), the dynamic viscosity, time and stress 
tensor

jiPji ,, στ += , =ji ,σ  
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3

2
 respectively. Also 

δij=1, if i=j, δij=0 for i≠ j. Р - is the pressure of liquid or gas,λ- thermal 
conductivity, pc и vc  specific heat at constant pressure and volume. For example, 

equations of equivalent measures for mass transfer, in the case( ) 1=
YZTT NMR , 

can be written for the pair (N, M) = (1, 0) as ( ) ( )ststcold ρρ −=
0,1,  and 
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
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


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ρ

0,1

,)(  . Equations of equivalent measures for mass transfer for the  

Pair (N, M) = (1, 1) are: ( ) ( )ststcol dd ρρ −=
1,1,   and   


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Then for non-isothermal motion of the medium, using the definition of measures  
equivalency between deterministic and random process [1 - 3] in the critical point, 
the system of stochastic equations of energy, momentum and mass are defined for  
the next space-time areas: 1) the beginning of the generation; 2) generation; 3) 
diffusion and 4) the dissipation of the turbulent fields. So for the pair (N, M) = (1, 
0) we have the system of equations of mass, momentum and energy for region  

of  the  beginning of turbulence generation cccс
rxxr −∆+∆+ ),(

000
ττ   (system 4) : 
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Here
0
corcor ττ = . Index (colst1) refers to the pair (N, M) = (1, 0). For the pair (N, M) = 

(1, 1), the turbulence generation region 010101
),(

сccс
rxxxr −∆+∆+∆+∆+ τττ

 
we have a system 



1106                                              Artur V. Dmitrenko 
  
 








−=








τ
ρ

τ
ρ

d

d

d

d
ststcol )()(

1,1

,  









=













−=















 →→→

τ
ρτ

τ
ρ

τ
ρ

d

Ud
div

d

Ud

d

Ud
st

stcolji
ststcol )(

)(;
)()(

2,,

1,1

, .
 
(5)

 
 
                 

   1,1
),(

2
,

1,1

1,1





























−=












=
∂
∂ +

τ
λ τ

ττ d
stdE

jx
Tstcol

stcoljiiudiv
d

dE

d

Ed

st

  

        
Index (colst2) refers to the pair (N, M) = (1, 1). For the pair (N=p, M=k, l) = (1, 1, 

0), 12102102
),(

сccс
rxxxxr −∆+∆+∆+∆+∆+∆+ ττττ is the turbulence diffusion region. So 

we  have a system of equations (6) 
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For the region

23210,3213 )( cccc rxxxxr −∆+∆+∆+∆+∆+∆+∆+ τττττ  of the  

turbulence dissipation we have the system of equations (7): 
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4 The critical Reynolds Number for Non-Isothermal Flow in Pipe 
 
 
Now, on the basis of equivalence of measures [1 - 3] define the expressions for 
the critical Reynolds number for the non-isothermal processes. For the generating 

region
cccс
rxxr −∆+∆+ ),(

000
ττ , refers a pair (N, M) = (1, 0), we have a system of  

equations of mass, momentum and energy (4). According to [10, 16, 21] the 
motion is determined by a quadratic equation of the velocity profile and the 
temperature profile as a function of the fourth power of the vertical coordinate 

assuming constant physical properties of the medium
2
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Now it is possible to determine the dependence of the Reynolds number in the 
tube at non-isothermal flow with constant thermal properties
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In (8), it is necessary to determine the correlation time for which we have the 
following representation for the case of non-isothermal flow: 
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=
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u
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u
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Further L = LU, P = LU - linear of the perturbation -the scale of turbulence. Indexes 
(U, P), (U) refers to the velocity field, index (T) refers to the temperature field. Ly on 
x2 = y, or Lx, x1 = x. Here x1 and x2 are coordinates along and normal to the wall. 
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Неre Pr

L
L

T
= ,

λ

νρ
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С⋅⋅
=Pr - Prandtl number. Then determine that 
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( )wp TTc

U
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0 - Eckert number. 
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T

T
T = / ( )

w
TT −

0
 , 

2
0

2

U
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u

u
T



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
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=
  . 

Now determine the value of the critical point 2

2

critic
R

x













 for non-isothermal process.   

As for the isothermal process [1-3], we find the expression for the critical point by  
applying the relation for the equivalent measures:( ) stcol EEd

st
−=

0;1
.Here left side is  

and the right side is : ( )TstUPstst EEE )()( +−=− ( )
st

T
p

с
sti

u ρρ += 2/2 . 

In order to integrate the left-hand side, define the limits of integration as                 
[(х2)cr -L\2]   and   [ (х2) cr +L\2] , whereas for isothermal write 
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Then we have   
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Thus, the critical point is determined by the expression 
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The value of the first critical Reynolds number (8) using (9)-(11) is determined as: 
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Index (T, U) refers to the non-isothermal flow. The first bracket in (13) is an 
expression of the critical Reynolds number for an isothermal process. The second 
bracket determines the effects of temperature field (Pr, Ec), the turbulence 
intensities (Tu, TT) and also (ui/uj) on the critical Reynolds number. It is seen that 
decreasing stT  and increasing the cooling of the wall lead to increasing of the 

critical Reynolds number. So, if Eckert number Ec-1 = ( ) 01.02
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number is increasing by ~1.5÷ 1.9 times. It is in satisfactory agreement with the 
experimental data which are presented in [10, 16, 21].  
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