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Abstract

Fundamentals of the new theory for the processéimsition from deterministic

state to the chaos state (turbulence) for non-esothl flows are presented.
According to this theory, systems of stochasticagigns of energy, momentum
and mass are applied for non-isothermal flows. Ttenanalytical dependence
for estimation of the value of the critical Reyr®ldumber and the value of the
critical point of regime change for non-isothernaald compressible flows are
written. As an example, consider the classic fldva dNewtonian medium in the

circular smooth tube. The values of the criticalnpaf the beginning of the

transition from laminar (deterministic) to turbulemotion for non-isothermal

flows in the pipe are predicated. It is shown, fvadicated values of the critical
Reynolds numbers are in satisfactory agreementtivititlassical data.
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1 Introduction

As known, the impact of initial fluctuations on theal solution of the equations,
which are used to describe turbulent processessigaificantly. However,
numerous private numerical solutions do not all@firek the essence of the phe-
nomenon of turbulence till today. Also numerous/gie numerical solutions do
not allow to provide the answer, which will propdke physical regularity for the
turbulence onset and present the mathematical mhetihalescribe the pheno-
menon on the basis of this physical regular pattern

In the theory, which was developed in works [1]; @ong with the new
stochastic equations for a continuous medium ak® ebtained the new physical
regularity for the studied phenomenon of turbulerides regularity was installed
theoretically and was called as an equivalence eAsures between determi -
nistic movement and random movement. The new me$oiftan incompressible
fluid were obtained for critical Reynolds numbel, [tbr profiles of the velocity
and for correlation of the second order in functad initial turbulence for the
flow in the tube[2, 3], on the flat plate, in thiaupe jet, around a circular cylinder,
near the rotating disk [3]. Here the regular pati@the equivalence of measures
and new systems of the stochastic equations for nasothermal flow are
presented. The obtained solutions show the posbilbf an application of the
proposed theory in a wide range of the velocity #mel temperature of flows
taking into account an influence of an initial tuldnce of each fields.

2 The Formulation of the Problem

In according to [1-3] considered the physical psscas represented as a
nonequilibrium thermodynamic system with i - subsethich is characterized

by the values of energlt:j(Ei)gst, momentur{nJ(Mu)gstand maslng)gSt .

The phenomenological law of conservation and t@nsdition of energy during the
evolution of a random system — the first law ofrthedynamics — is written as

an(Ei e = (R+AL) oy o +[(5(Q FL)B(r(R) = r(%)) B =4 )y o =
_{d jj::(;( Dn ((EI )st + (E| )C‘jr st) D5(" (X) - r()_icr ))[5(1- Ty ):|

The same equations of conservation of momentunmaass were written [1, 3].

Here U isthe speedU (Ei ) -the energy stochastic field (index)g

9 st
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U (Ei )col « -the part of the energy field, its deterministicrgmnent (index cal),

having the stochastic component measures r@”lldj,gi )., -part of the energy field,

in fact stochastic component of the field (index st
Similarly, identify the components of the momentand mass f - density).

and - deterministic and stochastic components
(@Q+3L) ol yint ~ (RF¥ L) gpint

of theinternal (int)heat and work. Also hegeterministic and stochastic compo-
nents of thexternal (extheat and work _ -n-
(Q+ d“)(col)ext_0 (@Q+ d‘)(st)ext =0

Also in [1-3], subject to analysis [4-20], the eeplence of measures and the
correlation function for an interaction betweenedetinistic (laminar) and chaotic
(turbulent) movement were obtained. This corretafimction in the critical point
of space-time -i;Ar -7, for the parameten —m can be written in form [1 - 3]:

Z D (s my;7) = Z Z Lim Lim Lim{ n{Tz' TY')-R.,.., {T"Z") }=0

-Myj I =T AT -7

IndeXJ is determlned parameters; If=3 means: mass, momentum, energy). In
the case of the binary intersections X = Y + Z +N¥érea subset of Y, Z, W are

called extended to X, if the measune€y ), m(Z), mW) have the property [1, 3]:

k=n-1

n(Y) = n{Y") =m(7"Y) + U m(T*(G™*)) and wandering subsetsUa@*»mY :

knl k=n-1

=m(z ):m(Tnz ) U m(T (Gnk)) and wandering subsU(r G0z ;

knl

mW) = mw") =m(r"w) + | mr*Gy*)) and wandering subsekU (TG OW
k=0 k=0
This correlation function produces the system afadigns ofequivalent measures

‘m(T ) ZX = (RTMZT Ny )n.m

Here R.._ ., is a fractal correlation function, and then weuass it is equal to
the unit to obtain analytical solution§herefore forthe pair (N, M)=(1, 0)

|m( )‘ (RZTY) (TY)|’ and for (N, M)=(1, 1) ‘TT(TZ)‘ :(RTZTY)nm
Here T" is a conservative transformation of X for all hen there exists N> N

such that ther&" is dissipation and transformation fof' 0 X and Z OX.
Thencorresponds to the set X value the total enerdli@ttochastic field

m(T NY)'O = (RTMZTNY )S 1.
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Dn (E,)., -Corresponds to a subselY X energy Dn (E)a g

-deterministic component of the stochastic fieldndering subseG," extended
subsetY OX placed respectivelyio + . ; subset ZX of the
P g e d‘)(col)lnt

measure m (Z)> 0 is placed under the actual valu¢h® energyDn(Ei )e

stochastic component; respectively wandering sutBgt of the extended
subseZl1X is put unde(cQ+d_)( " t; a subset W O X and wandering
shin

subset G," put the value of theDn (E,)w . - Also correspondsto the

transformation T" the set of differential operato{a;di}. In [1], for the
T

transfer of substantial values F (the mass (theitlep), the momentumpy’ ),
the energy (E)) of deterministic (laminar) motiaria random (turbulent) motion
( for the area 1) the beginning of the generatibtudbulence, the pair (N, M) =

(1,0), equivalence of measures was written(d® , .. ),, = —~R.,(® ) and

(d(q’)col,er _ _Rw(&j Also in [1], for «correlator»p, (1. m; 7.) =Dy, (r; M 7).
dr 10 '

cor

dr
R, Ry- fractal coefficients. For example, to obtain tieev analytical dependen-

-ces, these coefficients are taken equal unit. Helexes “cr” or “c” refer to criti-
cal point -r (Xq, Ter) OF Ie: the point of the space-time of the beginning o t
interaction between of deterministic field and ramd field which leads to
turbulence.

the pair (N,M)=(1,1) it was Writter(dcpmlst)l1 :—Rl(dqnst),(d@)wlst} R (d%J.
" Y dr

3 The System of Equations

Stochastic equations of conservation, defined in3JLfor an isothermal and non-
conducting medium, in the absence of external &rcadiation, chemicaleac-
tions, baro - and thermal diffusion [4, 10, 16, ,2fbf non-isothermal condition
take the form [1 - 3]: equation of mass (continuity

[d(pnolst J:_(pstj_[dpsl], (1)
dr T cor dr

the momentum equation
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4P col s dlv(rI j)

dr

1 _(pU)st _d(pU)stl (2)
colst TAV(T st —7 dr

cor

energy equation

dE E dE
col st _ =] - =) O
T le(A Li 5 J)COISt dIV(/l L‘ T )St [ T cor J ( dr ]

p,L],ui,uj,u, M, T,T; ;-density, velocity vector, the velocity componenttire
direction x;, x, x (i, j, | = 1, 2, 3),the dynamic viscosity, time and stress
tensog. . =P+0g. ., g .= . _ respectively.Also
T TPTY 9 ,,[‘“lf”l} (5_2ﬂj‘h‘l P Y
o 3

Oj=1, if i=j, §=0 for i#j. P -_is the pressure of liquid or gak thermal
conductivity c,u ¢, specific heat at constant pressure and volumeeXxample,

equations okquivalent measures fanass transferin the (:aseéRTMZT Y)Zl,
can be written for the pair (N, M) = (1, 0) a(dpcolst)lo ~p,) and

[d(p) co.,st] :_(pst] . Equations okquivalent measures forass transfer for the
dr 10 T

cor

[d(p)w. j 3 _[d(p)s‘)
Pair (N, M) = (1, 1) are:d(,oco,,st)Ll =-d(p,) and dar i dr /.

Then for non-isothermal motion of the mediwmsing the definition of measures
equivalency between deterministic and random psofkes 3] in the critical point,
the system of stochastic equations of energy, maimeand mass are defined for
the next space-time areas: 1) the beginning ofgdreeration; 2) generation; 3)
diffusion and 4) the dissipation of the turbulaetds.So for the pair (N, M) = (1,
0) we have the system of equations of mass, momeatud energy for region

of the beginning of turbulence generatigy®. +4¢. 7, +47,) 1. (system 4) :

d(p)col,st - _ psl
dr 1o T o

[d(pu)wa 2_[(;96)51}“ Gy (U

d r r cor r cor

(S v 0 2 ) - (&) . (4)
dr r°cur 1,0 X "1, ] 7col st 1 7% )1,0

Herel, Tf Index (colstl) refers to the pdiN, M) = (1, 0).For the pai(N, M) =

(1, 1),the turbulenc@eneration region(x, +&x, +4x, 7, +Ar, +A7) +, We have a system
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AP s | _(Lp)mj
dr 1 dr

Hd(pd)cm :_[d(pd)s‘}div G _d(pU). (5
dr ’ i,j/ col ,st2

dr dr

ey
col 11 _[dE st

. oT _ t
,div (4 +u.rT. ) _[ggiq
dr }1,1 x| "1, J7col st =2 dr J1q

Index (colst2) refers to the pdM, M) = (1, 1).For the pair (N=p, M=k, |) = (1, 1,

0), (X +0¢+M +1,,7 +Ar, +A7 +Ar) 1, is the turbulence diffusion region. So
we have a system of equations (6)

(d(p)stj:_KpStJ [d(pu)st]__[(pu)stJ
dr T or ’ dr - T '

dE E . —
‘ r TSI = (R T2 )1’1’0 FSI ! (Rsz )1,1,0 =1 '

(6)

Forthe region (x + Ax, + Ax, + Ax,7, + A7, + A1, +AT, + AT,) -1, Ofthe
turbulence dissipation we have the system of egusi(7):

d(pU),

_ dE . @)
dr

=div(r, ).’ di oT T. . =
(7i, )« div (4 —+uTy J)St —

)
|

4 Thecritical Reynolds Number for Non-Isother mal Flow in Pipe

Now, on the basis of equivalence of measures [[Lde8ne the expressions for
the critical Reynolds number for the non-isotherpraicesses. For the generating
regionr, (x +ux,.r, +ar,) -+, refers a pair (N, M) = (1, 0), we have a systeim o

equations of mass, momentum and energy (4). Aaogrth [10, 16, 21] the
motion is determined by a quadratic equation of keécity profile and the
temperature profile as a function of the fourth powf the vertical coordinate

2
assuming constant physical properties of the megliLLmUO[&j ,
R
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[T T _ (XZ]A:| . HereTy and T, - the temperature on the axis and the radius on
T,-T, R

the tube walland R, Y, w - velocity on the axis and along, tRg x; andxz-
longitudinal and transverse coordinates. Then ne tihat

2 2 2 2
9 X2 9 X2 - Yo X2
WL el st 1 aXZHUo( R) 18)(2 ”{Uo( R) H'“[RJ [R]

2
div (A i) = 12 A(w] X2
axi col st 1 R? R

2.
u /2
9 (u +,1"L)| =[E5t} =(p ' )st+pc'°TSt‘
il
ax, j o x,; ~col stz Tcor J1,0 r 9 cor v.pP) r OcorT ‘
Then
2.
2, 2 2 || pu |/2J : 2 g st|
6u Yo (X +124[MJ X2 =( st|, PepTst J(pui )St(ui)St + pCP(uJJSt !
R R R? R TOcor(U,P) 0 L(U P) L ‘
T “corT ' T

Now it is possible to determine the dependencehefReynolds number in the
tube at non-isothermal flow with constant thermal rogerties

1 'LUO2 [XZ}Z(TDcorU,PJ '(,OQD(TO T)IXZ} Tocorup 1 . (8)
(Edue | R) LRI (CHI { Lo (ES,)T}

TDCOI'T (ESt)

Requ) =

In (8), it is necessary to determine the corretatiione for which we have the
following representation for the case of non-isattned flow:

(Tgor )1u P .

a2 (, o0 _L? -, Vv

((Est)u 'P/pj (T cor )2 u ,p ~ (V _), (rgor)&J,P (Est)uyp/p (9)
(ré)or )sz Ly — (0 _ L%y o _Alp ¢y

((ESt)UJ/p) (Tcor )2T (A/pmp ) SR ((ES‘ )u,-] (10)

ke = e | T (CHOAVE sl DA W N (T ) i
e [((“f)st)”J [((uf)suz)”][Prtﬁ(uf)st)”J b )l“'{pr[ﬁ(ujz)ﬂ)nz]

Further L = ly p= Ly - linear of the perturbation -the scale of turigle Indexes
(u, P, (U) refers to the velocity field, index)(refers to the temperature field, &n
X2=Y, Or L, X1 = X. Here x and x are coordinates along and normal to the wall.



1108 Artur V. Dmitrenko

L o v DC
Herel; = By JPrET———— - Prandtl number. Then determine that
(CP Tst) 2
E ) /(E ) = Ug |6(T-T,) _ T
st/ "\"st/u.p (Es) I'p 2{ Jﬂé =2
- E) (T, -T. uz Uz Ec[Tuw
2
Ec=— % - Eckert numberT ‘T ‘ —TV\) ; X (“iz)st
Cp(-IEJ Tw TU - 2
Yo

Now determine the value of the critical poi{uk2 ]2 for non-isothermal process.
R

As for the isothermal process [1-3], we find thp%ssion for the critical point by
applying the relation for the equivalent measudﬁ% )xo =-E,.Here left side is

and theright side is = E_, = —((E,,),p + (E.);) ‘(pu_z ,2) + pe
! st

T |-
p st
In order tointegrate theleft-hand side define the limits of integrationas
[(x2)er-L\2]  and [ (x2) or +L\2] , whereador isothermalwrite

+L|2

[ d(Ew)u, ), =

3
i st /1,0 2 R
L

+L, 2 3
J R

~

(&
| d«ET)wﬂlﬂ::pcpﬂiﬁigiﬂkLTxg+LT%Q]D4pCpKﬂ)—TWH(%L

-Lr 2

Then we have

3
4pU02[;2} L?U+ 4pcP[( -T )]( J r* R

Thus, the critical point is determined by the esgien

1
X, 1(E Lp R | EcPr [, s(lr B 1 u R | Ecpr (|, 207 3 . (11)
R ) |2 y2 |, |1+EctPr |4 U02 L, J1+EclPr|” 142 (Ec

0 U (Est)up ]
The value of the first critical Reynolds number 8)ng (9)-(11) is determined as:

212),
(p /2 + pc stt

(12)

Re Ay (r%mu.p] 1( L 3 EclPr +, st)T 1421] A5 -T) 1
= (Esl)up RIU, ) |4 U, 2 LLUJ1+Ec[IPr stL Pl AUy {1+M (Es‘)ﬁ

ot (Est)u‘ P
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cor P 2 b
Since(ESt )T /(ESt )U - % (T(rg,,)li: = ((r[f(;]/)s;))i\z , then we write
. (13)

2T. 3
5/3 1/3 1+ T ( 1 j
Re _6(1)1’3[ Uy ] ['—Uj 1 Ec Tu?2 2o
d(ru) |\ 2 R ) 112 2/3
(rV) 2 [Eq P R prifu?| | [1+ 1 j
(L) st PriEc

((u2) ]
T st

2TT

Ec (Tu?

i+ 2

Index (T, U) refers to the non-isothermal flow. Thest bracket in (13) is an
expression of the critical Reynolds number for sothermal process. The second
bracket determines the effects of temperature fi@d Ec), the turbulence
intensities (Tu, ) and also (4u;) on the critical Reynolds number. It is seen that

decreasingT, and increasing the cooling of the wall lead toréasing of the
critical Reynolds number. So, if Eckert number’lﬁgp(TW_To)/ug:_0,01, and

: n2
T, =T, = 001+ 003, Pr = 0.72@”1 ]st]

G

number is increasing by ~1:8.9 times. It is in satisfactory agreement with the
experimental data which are presented in [10, 1p, 2

, then the critical Reynolds

~03+05
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