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Abstract 
 

In this Letter, we apply the homotopy analysis method (HAM) to obtain approximate 
analytical solutions of the Sawada–Kotera and Lax’s fifth-order KdV equations, without 
any linearization or weak nonlinearity assumptions. The homotopy analysis method 
contains the auxiliary parameter h, which provides us with a simple way to adjust and 
control the convergence region of solution series. This method provides an efficient 
approximate analytical solution with high accuracy, minimal calculation, avoidance of 
physically unrealistic assumptions.  
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1.  Introduction  
 
    Nonlinear phenomena play a crucial role in applied mathematics and physics. In the 
past decades, both mathematicians and physicists have devoted considerable effort to the 
study of explicit solutions to nonlinear integer-order differential equation. Many powerful 
methods proposed to solve this equations. Among them, the homotopy analysis method 
(HAM) [1–6] provides an effective procedure for explicit and numerical solutions of a 
wide and general class of differential systems representing real physical problems. Based  
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on homotopy of topology, the validity of the HAM is independent of whether or not there 
exist small parameters in the considered equation. Therefore, the HAM can overcome the 
foregoing restrictions and limitations of perturbation techniques so that it provides us with 
a possibility to analyze strongly nonlinear problems. This method has been successfully 
applied to solve many types of nonlinear problems by others [7–13].  
    The main goal of this Letter is to extend the homotopy analysis method to solve fifth-
order KdV (fKdV) equations, namely, Sawada–Kotera equation and Lax’s fifth-order 
KdV equation.  
    Consider the generalized fifth-order KdV (gfKdV) equation 

2 0,t x x xx xxx xxxxxu au u bu u cuu d u+ + + + =  (1)

where , ,a b c and d are constants. Equation (1) is the well-known the Sawada–Kotera 
equation if we set 45, 15,a b= =  15c = and 1d = [14] and the Lax’s fifth-order KdV 
equation by setting 30, 30, 10a b c= = = and 1.d =  
    In this Letter, the basic idea of the HAM is introduced and then its application in the 
Sawada–Kotera and Lax’s fifth-order KdV equations is studied. In addition, comparison 
is made with the exact solution. 
 
 
2.  Basic idea of the HAM 
   
    Let us consider the following differential equation 

[ ]( ) 0,u τ =N  (2)

where N is a nonlinear operator,τ denotes independent variable, ( )u τ is an unknown 
function, respectively. For simplicity, we ignore all boundary or initial conditions, which 
can be treated in the similar way. By means of generalizing the traditional homotopy 
method, Liao [3] constructs the so-called zero-order deformation equation 

       [ ] [ ]0(1 ) ( ; ) ( ) ( ) ( ; ) ,p p u phH pϕ τ τ τ ϕ τ− − =L N  (3)

where [0,1]p ∈  is the embedding parameter, 0h ≠  is a non-zero auxiliary parameter, 
( ) 0H τ ≠ is an auxiliary function, L  is an auxiliary linear operator, 0 ( )u τ is an initial guess 

of ( ),u τ ( ; )pϕ τ is a unknown function, respectively. It is important, that one has great 
freedom to choose auxiliary things in HAM. Obviously, when 0p = and 1,p =  it holds 

          0( ; 0) ( ), ( ;1) ( ),u uϕ τ τ ϕ τ τ= =   

respectively. Thus as p increases from 0 to 1, the solution ( ; )pϕ τ varies from the initial 
guess 0 ( )u τ to the solution ( ).u τ  Expanding ( ; )pϕ τ  in Taylor series with respect to p, we 
have 

0
1

( ; ) ( ) ( ) ,m
m

m
p u u pϕ τ τ τ

+∞

=
= + ∑  (4)

Where 
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(5)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the 
auxiliary function are so properly chosen, the series (4) converges at 1,p =  then we have 

0
1

( ) ( ) ( ),m
m

u u uτ τ τ
+∞

=
= + ∑  (6)

which must be one of solutions of original nonlinear equation, as proved by Liao [3]. As 
1h = −  and ( ) 1,H τ =  equation (3) becomes 

[ ] [ ]0(1 ) ( ; ) ( ) ( ; ) 0,p p u p pϕ τ τ ϕ τ− − + =L N  (7)

which is used mostly in the homotopy perturbation method, where as the solution 
obtained directly, without using Taylor series [15,16].  
    According to the definition (5), the governing equation can be deduced from the zero-
order deformation equation (3). Define the vector 

{ }0 1( ), ( ), , ( ) .n nu u u uτ τ τ=
r

K   

Differentiating equation (3) m times with respect to the embedding parameter p and then 
setting 0p =  and finally dividing them by m!, we have the so-called mth-order 
deformation equation 

[ ]1 1( ) χ ( ) ( ) ( ),m m m mu u hH R uτ τ τ− −− =
rL m  (8)

where 
[ ]1

1 1
0

1 ( ; )
( ) ,

( 1)!

m

m m m
p

p
R u

m p

ϕ τ−

− −
=

∂
=

− ∂

r N
 (9)

and 

{0, 1,χ 1, >1.
m
m

≤=m   

    It should be emphasized that ( )mu τ for 1m ≥  is governed by the linear equation (8) 
with the linear boundary conditions that come from original problem, which can be easily 
solved by symbolic computation software such as Maple and Mathematica. 
 
 
3.  Application 
 
3.1. The generalized fifth-order KdV equation 
 
    In this section we apply the homotopy analysis method for the generalized fifth-order 
KdV (gfKdV) equation (1). We start with initial approximation 0 ( , ) ( , 0)u x t u x=  and the 
linear operator  

[ ] ( , ; )
( , ; ) ,

x t p
x t p

t

ϕ
ϕ

∂
=

∂
L  (10)

possesses the property 
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1(c ) 0,=L  

 
 
 

(11)
where 1c is an integral constant to be determined by initial condition. Furthermore, 
equation (1) suggests to define the nonlinear operator 

[ ] 2

2 3 5

2 3 5

( , ; ) ( , ; )
( , ; ) ( , ; )

( , ; ) ( , ; ) ( , ; ) ( , ; )
( , ; ) .

( )

b c d

x t p x t p
x t p a x t p

t x
x t p x t p x t p x t p

x t p
x x x x

ϕ ϕ
ϕ ϕ

ϕ ϕ ϕ ϕ
ϕ+ + +

∂ ∂
= +

∂ ∂

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

N
 (12) 

Using the above definition, with assumption ( ) 1,H τ =  we construct the zero-order 
deformation equation 

[ ] [ ]0(1 ) ( , ; ) ( , ) ( , ; ) .p x t p u x t ph x t pϕ ϕ− − =L N  (13)

Obviously, when 0p =  and 1,p =  

0( , ; 0) ( , ), ( , ;1) ( , ).x t u x t x t u x tϕ ϕ= =  (14)

Differentiating the zero-order deformation equation (13) m times with respect to p, and 
finally dividing by m!, we have the mth-order deformation equation 

[ ]1 1( , ) χ ( , ) ( ),m m m mu x t u x t hR u− −− =
rL m  (15)

subject to initial condition  

( , 0) 0,mu x =  (16)

where 

1
1 1

1
0 0

2 3 51 1
1 1 1
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 (17) 

and 

{0, 1,χ
1, >1.

m
m

≤
=m   

Obviously, the solution of the mth-order deformation equation (15) for 1m ≥  becomes 

[ ]1
1 1 .( , ) χ ( , ) ( )m m m mu x t u x t h R u−
− −= +

rLm  (18)

    In the following parts, we apply the homotopy analysis method to solve the Sawada–
Kotera and Lax’s fifth-order KdV equations. 
 
3.1.1.  The Sawada–Kotera equation 
 
    Consider the gfKdV equation (1), for 45, 15, 15a b c= = = and 1,d =  in this case that is, 
the Sawada–Kotera equation. We choose the initial approximation [14] 
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2 2
0 ( , ) ( , 0) 2 sech [ ( )],u x t u x xα α λ= = −  

 
 
 

(19)
where α  and λ  are arbitrary constants and 0.α ≠  Using previous formulae to determine 
other components of the solution series. From (18) and (19), we have 
 

7 2
1( , ) 64 sech [ ( )]tanh[ ( )],u x t h t x xα α λ α λ= − − −  

 
(20)

 
7 4 5 5

2 ( , ) 32 sech [ ( )] 32 16 cosh[2 ( )] (1 )sinh[2 ( )] ,( )u x t h t x h t h t x h xα α λ α α α λ α λ= − − + − − + −  
 

(21)
 

7 5 5 5
3

2 10 2 2 10 2

16( , ) sech [ ( )] 288 (1 ) cosh[ ( )] 96 (1 ) cosh[ ( )]3
2 3 6 (3 2560 ) 3 6 (3 512 ) cosh[2 ( )] sinh[ ( )]( )( )

(

),

u x t h t x h h t x h h t x

h h t h h t x x

α α λ α α λ α α λ

α α α λ α λ

= − − + − − + −

+ + + − + + + + − −

 
 

(22)

 
7 6 5 2 10 2

4

5 2 10 2 5 2 10 2

2 10 2

8( , ) sech [ ( )] 32 9 18 (9 3328 ) cosh[2 ( )]3
16 9 18 (9 256 ) cosh[4 ( )] 3 16 9 18 (9 2816 )

2(1 ) 1 2 ( 1 2560 ) sinh[2 ( )] (1 ) 1 2

( )

( )

( ) (

( ) (

(u x t h t x h t h h t x

h t h h t x h t h h t

h h h t x h h

α α λ α α α λ

α α α λ α α

α α λ

=− − + + + −

− + + + − + + + −

− + − − + − + − + + + 2 10 2(1 512 ) sinh[4 ( )]) )),h t xα α λ+ + −

M

 (23)

 
    We used 10 terms in evaluating the approximate solution 9

0 .i iappu u==∑  Note that the 
solution series contains the auxiliary parameter h which provides us with a simple way to 
adjust and control the convergence of the solution series. In general, by means of the so-
called  h-curve i.e., a curve of a versus  h. As pointed by Liao [3], the valid region of  h  is a 
horizontal line segment. Therefore, it is straightforward to choose an appropriate range for 
h which ensure the convergence of the solution series. We stretch the h-curve of 

(0, 0)tttu in Fig. 1, which shows that the solution series is convergent when 
h−1.35 < < −0.65.  

 

 
 
 

Fig. 1.  The h-curve of (0, 0)tttu  given by the 10th-order approximate solution, 
when 0.3α = and 0.4.λ =  

 
    In continuation, we take the middle value 1h = − and compute the absolute errors for 
differences between the exact solution 2 2 4( , ) 2 sech ( 16 )[ ]u x t x tα α α λ= − − and the 
approximate solution at some points. The results are listed in   Table 1. The behavior of 
the solution obtained by HAM and exact solution are shown in Fig. 2(a,b). Comparison of  

h
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the result obtained by HAM with exact solution reveals that the accuracy of the new 
method. 
 
 

Table 1 
Absolute errors for differences between the exact solution and the 10th-order 

 approximate solution given by HAM for 1,h = −  when 0.3α = and 0.4.λ =  
 

x   t     

  1   2  3   4 

1   162.48510 10−×   143.33344 10−× 122.11892 10−×  114.11389 10−×
5   171.38778 10−×   153.25343 10−× 131.87218 10−×  123.30741 10−×

10   181.30104 10−×   171.99493 10−× 151.18872 10−×  142.13566 10−×

15   208.13152 10−×   191.62630 10−× 171.01915 10−×  161.82905 10−×

20   215.08220 10−×   214.23516 10−× 197.29295 10−×  171.32628 10−×
25   221.58819 10−×   223.17637 10−×  203.70048 10−×   196.72491 10−×

 
 
 
 

 
 
 

 

 
Fig. 2.  The behavior of the solutions obtained by: (a) HAM for 1;h = −   

(b) exact solution, when 0.2α = and 8.λ =  

 
3.1.2. The Lax’s fifth-order KdV equation 
 
    Consider the gfKdV equation (1), for 30, 30, 10a b c= = = and 1,d =  in this case that 
is, the Lax’s fifth-order KdV equation. We choose the initial approximation [14] 

2 2
0 ( , ) ( , 0) 2 2 3 tanh [ ( )]( ),u x t u x xα α λ= = − −  (24)

 

(a) (b)
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where α  and λ  are arbitrary constants and 0.α ≠  Using previous formulae to determine 
other components of the solution series. From (18) and (24), we have 
 

7 7
1( , ) 6 sech [ ( )] 586 sinh[ ( )] 141sinh[3 ( )] 7 sinh[5 ( )] ,( )u x t h t x x x xα α λ α λ α λ α λ= − − − − + − + −  

 
(25)

 
7 12 5 5

2

5 5 5

5

3( , ) sech [ ( )] 36473952 44140272 cosh[2 ( )]16
9742464 cosh[4 ( )] 853656 cosh[6 ( )] 28448 cosh[8 ( )]

392 cosh[10 ( )] 1626(1 ) sinh[2 ( )] 864(1 ) sinh[4

(u x t h t x h t h t x

h t x h t x h t x

h t x h x h

α α λ α α α λ

α α λ α α λ α α λ

α α λ α λ

= − − −

+ − − − + −

+ − + + − + + ( )]

189(1 ) sinh[6 ( )] 176(1 ) sinh[8 ( )] 7(1 ) sinh[10 ( )] ,)
x

h x h x h x

α λ

α λ α λ α λ

−

− + − − + − − + −

M

 
 

(26)

  
   We used 10 terms in evaluating the approximate solution 9

0i iappu u==∑ and stretch the h-
curve of (0, 0)ttu in Fig. 3, which shows that the solution series is convergent when 

h−1.4 < < −0.4.  The absolute errors for differences between the exact solution 
2 2 4( , ) 2 2 3 tanh ( 56 )[ ]( )u x t x tα α α λ= − − − and the approximate solution for 0.7h = −  at 

some points are listed in Table 2. Also, to verify how much the approximate solution is 
accurate, we show the behavior of the approximate solution and the exact solution in Fig. 
4(a,b).  
 

 

 
 

 
Fig. 3. The h-curve of (0, 0)ttu  given by the 10th-order approximate solution, 

when 0.2α = and 0.3.λ =  
 

 

Table 2 
Absolute errors for differences between the exact solution and the 10th-order  

approximate solution given by HAM for 0.7,h = −  when 0.2α = and 0.3.λ =  
 

x   t       

   1   2  3     4 

15   74.70936 10−×   78.73116 10−× 65.28097 10−×    56.73880 10−×
25   91.60890 10−×   93.42460 10−× 95.45908 10−×    97.71694 10−×

35   133.59546 10−×   121.33804 10−× 123.16755 10−×    126.12840 10−×

45   141.66256 10−×   144.60326 10−×   149.26897 10−×    131.61898 10−×

h
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Fig. 4. The behavior of the solutions obtained by: (a) HAM for 0.6;= −h  

(b) exact solution, when 0.1α = and 0.2.λ =  
 
 

4.  Conclusions 
 
    In this Letter we solved the Sawada–Kotera and Lax’s fifth-order KdV equations by the 
homotopy analysis method. The HAM provides us with a convenient way to control the 
convergence of approximation series, which is a fundamental qualitative difference in 
analysis between HAM and other methods. This method dose not require small parameter 
in any equation as same as the perturbation approach. The numerical results of the above 
problems display a fast convergence, with minimal calculations. It shows that the HAM is 
a very efficient method. We sincerely hope this method can be applied in a wider range. 
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