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Abstract

In this paper, we propose a combined form of the sumudu trans-
form method with the homotopy perturbation method to solve nonlinear
equations. This method is called the homotopy perturbation sumudu
transform method (HPSTM). The nonlinear terms can be easily handled
by the use of He’s polynomials. The proposed scheme finds the solu-
tion without any discretization or restrictive assumptions and avoids the
round-off errors. The fact that the proposed technique solves nonlinear
problems without using Adomian’s polynomials can be considered as a
clear advantage of this algorithm over the decomposition method. The
results reveal that the proposed method is very efficient, simple and can
be applied to other nonlinear problems.
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1 Introduction

In the last several years with the rapid development of nonlinear science, there
has appeared ever-increasing interest of scientists and engineers in the analyt-
ical asymptotic techniques for nonlinear problems such as solid state physics,
plasma physics, fluid mechanics and applied sciences. In many different fields
of science and engineering, it is important to obtain exact or numerical so-
lution of the nonlinear partial differential equations. Searching of exact and
numerical solution of nonlinear equations in science and engineering is still
quite problematic that’s need new methods for finding the exact and approxi-
mate solutions. Most of new nonlinear equations do not have a precise analytic
solution; so, numerical methods have largely been used to handle these equa-
tions. There are also analytic techniques for nonlinear equations. Some of
the classic analytic methods are Lyapunov’s artificial small parameter method
[1], δ-expansion method [2], perturbation techniques [3-5] and Hirota bilinear
method [6, 7]. In recent years, many research workers have paid attention to
study the solutions of nonlinear partial differential equations by using various
methods. Among these are the Adomian decomposition method (ADM) [8],
He’s semi-inverse method [9], the tanh method, the homotopy perturbation
method (HPM), the sinh–cosh method, the differential transform method and
the variational iteration method (VIM) [10-17]. Several techniques includ-
ing the Adomian decomposition method, the variational iteration method, the
weighted finite difference techniques and the Laplace decomposition method
have been used to handle advection equations [18-24]. Most of these methods
have their inbuilt deficiencies like the calculation of Adomian’s polynomials,
the Lagrange multiplier, divergent results and huge computational work. He
[25-33] developed the homotopy perturbation method (HPM) by merging the
standard homotopy and perturbation for solving various physical problems. It
is worth mentioning that the HPM is applied without any discretization, re-
strictive assumption or transformation and is free from round off errors. The
Laplace transform is totally incapable of handling nonlinear equations because
of the difficulties that are caused by the nonlinear terms. Various ways have
been proposed recently to deal with these nonlinearities such as the Adomian
decomposition method [39] and the Laplace decomposition algorithm [40-44].
Furthermore, the homotopy perturbation method is also combined with the
well-known Laplace transformation method [35, 45] and the variational iter-
ation method [46] to produce a highly effective technique for handling many
nonlinear problems.

In the present paper, we propose a new method called homotopy perturba-
tion sumudu transform method (HPSTM) for solving the nonlinear equations.
It is worth mentioning that the proposed method is an elegant combination
of the sumudu transformation, the homotopy perturbation method and He’s
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polynomials and is mainly due to Ghorbani [36, 37]. The use of He’s polyno-
mials in the nonlinear term was first introduced by Ghorbani [36, 37]. The
proposed algorithm provides the solution in a rapid convergent series which
may lead to the solution in a closed form. The advantage of this method is
its capability of combining two powerful methods for obtaining exact solutions
for nonlinear equations. This article considers the effectiveness of the homo-
topy perturbation sumudu transform method (HPSTM) in solving nonlinear
advection equations, both homogeneous and non-homogeneous.

2 Sumudu transform

In early 90’s, Watugala [34] introduced a new integral transform, named the
sumudu transform and applied it to the solution of ordinary differential equa-
tion in control engineering problems. The Sumudu transform is defined over
the set of functions

A = {f(t) | ∃M, τ1, τ2 > 0, | f (t) | < M e|t|/τj , if t ∈ ( − 1)j × [0,∞)}
by the following formula

f̄(u) = S [f(t)] =
∫ ∞

0

f (ut) e−t dt, u ∈ ( − τ1, τ2). (1)

For further detail and properties of this transform, see [47-49].

3 Homotopy perturbation sumudu transform

method (HPSTM)

To illustrate the basic idea of this method, we consider a general nonlinear
non-homogenous partial differential equation with the initial conditions of the
form:

D U(x, t) + RU(x, t) + N U(x, t) = g(x, t), (2)

U(x, 0) = h(x), Ut(x, 0) = f(x),

where D is the second order linear differential operator D = ∂2/∂t2, R is
the linear differential operator of less order than D, N represents the general
nonlinear differential operator and g(x, t) is the source term.
Taking the sumudu transform on both sides of eq. (2), we get

S [D U(x, t)] + S [R U(x, t)] + S [N U(x, t)] = S [g(x, t)]. (3)

Using the differentiation property of the sumudu transform and above initial
conditions, we have

S [U(x, t)] = u2S [g(x, t)] + h(x) + uf(x) − u2S [R U(x, t) + N U(x, t)] . (4)
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Now, applying the inverse sumudu transform on both sides of eq. (4), we get

U(x, t) = G(x, t) − S−1
[
u2 S [R U(x, t) + N U(x, t)]

]
, (5)

where G(x, t) represents the term arising from the source term and the pre-
scribed initial conditions. Now, we apply the homotopy perturbation method

U(x, t) =
∞∑

n=0

pnUn(x, t) (6)

and the nonlinear term can be decomposed as

N U(x, t) =
∞∑

n=0

pnHn(U), (7)

for some He’s polynomials Hn(U)(see [37, 38] ) that are given by

Hn(U0, U1, ..., Un) =
1

n!

∂n

∂pn

[
N

( ∞∑
i=0

piUi

)]
p=0

, n = 0, 1, 2, 3, ... (8)

Substituting eqs. (6) and (7) in eq. (5), we get

∞∑
n=0

pnUn(x, t) = G(x, t) − p

(
S−1

[
u2 S

[
R

∞∑
n=0

pnUn(x, t) +
∞∑

n=0

pnHn(U)

]])
,

(9)
which is the coupling of the sumudu transform and the homotopy perturbation
method using He’s polynomials.
Comparing the coefficient of like powers of p, the following approximations are
obtained.

p0 : U0(x, t) = G(x, t),

p1 : U1(x, t) = −S−1
[
u2S [R U0(x, t) + H0(U)]

]
,

p2 : U2(x, t) = −S−1
[
u2S [R U1(x, t) + H1(U)]

]
, (10)

p3 : U3(x, t) = −S−1
[
u2S [R U2(x, t) + H2(U)]

]
,

...

4 Applications

In order to elucidate the solution procedure of the homotopy perturbation
sumudu transform method (HPSTM), we first consider the nonlinear advection
equations.
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Example 4.1. Consider the following homogenous advection problem [19,
23]:

Ut + UUx = 0, (11)

U(x, 0) = −x.

Taking the sumudu transform on both sides of eq. (11) subject to the initial
condition, we have

S[U(x, t)] = −x − u S[UUx]. (12)

The inverse of sumudu transform implies that

U(x, t) = −x − S−1 [u S[UUx]] . (13)

Now, applying the homotopy perturbation method, we get

∞∑
n=0

pnUn(x, t) = −x − p

(
S−1

[
u S

[ ∞∑
n=0

pnHn(U)

]])
, (14)

where Hn(U) are He’s polynomials [37, 38] that represents the nonlinear terms.
The first few components of He’s polynomials, are given by

H0(U) = U0U0x,

H1(U) = U0U1x + U1U0x, (15)

H2(U) = U0U2x + U1U1x + +U2U0x,

...

Comparing the coefficients of like powers of p, we hav

p0 : U0(x, t) = −x,

p1 : U1(x, t) = −S−1 [u S[H0(U)]] = −x t, (16)

p2 : U2(x, t) = −S−1 [u S[H1(U)]] = −x t2.

Proceeding in a similar manner, we have

p3 : U3(x, t) = −x t3,

p4 : U4(x, t) = −x t4, (17)

...

Therefore the solution U(x, t) is given by

U(x, t) = −x(1 + t + t2 + t3 + t4 + · · ·), (18)
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in series form, and

U(x, t) =
x

t − 1
, (19)

in closed form.
Example 4.2. Now, consider the following nonhomogenous advection prob-
lem [19, 23]:

Ut + UUx = 2t + x + t3 + xt2, (20)

U(x, 0) = 0.

Taking the sumudu transform on both sides of eq. (20) subject to the initial
condition, we have

S[U(x, t)] = 2u2 + xu + 6u4 + 2xu3 − u S[UUx]. (21)

The inverse of sumudu transform implies that

U(x, t) = t2 + xt +
t4

4
+

xt3

3
− S−1 [u S[UUx]] . (22)

Now, applying the homotopy perturbation method, we get

∞∑
n=0

pnUn(x, t) = t2 + xt +
t4

4
+

xt3

3
− p

(
S−1

[
u S

[ ∞∑
n=0

pnHn(U)

]])
, (23)

where Hn(U) are He’s polynomials [37, 38] that represents the nonlinear terms.
The first few components of He’s polynomials, are given by

H0(U) = U0U0x,

H1(U) = U0U1x + U1U0x, (24)

H2(U) = U0U2x + U1U1x + +U2U0x,

...

Comparing the coefficients of like powers of p, we have

p0 : U0(x, t) = t2 + xt +
t4

4
+

xt3

3
,

p1 : U1(x, t) = −1

4
t4 − 1

3
xt3 − 2

15
xt5 − 7

72
t6 − 1

63
xt7 − 1

98
t8,

p2 : U2(x, t) =
5

8064
t12 +

2

2079
xt11 +

2783

302400
t10 +

38

2835
xt9 +

143

2880
t8+

22

315
xt7 +

7

12
t6 +

2

15
xt5, (25)
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...

It is important to recall here that the noise terms appear between the com-
ponents U0(x, t) and U1(x, t), where the noise terms are those pairs of terms
that are identical but carrying opposite signs. More precisely, the noise terms
±1

4
t4 ± 1

3
xt3 between the components U0(x, t) and U1(x, t) can be cancelled

and the remaining terms of U0(x, t) still satisfy the equation. Therefore, the
exact solution is given by

U(x, t) = t2 + xt. (26)

5 Conclusions

In the present paper, we heve proposed the homotopy perturbation sumudu
transform method (HPSTM) for solving nonlinear problems. In previous pa-
pers [19, 23, 39-44] many authors have already used Adomian polynomials to
decompose the nonlinear terms in equations. The solution procedure is sim-
ple, but the calculation of Adomian polynomials is complex. To overcome this
shortcoming, we proposed a new approach using He’s polynomials [37, 38]. It
is worth mentioning that the method is capable of reducing the volume of the
computational work as compared to the classical methods while still main-
taining the high accuracy of the numerical result; the size reduction amounts
to an improvement of the performance of the approach. The fact that the
HPSTM solves nonlinear problems without using Adomian’s polynomials is a
clear advantage of this technique over the decomposition method. In conclu-
sion, the HPSTM may be considered as a nice refinement in existing numerical
techniques and might find the wide applications.
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