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Abstract 

 

A finite horizon inventory model for a single deteriorating product is studied. The 

system is under periodic review and there is a positive fixed order cost associated 

with any placed order. The demand in successive periods is independent and 

identically distributed. A constant fraction of any positive leftover stock is 

deteriorated at the end of each period. Any unsatisfied demand is partially 

backlogged and fulfilled immediately as a new order arrives. Previous research 

has proved that a (s, S) policy is optimal under complete backlogging and 

non-deterioration. This paper fulfills the vacancy of the current literature by 

considering the effects of deterioration and partial backlogging under stochastic 

demand. The conditions for optimality of (s, S) policy are successfully derived. 
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1 Introduction 

 

   The implicit assumption in conventional inventory models is that the stored 

products maintain the same utility forever, i.e., they can be stored for an infinite 

period of time without losing their value or characteristics. However, generally 

speaking, almost all products experience some sort of deterioration over time. 

Some products have very small deterioration rates, and henceforth the effect of 

such deterioration can be neglected. Some products may be subject to significant 

rates of deterioration. Fruits, vegetables, drugs, alcohol and radioactive materials 

are examples that can experience significant deterioration during storage. 

Therefore the effect of deterioration must be explicitly taken into account in 

developing inventory models for such products.  

In general, deterioration is defined as decay, damage, spoilage, evaporation, 

obsolesce or loss of utility of an item such that it cannot be used for its original 

purpose. Some real-life phenomena also conform to the concept of deterioration, 

such as decay in radioactive elements, spoilage in food grain storage, breakages in 

glasswares and pilferages from on hand inventory, which are nearly proportional 

to the on hand inventory.  

Although there are millions of literatures researching on inventory control 

issues, a very little portion of which are on the subject of deteriorating products. 

Ghare and Schrader (1963) were the first to start this type of research by 

developing a model with exponential deterioration of inventory. Covert and Philip 

(1973) and Philip (1974) studied models under the assumption that the time of 

deterioration of an item follows a Weibull distribution. Since then, there have 

been a number of researchers (e.g. Dave, 1981; Hariga, 1996; Wu, 2001; Deng, 

2005; Tadj et al., 2006; Chung and Wee, 2008; Yang et al., 2009; Das et al., 2010) 

devoting to the inventory control of deteriorating products. Interested readers can 

refer to Raafat (1991), Shah and Shah (2000), Goyal and Giri (2001), and Li etc. 

(2010) for excellent reviews of such models.. 

Recent efforts of the deteriorating inventory research have been focused on 

considering the partial backlogging of the unsatisfied demand. The motivation is 

some reality issues since the case of complete backlogging is more likely only in a 

monopolistic market. In a non-monopolistic market, customers encountering 

shortages will respond differently. Some customers are willing to wait until the 

next replenishment, while others may be impatient and go elsewhere as waiting 

time increases. Therefore, partial backlogging is a necessary consideration for 

inventory management. Dye et al. (2006) derived a deteriorating inventory model 

in which the partial backlogging rate linearly depends on the total number of 

customers in the waiting line. Dye et al. (2007) studied the case that the partial 

backlogging rate is the reciprocal of a linear function of the waiting time up to the 

next replenishment. Chern et al. (2008) considered that the fraction of shortages 

backordered is a differentiable and decreasing function of time. Using the same 

partial backlogging ratio function as in Chern et al. (2008), Skouri et al. (2009) 

studied ramp type demand rate and Weibull distribution deterioration. Geetha and  
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Uthayakumar (2010) presented an EOQ model for deteriorating products with 

non-instantaneous deterioration, waiting-time-dependent partial backlogging and 

permissible delay in payments. Cheng et al. (2011) considered a deteriorating 

inventory model with trapezoidal type demand rate and a non-increasing 

exponential function of the waiting time up to the next replenishment.   

One common feature of the above deteriorating inventory models is that 

customer demand is assumed to be deterministic. Hence, our paper fills the 

vacancy by studying the deteriorating inventory control with stochastic customer 

demand and partial backlogging. In our model, the planning horizon is finite and 

demand in each period is stochastic. The system is under periodic review, i.e. the 

inventory level is checked at the beginning of each period and a decision is made 

on how many to order. There is a fixed cost associated with any positive order. A 

constant fraction of the positive leftover stock will deteriorate. The excess demand 

will be partially backlogged at the end of the period. The objective is to determine 

the optimal ordering policy at the beginning of each period with minimum 

expected overall costs. There has been some research for this type of model if the 

effects of deterioration and partial backlogging are not present, which is usually 

addressed as stochastic lot-sizing model. It was Scarf (1960) who first established 

the optimal (s, S) structure for the stochastic lot-sizing problem with independent 

and identically distributed demands in successive periods. This problem was 

re-studied by Porteus (2002) and a complete proof was provided. Schal (1976) 

generalized Scarf’s result by finding some new conditions for the optimality of an 

(s, S) policy without assuming particular demand distributions. Iyer etc. (1992) 

analyzed the deterministic (s, S) inventory problem which is to determine 

parameters s and S such that implementing this (s, S) policy results in the 

minimum possible total costs given a set of demands for n periods. Sox (1997) 

considered the case in which the demand is random and the costs are 

non-stationary. Gallego etc. (2000) studied the finite ordering capacity and they 

showed that the optimal capacitated policy has an (s, S)-like structure. Sobel and 

Zhang (2001) considered that the demands arrive simultaneously from a 

deterministic source and a random source. They proved that a modified (s, S) 

policy is optimal assuming that the stochastic demand is satisfied immediately if 

there is sufficient stock on hand. Dellaert and Melo (2003) considered a stochastic 

manufacturing system with only partial knowledge on future demand because 

customers tend to order in advance of their actual needs. More recently, Ozer and 

Wei (2004) considered a capacitated production system faced by a manufacturer 

who has the ability to obtain advance demand information. Bensoussan etc. (2006) 

considered the effect of information delay between the current time and the time 

of the most recent inventory level known to the inventory manager. The optimal 

ordering policy is respectively base stock policy when there is no fixed order cost 

and (s, S) policy when fixed order cost exists. 

 

The rest of this paper is organized as follows. Problem description and 

notations are given in Section 2. Section 3 and 4 present the model and solutions. 

Section 5 concludes the paper. 
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2 Problem Description and Notations 

2.1 Problem Description 

 

The problem concerned here can be described as follows. It is a single 

product, single location problem. The system will be run for N periods. The 

product has a random life and will deteriorate over time. The customer demand in 

each period is stochastic. At the beginning of each period, one needs to decide if it 

is necessary to place an order, and if so, how much to order. A fixed order cost is 

incurred whenever an order is placed. There is a per-unit cost associated with each 

order too. Any on-hand inventory at the end of a period can be used in the next 

period. Any unsatisfied demand can be partially backlogged until fulfilled, or lost. 

The order decisions are made such that the total expected long-run cost is 

minimized. 

 

It is assumed that  

(1) All demands are independent and identically distributed. 

(2) A constant fraction of the positive leftover stock will deteriorate. 

(3) The excess demand will be partially backlogged at the end of the period 

 

A penalty cost will be incurred for any backlogging and lost sale amount. 

The system is under periodic review, i.e. the inventory level is checked at the 

beginning of each period and a decision is made on how many to order. Porteus 

(2002) has shown that a (s, S) ordering policy is optimal under complete 

backlogging and non-deterioration. Our objective is to identify under what 

conditions the (s, S) policy still holds when deterioration and partial backlogging 

are explicitly taken into account.  

2.2 Notations 

(1) c – unit purchasing cost ($/unit) 

(2) h – unit holding cost, charged against positive ending inventory ($/unit) 

(3) b – unit backlogging cost, charged against shortages backlogged at the end 

of a period ($/unit) 

(4) p – penalty cost of a lost sale including lost profit ($/unit) 

(5) K – fixed ordering cost 

(6) α–one period discount factor 

(7) D – generic random variable representing demand, which is i.i.d over each 

period 

(8)   – one-period demand distribution 

(9)   – demand density distribution 

(10) x – inventory level before ordering (the state of the system) 

(11) y – inventory level after ordering (the decision variable) 

(12) θ – constant fraction of positive leftover stock at the end of the period 

that is deteriorated 
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(13)   – constant fraction of unsatisfied demand during a period that is 

backlogged 

(14) N – the length of the planning horizon 

(15) )0,max( xx   

(16) )0,min(xx   

 

3 Model 

 

3.1 Formulation 

Let us first examine the one-period problem. Expected one-period holding, 

backlogging, shortage and deteriorating cost function of level y of inventory after 

ordering is 
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then the optimality equations (OE) will be 
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xy

tt 


. 

That is, there is no fixed order cost associated with zero order and a fixed order 

cost K will be incurred if we order something. One has to make a choice on 

placing an order or not. If the inventory level at the end of period N is x, then the 

terminal cost
 

)(xvT  
is incurred. Letting   )(min),(min)(* yGKxGxG t

xy
tt 


, 

then the OE can be rewritten as )()( * xGcxxf tt  . 

3.2 (s, S) Policy 

Since there is a fixed ordering cost incurred for any non-zero order, then 

the ordering cost function is concave, which is different from Periodic-Review 

Stochastic Lot-Sizing models. If there is no deterioration and backlogging is 

complete, a (s, S) policy will be optimal in each period. This policy means 

whenever the inventory is below some amount s, we will place an order to bring 

the inventory level up to S (where Ss  ). The order quantity is greater than or 

equal to (S-s). If the inventory level is above s, we will not place an order. This 

ensures that the fixed ordering cost only occurs for a certain amount (i.e. ≥ S-s). 

The order will not be placed if the amount is too small. 
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3.3 K-Convex Functions 

(Porteus, 2002) A function f: R→R (a real valued function of a single real 

variable) is K-convex if K≥0, and for each yx  , 10  , and  1 : 

 )()()( yfKxfyxf   . 

The following Lemma (Porteus, 2002) provides some important properties 

of K-convex function. 

Lemma 1  

(a) If f is K-convex and a is a positive scalar, then af  is k-convex for all 

aKk  .  

(b) The sum of a K-convex function and a k-convex function is (K+k)-convex. 

(c) If f is K-convex, yx  , and )()( yfKxf  , then )()( yfKzf   

for all ],[ yxz . 

 

4 Optimality of (s, S) Policy 

 

In this section, the proof is presented about under what conditions the (s, S) 

policy is still optimal in each period. 

 

Lemma 2   If 1tf  is a continuous K-convex function and  1 , then the 

following hold. 

(a) tG  is a continuous K-convex function. 

(b) A (s, S) policy is optimal in period t. 

(c) *

tG  is a continuous K-convex function. 

(d) tf  is a continuous K-convex function. 

Proof       (a) From section 3.1, we know that  
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If we can show that for each 21 yy  , 10   , and  1 , the following 

holds:  

 )()()( 2121 ygKygyyg   . 

Then according to Lemma 1 (a), )(yg  is a K -convex function. Since cy  and 

)(yL  are convex, then according to Lemma 1 (b), it can be shown that )(yGt  is 

k-convex. The following is to show that  )()()( 2121 ygKygyyg   . 
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 Proof of (a) is completed. 

(b) Please refer to (Porteus, 2002). 

(c) Please refer to (Porteus, 2002). 

(d) Please refer to (Porteus, 2002). 

 The proof of Lemma 2 is completed. 

 

Lemma 3 If 1tf  is a continuous decreasing K-convex function,  1  and 
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ix  is the inventory level 

before ordering for each period, then the following hold. 

(a) tG  is a continuous K-convex function. 

(b) A (s, S) policy is optimal in period t. 

(c) *

tG  is a continuous K-convex function. 

(d) tf  is a continuous decreasing K-convex function. 

Proof    (a) As of Lemma 2, the objective is to show that for each 21 yy  , 

10   , and  1 , it is true that  )()()( 2121 ygKygyyg   . 
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 Since  1  and 1tf  is a decreasing function according to the 

assumption, the following must hold: 
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Then  )()()( 2121 ygKygyyg   , i.e. )(yg  is a K-convex function.  

 The proof of (a) is completed. 

(b) Please refer to (Porteus, 2002). 

(c) Please refer to (Porteus, 2002). 

(d) According to section 3.1, we have: 

  )(min),(min)( yGKxGcxxf t
xy
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To prove )(xGt  is a decreasing function, we only need to prove  )(xLcx   is 

decreasing because )(1 xf t  is given to be a decreasing function. 

 The first derivative of  )(xLcx   is given by: 

  )()()()()()( xppxppxbbxcxhcxLcx 


   
)()( xppbchppbc   , 

since 
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 )( 1 , then   0)( 


 xLcx . So  )(xLcx   is a 

decreasing function, and therefore, tG  is a decreasing function. 

 Since   )()(min yGKyGK tt
xy




, which is a constant, we obtain that 

  )(min),(min)( yGKxGcxxf t
xy

tt 


 is a decreasing function.  

 From part (c) we know that *

tG  is k-convex, then )(xf t  is the 

summation of a convex function and a k-convex function, therefore, k-convex 

itself. 

The proof of Lemma 3 is completed. 

 Based on Lemma 2 and Lemma 3, there exists an optimal (s, S) policy for 

each period of the finite planning horizon if either of the following two conditions 

holds. 
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(1) Tv  is a continuous K-convex function and  1 . 

(2) Tv  is a continuous decreasing K-convex function,  1  and 
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 )(  ( Ni ,2,1 ) where 

ix  is the inventory 

level before ordering for each period. 

 

5. Summary 

 

A finite horizon inventory model for a single product is considered in this 

paper. The system is under periodic review and there is a fixed order cost 

associated with any non-zero order. The demand in successive periods is 

independent and identically distributed. A constant fraction of any positive 

leftover stock is deteriorated at the end of each period. Any unsatisfied demand is 

partially backlogged and fulfilled immediately as a new order arrives. This paper 

identified under what conditions the (s, S) policy is still optimal. One drawback is 

that the two conditions derived are both rigid to some level and the explicit form 

of (s, S) is very difficult to obtain. This can be overcome by either formulating the 

problem as a mixed-integer programming model with a service-level constraint or 

a stochastic programming model with discretized customer demand, which will be 

discussed in our future research.  
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