Some Change of Rings Results for Gorenstein Flat Dimension

Driss Bennis and Khalid Ouarghi

Department of Mathematics, Faculty of Science and Technology of Fez
Box 2202, University S. M. Ben Abdellah Fez, Morocco
driss_bennis@hotmail.com, ouarghi.khalid@hotmail.fr

Abstract

In this paper, we computed the Gorenstein weak dimension of GF-closed polynomial rings, and we establish a general change of rings result for Gorenstein flat dimension.

Mathematics Subject Classification: 13D02, 13D05, 13D07

Keywords: Gorenstein flat dimension, GF-closed rings, change of rings results

1 Introduction

Throughout the paper all commutative rings with identity, and all modules are unitary.

Let R be a ring and let M be an R-module. The flat dimension of M is denoted by $\text{fd}_R(M)$. For the polynomial ring $R[X]$ in one indeterminate X over R, we use $M[X]$ to denote the $R[X]$-module $M \otimes_R R[X]$.

We say that M is Gorenstein flat, if there exists an exact sequence of flat R-modules, $\cdots \to F_1 \to F_0 \to F^0 \to F^1 \to \cdots$, such that $M \cong \text{Im}(F_0 \to F^0)$ and such that $I \otimes_R -$ leaves the sequence exact whenever I is an injective R-module.

For a positive integer n, we say that M has Gorenstein flat dimension at most n, and we write $\text{Gfd}_R(M) \leq n$, if there is an exact sequence of R-modules $0 \to G_n \to \cdots \to G_0 \to M \to 0$, where each G_i is Gorenstein flat (see [8, 10, 12]).

The notion of Gorenstein flat modules was introduced and studied over Gorenstein rings by Enochs, Jenda, and Torrecillas [11], as a generalization of the notion of flat modules in the sense that an R-module is flat if and
only if it is Gorenstein flat with finite flat dimension (this is proved to hold over any associative ring [2, Theorem 2.2]). In [7], Chen and Ding generalized known characterizations of Gorenstein flat modules (then of the Gorenstein flat dimension) over Gorenstein rings to n-FC rings (coherent with finite self-FP-injective dimension). And in [12], Holm generalized the study of the Gorenstein flat dimension to coherent rings. In the same direction, Bennis [1] generalized the study of Gorenstein flat dimension to a larger class of rings called GF-closed. Recall that a ring R is called GF-closed, if the class of all Gorenstein flat R-modules is closed under extensions; that is: if for every short exact sequence of R-modules $0 \to A \to B \to C \to 0$, the condition A and C are Gorenstein flat implies that B is Gorenstein flat. The class of GF-closed rings includes strictly the one of coherent rings and also the one of rings of finite weak dimension [1, Example 3.6].

In this paper, we give two change of rings results for Gorenstein flat dimension. The first one (Theorem 2.1), which generalizes [4, Theorem 2.10], computes the Gorenstein weak dimension of GF-closed polynomial rings, such that the Gorenstein weak dimension of a ring R, $\text{Gw}(R)$, is defined by:

$$\text{Gw}(R) = \sup \{ \text{Gf}(M) \mid M \text{ is an } R\text{-module} \}.$$

In the classical homological dimension theory the following result is well-known: for a ring homomorphism $R \to S$ and an S-module M, we have $\text{fd}_R(M) \leq \text{fd}_S(M) + \text{fd}_R(S)$ (see for instance [6, Exercise 5, p. 360]). Naturally one would like to establish the Gorenstein counterpart of this result. In the second main result of this paper (Theorem 2.5), we establish this result under a condition.

2 Main Results

Recall the Gorenstein weak dimension of a ring R, $\text{Gw}(R)$, is defined by:

$$\text{Gw}(R) = \sup \{ \text{Gf}(M) \mid M \text{ is an } R\text{-module} \}.$$

In [4, Theorem 2.10], the Gorenstein weak dimension of coherent polynomial rings is computed. Here we generalize this result to GF-closed rings [1].

Theorem 2.1 Let R be a GF-closed commutative ring such that the polynomial ring $R[X]$ is also GF-closed. Then,

$$\text{Gw}(R[X]) = \text{Gw}(R) + 1.$$

To prove this theorem we need some results.

Lemma 2.2 (Lemma 2.7(b), [9]) Let $R \to S$ be a ring homomorphism with $\text{fd}_R(S) < \infty$. The for an R-module M and an S-module F, we have:

$$\text{Gf}(M \otimes_R F) \leq \text{fd}_S(F) + \text{Gf}(M).$$
Lemma 2.3 1. If M is an $R[X]$-module such that the indeterminate X is a non-zero-divisor on M, then $\text{Gfd}_R(M/XM) \leq \text{Gfd}_{R[X]}(M)$.

2. For an R-module M, we have $\text{Gfd}_{R[X]}(M[X]) \leq \text{Gfd}_R(M)$.

Proof. 1. The inequality is a particular case of Lemma 2.2.

2. Also follows from Lemma 2.2 since $R[X]$ is a free R-module.

If we consider GF-closed rings, we get:

Lemma 2.4 If the polynomial ring $R[X]$ over a ring R is GF-closed, then, for every $R[X]$-module M, we have $\text{Gfd}_{R[X]}(M) \leq \text{Gfd}_R(M) + 1$.

If furthermore R is GF-closed and $XM = 0$, then $\text{Gfd}_{R[X]}(M) = \text{Gfd}_R(M) + 1$.

Proof. Consider the short exact sequence of $R[X]$-modules [13, Lemma 9.29]:

$$0 \longrightarrow M[X] \longrightarrow M[X] \longrightarrow M \longrightarrow 0.$$

From [1, Theorem 2.11 (4)], $\text{Gfd}_{R[X]}(M) \leq \text{Gfd}_{R[X]}(M[X]) + 1$. Therefore, using the inequality of Lemma 2.3(2), we get $\text{Gfd}_{R[X]}(M) \leq \text{Gfd}_R(M) + 1$.

Now, suppose that $XM = 0$. To prove the equality, it remains, from the first inequality, to prove the converse inequality $\text{Gfd}_R(M) \leq \text{Gfd}_{R[X]}(M) - 1$. For that we argue similarly to the proof of [5, Lemma 3 (c)]. We can assume that $\text{Gfd}_{R[X]}(M) = n$ for some positive integer n. If $n = 0$ (that is M is a Gorenstein flat $R[X]$-module), then it embeds in a flat $R[X]$-module. But, from [5, Example (7), p. 9], this contradicts the fact that $XM = 0$ and so $n > 0$. Then, there exists a short exact sequence of $R[X]$-modules

$$0 \longrightarrow K \longrightarrow F \longrightarrow M \longrightarrow 0,$$

where F is free and $\text{Gfd}_{R[X]}(K) = n - 1$. Applying the functor $- \otimes_{R[X]} R$, where $R[X]/XR[X] = R$, to the above short exact sequence and using [5, Examples (1), p. 102], we get the following sequence of R-modules

$$0 \longrightarrow M \longrightarrow K/XK \longrightarrow F/XF \longrightarrow M \longrightarrow 0.$$

From Lemma 2.3(1), $\text{Gfd}_R(K/XK) \leq \text{Gfd}_{R[X]}(K) = n - 1$. Then, since F/XF is a free R-module and using [1, Theorem 2.11], we get $\text{Gfd}_R(M) \leq n - 1$, as desired.

Proof of Theorem 2.1. Let M be an $R[X]$-module. From Lemma 2.4, we have $\text{Gfd}_{R[X]}(M) \leq \text{Gfd}_R(M) + 1 \leq \text{Gwdim}(R) + 1$. Then, $\text{Gwdim}(R[X]) \leq \text{Gwdim}(R) + 1$.

Conversely, consider an R-module M. Then, it is an $R[X]$-module satisfying $XM = 0$. Then, from Lemma 2.4, $\text{Gfd}_R(M) \leq \text{Gfd}_{R[X]}(M) - 1 \leq \text{Gwdim}(R[X]) - 1$. Therefore, $\text{Gwdim}(R) \leq \text{Gwdim}(R[X]) - 1$. □
Now, we give the following general change of rings result for Gorenstein flat dimension result. Compare this result to [6, Exercise 5, p. 360].

Theorem 2.5 Let $R \rightarrow S$ be a ring homomorphism of GF-closed rings and let M be an S-module. If every injective R-module has finite flat dimension, then

$$\text{Gfd}_R(M) \leq \text{Gfd}_S(M) + \text{fd}_R(S).$$

In the proof of this result we use the notion of strongly Gorenstein flat modules, which is introduced in [3] as follows:

Definition 2.6 ([3], Definition 3.1) An R-module M is said to be strongly Gorenstein flat, if there exists an exact sequence of flat R-modules

$$F = \cdots \rightarrow F \xrightarrow{f} F \xrightarrow{f} F \xrightarrow{f} \cdots$$

such that $M \cong \text{Im}(f)$ and such that $- \otimes_R I$ leaves the sequence F exact whenever I is an injective R-module.

Recall that every Gorenstein flat module is a direct summand of a strongly Gorenstein flat module [3, Theorem 3.5]. The important of this result manifests in the fact that the strongly Gorenstein flat modules have a simpler characterization [3, Proposition 3.6]. Here we generalize this characterization as follows:

Lemma 2.7 An R-module M is strongly Gorenstein flat if and only if there exists a short exact sequence of R-modules $0 \rightarrow M \rightarrow F \rightarrow M \rightarrow 0$, where F is flat, and $\text{Tor}_i^R(M, I) = 0$ for some integer $i > 0$ and for any R-module I with finite injective dimension (or for any injective R-module I).

Proof. The “only if” part follows from [3, Proposition 3.6]. We prove the “if” part. Note that if we apply $- \otimes_R I$ to the sequence $0 \rightarrow M \rightarrow F \rightarrow M \rightarrow 0$, we get

$$0 = \text{Tor}_{i+1}^R(F, I) \rightarrow \text{Tor}_{i+1}^R(M, I) \rightarrow \text{Tor}_i^R(M, I) \rightarrow \text{Tor}_i^R(F, I) = 0$$

Then, $\text{Tor}_{i+1}^R(M, I) \cong \text{Tor}_i^R(M, I)$. Thus, if $\text{Tor}_i^R(M, I) = 0$ for some integer $i > 0$, then $\text{Tor}_i^R(M, I) = 0$ for all $i > 0$. Therefore, M is strongly Gorenstein flat (by [3, Proposition 3.6]).

Proof of Theorem 2.5. We can assume that $n = \text{fd}_R(S)$ is finite. By induction and from [1, Theorem 2.11], it suffices to prove the inequality for $\text{Gfd}_S(M) = 0$; that is M is a Gorenstein flat S-module. Then, from [3, Theorem 3.5], M is a direct summand of a strongly Gorenstein flat S-module N.

Some change of rings results for Gorenstein flat dimension

From Lemma 2.7, there is a short exact sequence of S-modules $0 \to N \to F \to N \to 0$, where F is flat. By Horseshoe Lemma [13, Lemma 6.20], we get the following commutative:

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow & \\
0 & M_n & F_n & M_n & 0 \\
\downarrow & \downarrow & \downarrow & \\
\vdots & \vdots & \vdots & \\
\downarrow & \downarrow & \downarrow & \\
0 & M_0 & M_0 \oplus M_0 & M_0 & 0 \\
\downarrow & \downarrow & \downarrow & \\
0 & M & F & M & 0 \\
\downarrow & \downarrow & \downarrow & \\
0 & 0 & 0 & 0 \\
\end{array}
\]

where M_i is a projective R-module for $i = 0, ..., n - 1$, and so F_n is a flat R-module (since $\text{fd}_R(F) \leq \text{fd}_R(S)$ [6, Exercise 5, p. 360]). This implies, from Lemma 2.7, that M_n is strongly Gorenstein flat (since, by hypothesis, for every injective R-module, there exists a positive integer j such that $\text{Tor}^R_j(M_n, I) = 0$). Then, $\text{Gfd}_R(N) \leq \text{fd}_R(S)$. Therefore, from [1, Proposition 2.10], $\text{Gfd}_R(M) \leq \text{n} = \text{fd}_R(S)$. This completes the proof. \hfill \blacksquare

Finally, note that Iwanaga-Gorenstein rings (i.e., Noetherian rings with finite self-injective dimension) and rings of finite weak dimension are examples of rings that satisfying the condition on R of Theorem 2.5.

References

Received: June, 2009