A Note on the Closed Ideals of Prosemisimple Lie Algebras

Nadine J. Ghandour

Math. Department
Lebanese International University
Lebanon
nadine.ghandour@liu.edu.lb

Abstract

We extend the basic fact that every ideal of a finite dimensional semisimple Lie algebra has a unique complement to the case of closed ideals of prosemisimple Lie algebras. We prove that if A is a closed ideal of a prosemisimple Lie algebra $L = \lim_{n} L_n (n \in \mathbb{N})$, where the L_n are finite dimensional semisimple Lie algebras, then there exists a unique ideal B of L such that $L = A \oplus B$.

Mathematics Subject Classification: 14L, 16W, 17B45

Keywords: Inverse limits, vector spaces, Lie algebras

1 Introduction

The notion of an inverse sequence and its limit were first discovered in 1929 by Alexandrov. But it was Lefschetz who laid most of the foundations of this subject in his famous book on Algebraic Topology in 1943 [7]. Subsequently, inverse limits began to be widely studied and applied in Topology and Algebra such as the inverse limits of linear algebraic groups (usually called the pro-affine algebraic groups) which appear naturally in the representation theory of Lie groups [1], [3], [6], [8], [9]. So it is of interest to make a generalization of the basic theory (found for example in [2] and [5]) concerning finite dimensional Lie algebras to the category of profinite dimensional Lie algebras. In this paper we extend the basic fact that every ideal of a finite dimensional semisimple Lie algebra has a unique complement to the case of closed ideals of prosemisimple Lie algebras. We prove that if A is a closed ideal of a prosemisimple Lie algebra $L = \lim_{n} L_n (n \in \mathbb{N})$, where the L_n are finite dimensional semisimple Lie algebras, then there exists a unique ideal B of L such that $L = A \oplus B$.
2 Preliminaries

All Lie algebras and vector spaces in this paper are considered over a fixed algebraically closed field \mathbb{K} of characteristic 0.

Definition 2.1 Let I be a set with a partial ordering \leq. Suppose I is directed upwards, i.e., for every $i, j \in I$ there exists $k \in I$ such that $i \leq k$ and $j \leq k$. Let $S = \{S_i : i \in I\}$ be a family of sets such that for every pair $(i, j) \in I \times I$ with $j \geq i$, there is a map $\pi_{ji} : S_j \to S_i$ satisfying the following two conditions:

1. π_{ii} is the identity map for every $i \in I$;
2. if $i \leq j \leq k$, then $\pi_{ki} = \pi_{ji} \circ \pi_{kj}$.

Let $\pi = \{\pi_{ji}, i, j \in I, j \geq i : \pi_{ji} : S_j \to S_i\}$.

Then (S, π) or $(S_i, \pi_{ji})_{i,j \in I}$ or simply (S_i) is called an inverse system and the maps $\pi_{ji} : S_j \to S_i$ are called the transition maps of the inverse system.

The inverse limit of this system, denoted by $\lim\leftarrow S_i$, is the subset of the Cartesian product $\prod_{i \in I} S_i$ consisting of all elements $s = (s_i)_{i \in I}$ such that $\pi_{ji}(s_j) = s_i$ for every $j \geq i$. In other words, $\lim S_i$ is the set of all families of elements $(s_i)_{i \in I}$ which are compatible with the transition maps $\pi_{ji} : S_j \to S_i$.

Remark 2.2 If (S_i) is an inverse system, let $\pi_i : \lim S_i \to S_i$ be the canonical projection sending (s_i) to s_i. Then $\pi_i = \pi_{ji} \circ \pi_j$ for every $j \geq i$.

Remark 2.3 A surjective inverse system is an inverse system whose transition maps are surjective.

Remark 2.4 An inverse sequence is an inverse system whose index set is $I = \mathbb{N}$ (directed by its natural order).

Definition 2.5 Inverse limit topology Let (S_i, π_{ji}) be an inverse system where each set S_i is a topological space and each transition map is continuous. Then the inverse limit topology on $\lim S_i$ is the induced topology inherited from the product topology on $\prod_{i \in I} S_i$ which has a basis consisting of the sets of the form $\prod_{i \in I \setminus I_i} U_i$, with U_i is an open subset of S_i for every $i \in I$ and $U_i = S_i$ for all but a finitely many $i \in I$.

Remark 2.6 The inverse limit topology is the smallest topology that makes each projection map $\pi_i : \lim S_i \to S_i$ continuous. A basis for the topology of $S = \lim S_i$ is given by the sets $\pi^{-1}_i(U_i)$, as i varies, where U_i is open in S_i.
Remark 2.7 Let A be a subset of $\lim S_i$ and let A_i be the image of A under the canonical projection $\pi_i : \lim S_i \to S_i$. Then the closure of A is given by $\overline{A} = \lim A_i$. In particular, if A is closed in $\lim S_i$, then $A = \overline{A} = \lim A_i = \cap (A + \text{Ker } \pi_i)$. Moreover, if $A = \lim C_i$ where (C_i) is a closed inverse subsystem of (S_i), then A is closed in $\lim S_i$. If each S_i is given the discrete topology, the resulting inverse limit topology on $\lim S_i$ is called the prodiscrete topology. Let (S_i, π_{ji}) and (S_i', π'_{ji}) be two inverse systems over the same index set I. If for every $i \in I$, the map $f_i : S_i \to S_i'$ is continuous, then $\lim f_i : \lim S_i \to \lim S_i'$ is also continuous. Moreover, if each S_i is a topological group and each transition map is a continuous homomorphism, then $\lim S_i$ is a topological group.

Definition 2.8 (The Coset Topology on Vector Spaces) Let V be a finite dimensional vector space over an arbitrary field F. There is a topology on V whose closed sets are the finite unions of sets of the form $x + W$, where x ranges over V and W ranges over the subspaces of V.

Remark 2.9 The vector space V equipped with the coset topology is a compact T_1 space. Also, every linear transformation from V into another such space is continuous and sends closed sets onto closed sets (since linear transformations over any field send subspaces to subspaces).

Definition 2.10 (Hochschild-Mostow inverse system) An inverse system (X, π) of non-empty sets is called a super inverse system, or a Hochschild-Mostow inverse system, or a compact system if each X_i can be equipped with a compact T_1 topology such that each transition map is a closed continuous map.

Example 2.11 Every inverse system of finite dimensional vector spaces (with linear transition maps) is a super inverse system via the coset topology described before.

Definition 2.12 A proper map $f : X \to Y$ is a closed map such that each set $f^{-1}(y)$, where $y \in Y$, is compact in X.

Proposition 2.13 If X is compact, Y is a T_1 space, and $\{A_i\}$ is a chain of closed subsets of X, then $f(\cap_{i \in I} A_i) = \cap_{i \in I} f(A_i)$.

Proof. Since Y is T_1 space so every singleton subset of Y is closed, f is continuous, so $f^{-1}(y)$ is also closed in the compact space X, thus $f^{-1}(y)$ is compact in X and f is a proper map.

Proposition 2.14 Let $f : X \to Y$ be a continuous map of topological spaces. If X is compact, Y is a T_1 space, $\{A_i\}$ is a chain of closed subsets of X, then $f(\cap_{i \in I} A_i) = \cap_{i \in I} f(A_i)$.
Proof. It is obvious that \(f(\cap_{i \in I} A_i) \subseteq \cap_{i \in I} f(A_i) \). On the other hand, let \(y \in \cap_{i \in I} f(A_i) \) so \(y = f(x_i) \) with \(x_i \in A_i \) for all \(i \in I \). Then \(y = f(x) \) where \(x \in A_i \) for all \(i \in I : \) Consider the collection \(\{f^{-1}(y) \cap A_i\}_{i \in I} \). Since \(\{y\} \) is closed in the \(T_1 \) space \(Y \) and \(f \) is continuous then \(f^{-1}(y) \) is closed in \(X \). Hence \(f^{-1}(y) \cap A_i \) is closed in \(X \) for all \(i \in I \). Also, \(x_i \in f^{-1}(y) \cap A_i \) for all \(i \in I \). Since \(\{A_i\} \) is a chain, then \(\{f^{-1}(y) \cap A_i\} \) is a chain of non-empty closed subsets of \(X \). Take a finite subset \(\{f^{-1}(y) \cap A_{ij}\}_{j=1,2,...,n} \) of \(\{f^{-1}(y) \cap A_i\} \). Since we have a chain, then all elements are comparable, so there exists a smallest \(f^{-1}(y) \cap A_{il} \) for some \(l \in \{1, 2, ..., n\} \). So \(\bigcap_{j=1}^{n} (f^{-1}(y) \cap A_{ij}) = f^{-1}(y) \cap A_{il} \) is non-empty, so the finite intersection property holds for the collection \(\{f^{-1}(y) \cap A_i\} \), but \(X \) is compact, then the intersection of the whole collection is non-empty, i.e. there exists \(x \in f^{-1}(y) \cap A_i \) for all \(i \in I \) such that \(y = f(x) \) and \(x \in \cap_{i \in I} A_i \). Thus \(f(x) \in f(\cap_{i \in I} A_i) \) which implies that \(y \in f(\cap_{i \in I} A_i) \) and \(\cap_{i \in I} f(A_i) \subseteq f(\cap_{i \in I} A_i) \).

Theorem 2.15 (The Projective Limit Theorem) [4], p.501. Let \((V_i, \pi_{ji}) \) be a super inverse system consisting of non-empty compact \(T_1 \) spaces and continuous closed maps \(\pi_{ji} : V_j \to V_i \). Then

(i) \(\lim V_i \neq \emptyset \).

(ii) If each \(\pi_{ji} \) is surjective, then each canonical map projection \(\pi_i : \lim V_i \to V_i \) is surjective.

(iii) If \(v_i \in V_i \) is an essential element, then \(v_i \) is super essential.

Theorem 2.16 [5], p.23. Let \(L \) be a finite dimensional semisimple Lie algebra over \(\mathbb{K} \). Then

(i) There exist simple ideals \(L_1, L_2, ..., L_l \) [unique up to order] such that \(L = L_1 \oplus ... \oplus L_l \). Moreover, each ideal of \(L \) is a sum of such simple ideals.

(ii) All ideals and homomorphic images of \(L \) are semisimple.

3 Closed Ideals of Prosemisimple Lie Algebras

Theorem 3.1 Let \((X_i, f_{ji}) \) be a super inverse system. Then there exists a subinverse system of \((X_i, f_{ji}) \) with surjective transition maps whose inverse limit is equal to \(\lim X_i \).

Proof. Define \(Y_i = \cap_{j > i} f_{ji}(X_j) \) and \(g_{il} = f_{il}/Y_i \) (restriction of \(f_{il} \) to \(Y_i \)). Then \((Y, g) \) is a surjective inverse system: \(g_{il} \) are proper as \(f_{il} \) are, and by Proposition 2.14 we have: \(g_{il}(Y_i) = g_{il}(\cap_{j > i} f_{ji}(X_j)) = \cap_{j > i} g_{il}(f_{ji}(X_j)) = \cap_{j > i} f_{il}(X_i) = Y_i(i > j > l) \).

Now, \(Y_i \) is a closed subset of \(X_i \) since the maps \(f_{ji} \) are closed and arbitrary intersections of closed subsets are closed. Also if \(j > l > i \), then \(f_{ji}(X_j) \subseteq f_{il}(X_i) \).
so the sets $f_{ji}(X_j)$ for $j > i$ form a decreasing directed system of non-empty closed subsets of compact space X_i, hence their intersection Y_i is also non-empty and compact. Thus (Y, g) is a closed surjective subsystem of (X, f) in which Y_i are non-empty. Trivially, $\lim X_i \subseteq \lim Y_i$. Conversely, if $(x) \in \lim X_i$, then $x_j \in X_j$ for each $j \in I$. Since $f_{ji}(x_j) = x_i$ whenever $j > i$, then $x_i \in f_{ji}(X_j)$ for all $j > i$, thus $x_i \in \bigcap_{j \neq i} f_{ji}(X_j) = Y_i$ for all $i \in I$, so $g_{kj}(x_k) = f_{kj}(x_k) = x_j$ for all $j \in I$ and $k > j$, hence $(x) \in \lim Y_i$ and $\lim Y_i = \lim X_i$.

Theorem 3.2 Let L be the inverse limit of a surjective inverse system of finite dimensional semisimple Lie algebras. A is a closed ideal of L. Then, there exists a unique ideal B of L such that $L = A \oplus B$.

Proof. Since A is closed, $A = \lim A_i$, where the A_i is the ith projection of A. Since L_i is semisimple by Theorem 2.16, $L_i = \bigoplus_{t=1}^{p} S^i_t$, $p \in \mathbb{N}$ where the S^i_t are simple ideals of L_i, and since A is an ideal of L, A_i is an ideal of L_i. Thus by Theorem 2.16 $A_i = \bigoplus_{t \leq p} S^i_t$, $1 \leq p \leq p$. Similarly $L_j = \bigoplus_{r=1}^{m} S^j_r$ and $A_j = \bigoplus_{r=1}^{m} S^j_r$, $1 \leq m \leq m$. Let $B_i = \bigoplus_{t=p} S^i_t$, then $L_i = A_i \oplus B_i$.

We note first that for a simple ideal S^i_l in A_i, there exists a unique S^i_l in A_j such that $\pi_{j,i}(S^j_l) = S^i_l$. This is due to the fact that the preimage of S^i_l is an ideal of L_j, thus it is a sum of some simple S^j_t, say for instance, $m \geq 2$, and $\pi_{j,i}(S^i_l \oplus S^i_m) = S^i_l$. Let $\pi'_{j,i}$ be the restriction of $\pi_{j,i}$ to $S^i_l \oplus S^i_m$. Then, Kernel $\pi'_{j,i}$ is the inverse limit of A_i. Let p be the inverse limit of A_i. We claim that $\pi'_{j,i}$ is either S^i_l or S^i_m. Hence, there exists only one S^j_r such that $\pi'_{j,i}(S^j_r) = S^i_l$. Clearly this S^j_r must be in A_j. Similarly, for a simple ideal S^j_r of B_j, there exists a unique simple ideal S^j_r in B_i such that $\pi_{j,i}(S^j_r) = S^i_l$. Let $\pi''_{j,i}$ be the restriction of $\pi_{j,i}$ to B_j. If $\pi''_{j,i}(B_j) = B_i$, and $\pi''_{j,i}(B_i) = B_j$. Then, $\pi''_{k,i}(B_k) = \pi_{k,i}(B_k) = (\pi_{j,i} \circ \pi_{k,i})B_k \circ (\pi_{j,i}(B_j) = B_i$. Thus, $\pi''_{k,i} = \pi''_{j,i} \circ \pi_{k,i}$. Therefore, the B_i form a surjective subinverse system with transition maps $\pi''_{j,i}$, the restriction of $\pi_{j,i}$ to B_j. Let $B = \lim B_i$. We claim that $L = A \oplus B$. Let $l \in L$, $l = (l_i)$ and l_i can be written uniquely as $a_i + b_i$. Thus $l = (a_i + b_i)$. The a_i (respectively the b_i) form a compatible inverse system. This is due to the fact that the l_i are compatible. Let $\hat{\pi}_{j,i}$, $\hat{\pi}'_{j,i}$ be the restrictions of $\pi_{j,i}$ to a_i and b_i respectively. If $\hat{\pi}_{j,i}(a_i) = a_i$ and $\hat{\pi}_k,j(a_k) = a_i$, then $\hat{\pi}_{j,i}(b_i) = b_i$, then, since $\pi_{k,i}(b_i) = b_i$, we get $\pi_{k,i}(a_k) = l_i$, i.e., $\pi_{k,i}(a_k + b_i) = a_i + b_i$, thus $\pi_{k,i}(a_k) + \pi_{k,i}(b_k) = a_i + b_i$. Hence, $\pi_{j,i}(a_k) - a_i = b_i - \pi_{k,i}(b_k)$, but $A_i \cap B_i = \{0\}$. Thus $\pi_{k,i}(a_k) = a_i$ and $b_i = \pi_{k,i}(b_k)$. Hence, $\hat{\pi}_{k,i}(a_k) = a_i$ and $b_i = \hat{\pi}_{k,i}(b_k)$. Therefore, $l = (l_i) = (a_i + b_i) = (a_i) + (b_i)$, and consequently $L = A \oplus B$.

Note that given any ideal M_i of L_i, $M_i = A_i \cap M_i \oplus B_i \cap M_i$.

Suppose now that there exists an ideal $C \neq 0$ of L such that $L = A \oplus C$. Let C_i be the ith projection of C. Then $C_i = A_i \cap C_i \oplus B_i \cap C_i$. But $L_i = A_i \oplus C_i$, thus $L_i = A_i \oplus B_i \cap C_i = A_i \oplus B_i = A_i \oplus C_i$, hence $B_i \cap C_i = B_i = C_i$, and consequently $C = B$.

Corollary 3.3 Let L be the inverse limit of an inverse system of finite dimensional semisimple Lie algebras. A is a closed ideal of L. Then, there exists a unique ideal B of L such that $L = A \oplus B$.

Proof. This follows directly by combining Theorem 3.1 and Theorem 3.2.

Corollary 3.4 Let $L = \varprojlim L_i$ be the inverse limit of an inverse sequence of finite dimensional semisimple Lie algebras. Suppose that every ideal of L is closed. Then every finite dimensional homomorphic image of L is semisimple.

Proof. Let A be an ideal of L. Since A is closed, there exists a unique prosemisimple ideal B of L such that $L = A \oplus B$. Thus L/A, which is isomorphic to B, is prosemisimple, but L/A is finite dimensional, thus L/A is semisimple.

Corollary 3.5 Let $L = \varprojlim L_i$, be the inverse limit of an inverse sequence of finite dimensional semisimple Lie algebras. Let $f: L \rightarrow M$ be a surjective Lie algebra homomorphism, where M is finite dimensional and $\text{Ker } f$ is closed. Then M is semisimple.

Proof. By the previous corollary $L/\text{Ker } f$ is semisimple. But $L/\text{Ker } f \cong M$, thus M is semisimple.

References

A note on the closed ideals

Received: September, 2009