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1 Introduction

In [7] Pierre LOIDREAU raised a problem on the existence of a link between Gabidulin codes
and generalized Reed Solomon codes. There are GRS codes having the same parameters than
Gabidulin codes which are in the same ambient space. One may ask the following question:
are there simple transformations like permutations or semi-linear isometries of Hamming metric
that transform Gabidulin codes into GRS codes 7

When we consider a Gabidulin code of parameters (n,k), where n is the length of the code
and k the dimension of the code, algebraic transformations of generator matrix of the code
allow to write generator matrix in the form (I|P;(g;)) with ¢ = 1,...,k and j = k+ 1,...,n.
Saying that a Gabidulin code is transformed to a GRS code, implies that the following equa-

tion P;(g;) = xjf;j, where P;, ¢;,dj, x;,y; are unknown, has solutions up to affine permutations
keeping the Hamming metric.

In this paper, we describe the existence of an application that conserves the Hamming dis-
tance and transforms a Gabidulin code into a GRS code. The idea of our method consists
to transform the matrix of the GABIDULIN code to the form of systematic matrix by multi-

plying this matrix by the k x k invertible matrix extracted from the generator matrix of the
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GABIDULIN code. So, using usual methods of the calculation of the invertible matrix,we ob-
tain (P;(g;)) and by application of 1);; that are affine permutations that keep Hamming metric
defined of (GF(¢™))" — (GF(¢™))" such that v;;(Pi(g;)) = a;;Pi(g;); we obtain, up to affine
permutations, unknown elements of the equation Pj(g;) = xff;]
1<i<kandk+1<j<n, that ensure that a GABIDULIN code is transformed to a GRS

code.

ie. P, ¢, dj, x;, yj where

The paper is organized as follow: we recall basic facts about Cauchy matrices, GRS codes and
GABIDULIN codes, we introduce our transformation that allow to transform a GABIDULIN
code into GRS code, we generalize results for any parameters, and we present a example . At last

we propose a natural algorithm to resolve the equation P;(g;) = xcf; - up to affine permutations.
iTYj

2 Preliminary

In this section we recall basic definitions and properties over GRS codes and GABIDULIN codes
that will be used in the sequel.

2.1 Matrix terminology
2.1.1 Diagonal matrix

Let be K a finite field. Given v = (vy,...,v,), where (vq,...,v,) € K. we define D(v) to be the

n x n diagonal matrix as

V1 0 0

0 (%] 0
D(v) =

0 0 Un,

2.1.2 Cauchy Matrix:

Let K be a field, z; € K for 1 <i < k and y; € K for 1 < j < r such that {zi,...,2;} are
pairwise distinct and {y1, ..., y, } are pairwise distinct and z;+y; #0for 1 <i<kand1<j<r
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The matrix

1 1 _1
rityr  xity2 7 xityr
1 1 1
rotyr  x2ty2 T T x2tyr
1 1 1
ety zpty2 0 zptyr

is called a Cauchy matrix over K generated by {z1,...,zx} and {y1,...,y, }.

2.1.3 Generalized Cauchy Matrix :

A k x r matrix A is a generalized Cauchy matrix if A = D(c)CD(d)
Where C is a k x r Cauchy matrix and ¢ = (c1,...,¢;), ¢; 0 for 1 <i <k and d = (dy, ..., d,),
dj #0for 1 <j <.

2.2 Generalized Cauchy Codes

Let £ € N and k < n for some n € N.

Let C be k x (n — k) Cauchy matrix over a field K. Let ¢ = (c1, ..., ¢;) such that ¢; € K and
¢ #0,V1<i<kandd= (di,..,dy—) where dj € Kand dj #0V 1 < j <n—k. Let
A = D(c)CD(d) ( A is a generalized Cauchy matrix by definition ). Then the code generated
by the generator matrix [I;|A] is called the generalized cauchy code.

2.3 Definitions and Properties (CODES GRS)

Definition 1 [10/:

Let GF(q™) be a finite field with ¢ elements. Let n € N with 1 <n < ¢™ and a = (aq, ..., ay)
an n-tuple of distinct elements of GF(qm) and let v = (v1,...,v,) be an n-tuple of non -zero
elements of GF(qm). Let k € N with 1 < k < n. Then the Generalized Reed Solomon codes,
denoted by : GRS, (o, v) is

GRS, k(a,v) = {vif(a1),...,onf(on)/f € GF(¢™)[x],deg(f) < k —1}.

We can thus write the generator matrixz of Generalized Reed Solomon code as

(%] (%] [ Un

V101 18 UnQlp,

vlalk_l vgagk_l Lo vnank_l
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is noted GRSk(a,v).

The set of GRSk (a,v) codes is called by Generalized REED SOLOMON codes family.

Proposition 1 [§/:
Let be GRSk (a,v) a Generalized REED SOLOMON code of length n, with k and d respectively
the dimension and thye minimal distance of the code. We have the following conditions:

1. GRSk(a,v) is a MDS code, i.e. d=n—k+1

2. The GRSi(«a,v) dual code is the GRS, _k(a,v") code for a certain vector v’ determined in

fonction of v

Theorem 1 :/10]
Every generalized Cauchy code is a Generalized Reed Solomon code. Furthermore, given v =
(V1,..,0) and a = (a1, ...,ay) for GRS, (o, v) code, taking

Ti = —Q4, Yj = Oy
-1
V.

k
;G = ———t d‘:’U'k "~ (i — o).
' Hf:l,t;ei(ai*at) 7 J+ Ht—l( J+ )

for1<i<k,1<j<n-—kand c=(c1,..,c;), d= (di,...,dn—p) and C is the Cauchy matriz

generated from {x1,...,xr} and {Ygs+1, -y Yn}-
Then A = [I;,|D(c)CD(d))] is a generator matriz for GRS, (o, v).

2.4 Rank metric and GABIDULIN codes

Consider any finite field GF(q). Given a vector a = (a1, ...,a,) € GF(¢™)", the rank weight of a
is by definition the rank of the m x n—matriz over GF(q) formed by extending every coordinate
a; on a basis of GF'(¢")/GF(q). The construction is independent of the chosen basis.

The rank weight being a norm, it also defines a metric. With the distance related to
the metric, we define minimum rank distance of a linear code, in the same way as the classical

minimum distance for a code in the Hamming metric.

Definition 2 :
Let C be a linear code over GF(q™). the minimum rank distance of C is d = Minc.cc+(Rk(c)).
Given any matriz over GF(q™) we also define the rank of a matriz over GF(q), and the mini-

mum rank distance of a code.

Definition 3 :
Let X be a k x n matriz with coefficients in GF(q™).
The column rank of X over GF(q) is equal to the mazimum number of columns of X that are
linearly independent over GF(q).

In 1985 Gabidulin, [4] published a family of codes which are optimal for the rank metric.
Namely, they reach the ”Singleton bound” for the rank metric.
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Let g1,...,gn € GF(q™)™ be n elements, which are linearly independent over GF(q). The matrix

91 Coe gr[?]

gt gl

where [i] = ¢* is of rank k, is a generator matriz of Gabidulin code.

Proposition 2 ( [3]):

o The linear code C with generator matriz G reaches the Singleton bound for the rank metric.
That is, let d be the minimum rank distance of C, we have d —1=n — k.

e The dual of the Gabidulin code is a Gabidulin code.

Proposition 3 ([7]):

A generator matriz of Gabidulin code Gaby(g) can be in the form

10 . . .0 Plgp+1) . . . Pign)
0 1 0 Pg(gk-l-l) e PQ(gn)
00 .. .1 Pgr+1) . . . Pulgn)

where for i = 1...k, P; is the unique g-polynomial of degree k checking for all j < k, Pi(g;) = 6; 5,
i=k+1,...n.

2.5 Equivalence of linear codes

Two linear codes over GF'(¢"™) are called equivalent if one can be obtained from the other by a
combination of operations of the following types:
(A) permutation of the positions of code;

(B) multiplication of the symbols appearing in a fixed position by a non-zero scalar.

Remark 1 If a code is displayed as an M xn matrix whose rows are the codewords, where M is
the cardinal of the code and n the length of codewords, then an operation of type (A) corresponds
to a permutation, or rearrangement of the columns of the matrixz, while an operation of type (B)
corresponds to a re-labelling of the symbols appearing in a given column.

Clearly the distances between codewords are unchanged.
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Theorem 2 Two k X n matrices generate equivalent linear [n,k|-codes over GF(q™) if one
matriz can be obtained from the other by a sequence of operations of the following types:

(R1) Permutation of the rows.

(R2) Multiplication of a row by a non-zero scalar.

(Rs) Addition of a scalar multiple of one row to another.

(Cy) Permutation of the columns.

(Cy) Multiplication of any column by a non-zero scalar.

Proof:

The row operations (Ri), (R2) and (R3) preserve the linear independence of the rows of a
generator matriz and simply replace one basic by another of the same code. Operations of type

(C1) and (C3) convert a generator matrix to one for an equivalent code.

3 Results

Gabidulin operator Vg,

Given a vector (g1, ...,gn) over GF(q™)"™ and Gabi(g) a generator matrix of a Gabidulin code
C of length n and dimension k.

Let put Gabk(g) = (L, M).

We may suppose , to the rank of rg(Gabi(g)) = k, that L is an invertible matrix. If not we can
permute columns of Gab(g) in order to obtain an invertible matrix L. This is possible because
rg(Gabi(g)) = k. So, we obtain a matrix Gab](g) = Gab,P,(g), where P, is the permutated
matrix corresponding to the permutation o.

In the sequel we suppose Gaby(g) = (L, M) where L is k x k invertible matrix and GF(¢™) = K

Let Egap, () be the set of generator matrices of Gabidulin code of length n and dimension k
and Sgap, (K) the set of corresponding systematic matrices of Gabidulin code of length n and
dimension k.
Let us consider Vo : Egab, (K) — Scab, (K)

(L, M) — L=Y(L, M)=(Is| L~ M).
Vap acts on Gabg(g) by transforming the Gaby(g) matrix of the code C by another matrix of
the code C. It replaces the base (L;)i<i<r by the base (05, P;(g;)), where (L™1M) = (P;(g;)).
This transformation allows to obtain (P;(g;)).
VGap is called Gabidulin operator.

Conclusion: We have two cases.

1. If L is invertible then the equivalent matrix Gaby(g) of Gabidulin code generate the same
code as Gabg(g).
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2. But if L is not invertible, the operations of (C}) and (C3) of theorem 2 are also used, the
equivalent matrix of Gaby(g) generate code which is equivalent to ( not necessarily the
same ) that generate by Gabg(g).

Therefore by the Gabidulin operator, the Hamming distance between codewords is un-
changed.

Proposition 4 :
Every Gabidulin code of length n and of dimension k =2 over GF(q™), with generator vector
g=1(91,-,9n) is a GRS code with parameters v=a =g = (g1,...,9n)

Proof
Let be Gaba(g) = ( g; o gg ) a generator matrix of Gabidulin code of length n and of
g - - - On

dimension 2.

Let us set Ly = (g1, ..., gn) the first line of the matrix and Ly = (g2, ..., g2) the second one. Since
v=a =g we have L1 = (v1,...,v,) and Ly = (91.91, -, n-Gn) = (V1.1 ..., Up.ap)

Ly

Thus GRS>(v,a) = I
2

Corrolary 1 Every Gabidulin code of length n and dimension n — 2 over GF(q™), with gen-
erator vector g = (g1,...,9n) s a GRS code.

Proof:

In fact the dual code of a Gabidulin code is a Gabidulin code, and the dual of a GRS code is
also a GRS code.

Theorem 3 :

If Gaby(g) is a generator matriz of the Gabidulin code of the length n and of the dimension
k=3, (I,P;(g;)) the systematic generator matriz corresponding, then unknown elements of the
following equation P;(g;) = xff;ﬂ are obtained up to affine permutations keeping the hamming
distance, with 1 <i <k and k+1<j <n.

Proof:

Let be 0 0
g L. gn

Gabi(g) =

gl[lc—l} L gn[k—l}
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a generator matrix of Gabidulin code of the length n and of the dimension &

For k = 3 we have

[0] (0] _[0] [0]
91 g9 93 - - Gn
Gabs(g) = | o o) o) . . g
P I SN
Without losing generality, we may suppose that
ggo] gg)] g:[g[)]
I_ ggu gg] g:[;]
2 2
g g gf
is invertible
[0] [0]
I .. On
and M = gz[ll] gE ]
gt gl

Then the form (I3]L~1M) is a systematic matrix of the Gabidulin code with generator matrix

Gabs(g). By identification (I35|L~'M) and (I3|P;(g;), we obtain:
(L™'M) = (Pi(g5))

where 1 <i < 3 and 4 < j < n. By calculating (L~'M),
where L=! = -1-tCof(L), we can determine P;.
We have

tCof(L) = t(Cof(g" "), 1<i<3 ,1<1<3 and [I] ="

det(L) # 0 because L is invertible. By equality (1), we have:

3
oyt
=1

R = =am

where p: = Cof(g; ') with1<i<3and 1< <3.
here pt = Cof (g ") with 1 3and 1<1<3

3
det(L)Pi(z) = S plali=1 = plol0) 4 p2 01l 4 302
=1

The L matrix is a Vandermonde generalized matrix, then the determinant of L is :

2 i
det(L) = ¢ H H (giv1 — Z Aigr)
=1

i=1 \1,.... \;€GF(q)

(1)
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Let us consider the polynomial D;(z) obtained by the determinant of L matrix by substituting
the column t by elements z, 29, 2‘12, where 1 <t < 3. For instance

z g g3 9

2 '3

Di(z) =29 g 9;32 = (9203 — g3g2) 2" + D Nzt
i=0

2
q q
21 99 93

Where \; € GF(¢™) for 0 =i <2

First, since g1, g2, g3 are linearly independent over GF(q), g2, gs are linearly independent over
GF(q). We have Di(g2) = D1(g3) = 0, and since D;(z) is a g—polynomial over GF(¢™), all
combination Aags + A3g3 with Ao, A3 € GF(q) are roots of Dq(z). Thus D1(2) has ¢? distinct
roots, so that we obtain a factorization

3
Di(2) = (9205 — gdgs) [ (=D Ao

A2, Az€ GF(q) =2
Thus
3
Dj(2) = (9t9m — 9/ 9m)1<t<m<3, t;mei 11 (z= Y. o) (4)
Mz, As€ GF(q) =1, I#i

where the product (4) is did over the set of linear combinations of (g;)1<<3, ¢
In the other way, by expansion along the first column we get :

Di(2) = pizl% 4 p221 4 p300 1 =¢f, 0<t<2
ie.
Dy(z) = pi 2% + pil 4 pfz (5)
So we get by (2), (3), (4), and (5) :

3 3
Zpﬁz[l*” (9t9m — 97 9m)1<t<m<3, t,mi H (2 — Z N
PL(Z) — =1 _ )\1,)\2,/\3€GF(q) 1=1,l#1

det(L)

2 5
91H H (i1 — Z Aigr)
=1

1=1\1,...,\;€GF(q)

We have for z = g;

3
(99t — 91 9m)1<t<m<3, t,mi H (g5 — Z Aigr)
A2 A3 €GF(q) I=1,14i
B(g]) — 5 1,A2,A3

ng H (gi+1 — Z Aigi)
‘ =1
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Let us consider the affine permutations 1);; defined by
Yij : GF(q™) — GF(q™)

T aijx

where
3
I @-=2g- > xa)
A1,A2,A3€GF(q) 1=1,l#1
95 — Gi

CLZ']' =

with A; # 0 and (A1, A2, A3) # (0,0,0).

Thus a;; is all products of linear combinations containing g; except the term (g; — g;) Those
affine permutations keep the hamming distance.

We are going to extend the action of v;; to GF(¢™)" by the following form :

¥ (GF(g™)" — (GF(d™))"

(3}1,372,3?3,37]‘, 7xn) — (x17$27$37¢z‘j(xj), 7wzn(xn))

i.e the ¥ act over the elements of GF(¢™)" by leaving invariant the & first components and in
transforming the n — k components.

Let be Gab(g) a generator matrix of a Gabidulin code put under the systematic form. We
set in the application 1 such as (Gab(g)) = (¢¥(L;)) where L; = (I;, Pi(gj)) with I; = 0;;
1<i<k k+1<j<n

(Gab(g)) = (Li, ¥i;(Pi(g;)))

By applying ;;(x) = a;;x we get :

3
(9t9m — 91 9m)1<t<m<s, tmeti H (95 — Z)‘lgl)
A1,A2,A3€GF(q) =1

Vij(Pi(g;)) = (6)

2 5
ng H (i1 — Z Agi)(95 — 9i)
=1

1=1X1,..,.\;€GF(q)

3
Where H (95— Z)\l g1) is all products of linear combinations of g1, g2, 93, A € GF(q)

)\1,/\2,/\3€GF(q) =1
Let us put

i (Pi(gy)) = —- (7)
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Then by identification of (6) and (7), we have :

(gtgh—gigm)1<t<m<3, t,m+i

2 ]
o]l 11 (gi+1— Y Nar)
=1

1=1X1,\2,A3€GF(q)

3
dj = H (95 — Z)\zgl)
=1

A1,22,A\3€GF(q)

C; =

T; = —Gi
L Yj = ) with 4 <j<n
Thus we get :
L Fori=1 41;(Pi(g;) = a1;(Pi(g;)) = 727L, we have :
(¢ = 9294—9393

2 i
ol II (g =D Mg
=1

i=1A1,...,\i€GF(q)
3
dj = H (gj - Z)‘lgl)
A1,A2,A\3€GF(q) =1

rn= —01
yj = gj, with4<j<

2. Fori=2 d
Co 5
o (P2(gj)) =
S (Paloy) = 2
with
ey = ~ 91939391 i
ol I @i =D )
i=1X1,..,\;€GF(q) =1
T2 = —G2
3. For1=3 d
C3 5
P3;(P3(g5)) =
J(Pioy) = T2
with
3 = . 9195—9291 i
91H H (i1 — Z Aigr)
i=1)\1,...,)\iEGF(q) =1
r3 = —g3

We have x1 # 29 # x3, because g1, g2, and g3 are distinct and y; are pairwise distinct with 4 <
j<n
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3.1 Example

e Let be the Gabidulin code of the length n = 4 and of the dimension k = 3 over GF(2%)

e Let be o a primitive element of GF(2%), we have !> =1 and o = a + 1
GF(16)= {0,1,0,02%, 03, a+1,0® +a, a3+ a2, + 1,0 +a,a® +a+ 1,02 +a? +a, a3 +
a2 +a+1,ad+a?+1,a%+1}
Let be (1,a,a?,a?) a base of GF(16).
Let us take g = (g1, 92, 93, 94)€ (Fha)* such as :
g1 = a — 0100
g2 = a® — 0010
g3 = a® — 0001
gi=a*=a+1— 1100
g = (91,92, 93, 94) is linearly independent.

[0] [0]

g1 92 (0] 93 (0] g4

Gabs(g)= 91[1] 92[1] 93[1] 94[1]

2

g gl gl gy

Gabs(g)= o>  a+1 ad 4 a? a?+1

a+1l o241 &?+a2+a+1 «

Let us put

a+1l o241 &P+ +a+1 «
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We have

detL = 91H H (Gi+1 — Z Aigr)
=1

1=1)\q,..., N EGF(2)
detL = g1(g2 — 91)92 H (93 — (A1g1 + A2g2))
AL A2 EGEF(2)
detL = g192(92 — 91)[93(93 — 92)(93 — 91)(93 — 91 — 92)]

detL = a.a?(a? — a)[a?(a?® — a?)(a?® — a)(a® — a? — a)]

detL = o +a+1

3
(g19% — glgmi<temss, tmzi |1 (55— D_Ng)
A1,A2,A3 EGF(q) =1

Vij(Pi(g5)) =

det(L)
3
H (95 — Nigi — Z \igi)
1< < 35 ] =4 where Q;Z)zj(l’) = QT and aij = A,A2,A3€GF(q) — =11
1. fori=1

(9293—9393) [1 (04—Aaga—Nags)
Pi(gy) = 228 222960 1—A2ga—A393
Pi(gs) = (929§*9395)94(grdgjt)L(grgs)(gknggg)

ais = (94 — g1 — 92)(94 — 91 — 93)(94 — 91 — 92 — 93)

Dra(Pi(gs)) = (9295 —9393)94 (94*92)(94793)(94792}9;)594*91fgz)(grgrgs)(grglfnggs)

we multiply and we divide by (g4 — ¢g1). We get

V14(Pi(gs)) = (9293 —9393)94 (94*91)(94*gz)(94793)29(;1&?;;9;%94*91fgz)(grgrgs)(grglfnggs)

2 2
__ 9293—9395
C1 = T geL

dy = g4(9s — 91)(94 — 92)(94 — 93)(94 — 92 — 93)(94 — 91 — 92)(94 — 91 — 93)
(94 — 91 — g2 — g3)

1= —01

\ Y4 = g4
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p  a2(a®)2—a3(a?)
a = ad+a+1
dy = at(a* —a)(a* —a?)(a* — ) (a* —a —a?)(a* —a —a?)(a? —a? —a?)
(a* —a—a?—a?)
Il = —«
4
Yo =
.
c1 = a~t
— dy = 048
Il =«
4
Yo =
2. fori=2
(9397 —9193) [\ ayear(2)(9a—A191—A3g3)
Py(g4) = S elL
_ (9397-9193)94(94—91)(94—g3)(9a—91—g3)
Py(9a) = — detl

azs = (94 — g1 — 92)(94 — 92 — 93)(94 — 1 — 92 — g3)

Uoa(Po(ga)) = (9397 —9193)94(9a—91)(91—93) (94—91 —dges;)L(m —91—92)(94—92—93)(94—91—92—93)

we multiply and we divide by (g4 — g2). We get

2_ 2 _ _ _ e — g — g — 1 — e —
Uoa(Po(ga)) = (9391 —9195)94(94—91)(91—92) (94 gs)%};ﬂgé};%% 91—92)(94—91—93)(94—91—92—93)

2 2
__ 939719193
€2 = T ger

dy = g4(9s — 91)(94 — 92)(94 — 93)(94 — 92 — 93)(94 — 91 — 92)(94 — 91 — 93)
(94 — 91 — g2 — g3)
T2 = —G2

\ Y4 = g4
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By replacing 91, 92, 93, g4, We get

Co =

T9 =
4
Ys =
3. fori=3
(9195*929%)H>\ A eGF(z)(94*)\191*)\292)
P3(94) = : 2detL
_ (9193—9293)94(94—91)(ga—g2)(ga—g2—g1)
P3(g94) = . : detL

aza = (94— 93— 1)(94 — 93 — 92) (94 — 1 — 92 — g3)

Usa(P3(ga)) = (9195 —9297)94(9a—91)(92—92)(94—01 —dges;)L(m —91-92)(94—92—93)(9a—g1—92—9g3)

we multiply and we divide by (g4 — g3). We get

2_ 2 _ _ _ _ _ _ _ _ _ _ _ _
P34(Ps3(g4)) = (9195—9297)94(94—g1)(ga—9g2)(ga g3)Ej§£1tLiJ;4f;3)‘§g4 91—92)(9a—91—93)(94—91—92—93)

2 2
_ 9195—92971
€3 = T geiL

dy = g4(9s — 91)(94 — 92)(94 — 93)(94 — 92 — 93)(94 — 91 — 92)(94 — 91 — 93)
(94 — 91 — g2 — g3)

T3 = —g3

\ Y4 = g4

By replacing 91, 92, 93, g4, We get

r3 = o’
| Y4 = ot
Example 2
Let us consider the Gabidulin code with following parameters ¢ = 2, &k = 3, n = 6 and

(v, a1, a2, Bo, 1, B2) are linearly independent over GF'(2).
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A generator matrix of the code is given par :
ap a1 az fo B P
G=| o at a3 & & 3

o o a3 By Bl B

Let us put
ap a1 o Bo B1 B2
L=| o o} o3 and M= | 3 B}
af af o3 B Bt B

1 1
det(L) = Q) H H (ai-i-l — Z )\lal)
=0

=0 Xo,...,\; €EGF(2)
det(L) = Oé()(Odl — Oé())Odl H (042 — ()\()Oé() + )\1041))
A0, M EGF(2)

det(L) = apai(ag — ap)[ag(az —aq)(ag — ap) (a2 — a1 — ap)]
det(L) = apajas(ar — ap)(ae — a)(ae — ap) (g — a1 — )

det(L) # 0 because (g, a1, az2) is a sub family of free family.

L is so invertible. The generator matrix G of the code is equivalent to (I3]L~*M).
Let us put (L7'M) = (P;(3;)) ,0<i<2,0<5 <2

where L™! = 21-tCof(L), we can determine P.

We have

tCof(L) = t(Cof(all)), 0<i<2 and 0<1<2.

2
> pA!
= 1 . .
Pi(2)= =L Pl=cof(0));0<i<2,0<j <2

2
det(L)Pi(z) = Y pial" = plz + p}2® + pi 2"
=0

2
Do(z) = pdz +plz? + p?2* = (0103 — aza?)2t + Z ;2%
i=0

2
Do(z) = (a3 —azaf) [ (2= )

A, A2€ GF(2) =1
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2 2
Zpﬁz[” (Oéta%m - a%am)0§t<m§2, t,m#i H (z — Z e
1=0 Ao, A1, 2€GF(2) 1=0,1#i

_PZ' = p—
) = ety det(L)
We have for z = (3;

2
(g, — a?am)0§t<m§2, t,m#i H (Bj — Z A1)
A0,A1, A 2€GF(2) 1=0,l#1

det(L)

Let us consider the affine permutations v;; defined by

Pi(B5) =

T — Q5T

d; . .
Vi (Fi(55)) = xﬁi;j; 0<i<2 and 0<j<2

1.
For i =0 j = 0 voo(Po(6o)) = aoo(Po(fo)) = 7o

Py(Bo) = (alag70‘201%)ﬁO(ﬁO*dO;)L(ﬂO*O‘Q)(ﬁO*Oqfozg)

ago = (Bo — g — a1)(Bo — g — a2)(Bo — g — a1 — 2)

Yoo(Po(Bo)) = (103 —az03)Bo(Bo—0n)(Bo—c2)(Bo—an —C?;zt)L(ﬁo—ao—m)(ﬁo—ao—az)(ﬂo—ao—al—az)

We multiply and we divide by (8o — ap), we get:

o OtQ_OC Ot2 —Q —Q —Q -] — —Q)—x —Q)—x —o)—0] —«&
Yoo(Po(Bo)) = (a1a5—a207)Bo(Bo—0)(Bo—a1)(Bo Q)EI/GeOtL(éofofo))(ﬁO o—a1)(Bo—ap—a2)(Bo—ap—ai—asz)

¢00(P0(BO)) _ onaz(an—a1)Bo(Bo—an)(Bo—ou)(Bo—a2)(Bo—a1—az)(Bo—ao—on) (Bo—ao—a2)(Bo—ao—a1—az)

apaiaz(ar—ap)(az—a1)(az—aog)(az—a1—ao)(Bo—ao)

After simplification, we get :
Yoo(Po(Bo)) = Bo(Bo=a0)(Bo=a1)(Bo—a2)(Bo—a1=az)(fo—an—a1)(fo—ao—az)(Bo—ao—a1—as)

ao(a1—ap)(az—ao)(az—ai—ao)(Bo—ao)

Thus we obtain :

( _ 1
‘0 = ap(a1—ap)(az—ap)(az—a1—ao) 7& 0

do = Bo(Bo — ) (Bo — a1)(Bo — a2)(Bo — o1 — a2) (o — g — a1)(Bo — g — a2) (o — g — a1 — aa)
do # 0
ro = —Q

Yo = o
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2
Fore=135=0

10(P1(Bo)) = aro(P1(Bo)) = _cdo

r1+Yo

Pi(Bo) = (0‘20‘3*0‘0013)ﬁo(ﬁof;;(;)L(ﬂofag)(ﬁofao,ag)

aio = (Bo — g — a1)(Bo — a1 — a2)(Bo — g — a1 — a2)

Yro(P1(By)) = (203 —0003)Bo(Bo—c0) (Bo—c2) (Bo—a —C?;zt)L(ﬁo—ao—m)(ﬁo—ao—ag)(ﬁo—ao—al—ag)

We multiply and we divide by (8y — 1), we get:

a2 —ago? —a —a —a —a1—a2)(Bo—ag—a1)(Bo—ap—az2)(Bo—ap—a1—az2)
V10(P1(Bo)) = (e2ag—aoas)Bo(Bo—ao)(Bo—a1)(Bo 2)056/@1‘/0(”(15072&)1()0 o—a1)(Bo—ao—a2)(Bo—ap—a1—az

P10(PL(Bo)) = aoaz(ao—a2)Bo(Bo—ao)(Bo—a1)(Bo—az)(Bo—a1 —az)(Bo—ao—a1)(fo—ag—az)(fo—as—a1—asz)

agaiaz(ar—ag)(ae—a1)(az—ap) (a2 —a1—ao) (Bo—a1)

After simplification, we get :
U10(P1(Bo)) = —Bo(Bo—ao0)(Bo—a1)(Bo—a2)(Bo—a1—az)(Bo—ao—a1)(Bo—ao—a2)(Bo—an—a1—as)

ai(ar—ao)(az—ai1)(az—a1—ao)(Bo—a1)

Thus we obtain :

( _ —1
a= a1 (ar1—ap)(az—a1)(az—a1—ao) 7& 0

do = Bo(Bo — ) (Bo — a1)(Bo — a2) (o — o1 — a2) (o — g — 1) (o — g — a2) (o — g — a1 — a)
do # 0
r1T = —Qq

Yo = o

3. In the same way, for i =2, j =0
¢20(P2 (,30)) _ Bo(Bo—ao)(Bo—a1)(Bo—a2)(Bo—cn—az)(fo—av—a1)(Bo—an—az)(Bo—an—a1—az)

az(az—ao)(az—a1)(ae—a1—ao)(Bo—az2)

Thus we obtain :
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_ 1
2 = az (e —ap)(az—a1) (a2 —a1—agp) #

do = Bo(Bo — o) (Bo — a1)(Bo — a2)(Bo — a1 — a2)(Bo — ag — a1 )(Bo — g — a2) (o — g — a — a2)

dy # 0
To = —Q9
L Yo :/80

4.
Fori=0j=1vo(Fo(f)) = aoi(Po(f1)) = xf)of;ﬂ

Py(B1) = (103 —aza3)B1(B _dO;)L(ﬁl_ag)(ﬂl —ai1—as)

apr = (B — g —a1) (B — g — a2) (B — g — a1 — )

¢01(P1 (,31)) _ BiBi—ao)(Br—a1)(Bi—az)(Bi—an—az)(fi—av—a1)(f1—an—a2)(B1—ao—a1—az)

ap(a1—ap)(ae—ap)(az—a1—ap)(B1—ao)

Thus we obtain : ¢g, c1, ca; g9, 21, x2 are the same

di = B1(B1 — ) (B1 — a1)(Br — a2)(B1 — on — a2) (1 — g — 1) (B — g — a2) (1 — g — a1 — o)
dy #0
y1 =B

Fori=1j=1andfor Fori=2j =1

di = B1(B1 — ) (B1 — a1)(Br — a2)(B1 — on — a2) (1 — g — 1) (B — g — a2) (1 — g — a1 — o)
dy # 0
y1 =B

5.
fori=0j=2i=1j=2and for Fori=2j5=2

dy = Bo(2 — ) (B2 — 1) (B2 — a2)(f2 — o1 — a2)(f2 — g — 1) (2 — g — a2) (2 — g — a1 — 2)
dy # 0
y2 = B2

The generator matrix G of the Gabidulin code is equivalent to the systematic matrix (I|L~1M)
that is transformed to a Generalized Cauchy matrix by affine permutations 1);; keeping the

Hamming metric.
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4 Generalization of main result

Theorem 4 If Gaby(g) is a generator matriz of the Gabidulin code of the length n and of the

dimension k, over GF(q™), (I, Pi(g;)) the systematic generator matrixz corresponding, then un-
c;d;
IiJer/j
keeping Hamming metric, with 1 <i <k and k+1 < j <n.

known elements of the following equation P;(g;) = are obtained, up to affine permutations

Proof
The proof is the same as for the case k = 3.
Let be . .
D
Gaby(g) =
gl[kfl} o gn[kfl}

a generator matrix of Gabidulin code of the length n and of the dimension &
and
0 0
g

gl gl

i -1
S gl

We know that Gaby(g)=(I;|P;(g;) and P;(g;) = lzldw

k—1 {
detL=g [ I (g1 =D_ Ao
=1

=1 )\1,..‘,)\7;€GF(Q)

k—
Di(z) = pilz —i—p?zq + ... —I—pfzq '
Furthermore :

k
Di(gy)=Cof (™™™ T (&~ 3 na)

Al,..‘,AkEGF(q) 1=1,l#1

Where Cof (gz[k_l]) is the cofactor obtained by eliminating the row and the column corresponding
to element gl[k_l].

Thus
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k
cof@™™™  TI w— > A

Mo AEGF(q) =1,

k—1 7
91H H (gi+1 — Z Aigr)
=1

i=1\1,..,.\;€GF(q)

Pi(gj) =

Let us take 1;;(z) = a;;z

k
H (97 — Nigi — Z i)

Al,...,AkEGF(q),)\Z#)\Z’ 1=1,l#1
aij =
95 — i

with )\z 7& 0 and ()\1, 7>\k) 7& (0, ,0)
Thus by applying 1);;, we have

k
Cof(a ™™ IT =S e
=1

A At EGF () = cid;
Ui (Pi(g)) = —= Z. =t
i TYj
ng H (gi+1 — Z \gi) (g5 — 9i)
i=1X1,..,.\;€GF(q) =1
We get :
( Cof(g! ")
G = Tk1

ol I @ =D na)
' =1

k
dj = I - lz)\zgl)
=1

Ay AREGF(q)

Ty = —9i

Yj = gj

Proposition 5 If Gabi(g) is a generator matriz of a Gabidulin code of the length n and of
the dimension k over GF(q™) then there exist affine permutations keeping hamming metric that

transform a generator matrix of the Gabidulin code to a Generalized Cauchy matri.
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Proof

Let be Gabi(g) = (Ix|Pi(gj)) a systematic matrix of Gabidulin code.
We know that

c1d41 cidn
T1t+yr+1 T T T1tyn
Yij(Pi(g5)) = . . . I1<k<nand k+1<j<n
Crdik41 crdn
TktYe+1 T TktUn
is a k x (n — k) matrix.
1 1
.. 0 Titverl © ° ° Tetum di+1 . .o 0
0 o 0 . O . . . 0 dgyo2 O . 0
Vij(Pi(gi))=1 . 0 . . . o . 0
00 .0 : i 0 0 .0 4
‘ Ck Tetyer1 T Tkptyn : ktn

Le. ¥i;(Pi(g;))= (D(c)CD(d))
i;(Gabk(g)) = (Ix|D(c)CD(d)) where C = (xi}ryj) is a Cauchy matrix with 1 < 4 < k and
k+1<j<n.

(21, ...,x)) are pairwise distinct and (yg41,...,yn) are pairwise distinct because x; = —g; and

y; = g; are elements of a free family.

Cof(gl ') k—1]\ .
c; = —a7— # 0. In fact Cof(g;” ) is a factor of D;(z) # 0 and detL # 0

d; # 0 because D;(z) # 0

Theorem 5 any Gabidulin code of the length n and of the dimension k is a GRS code up to
affine permutations keeping Hamming metric.

Proof

By the theorem 1 a Generalized cauchy code is a GRS code. Thus, by the proposition 5, all
Gabidulin code is transformed to GRS code by affine permutations keeping Hamming metric.

5 Natural algorithm
1. Input : a generator matrix Gaby(g) of Gabidulin code of length n and dimension .

2. OUtput: ]D’L(gj)7 w’tjv Ci, T, djv Yj-

Procedure:
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3. First step: To put the matrix Gabi(g) in the systematic form:
To extract a k x k square matrix L
To put Gaby(g) in the form Gaby(g) = (I|L~1M)

4. Second step:
calculating of P;(g;) = (L™ M)

calculating of : a;;
calculating of : 1;;(P;(g)) = aij P;(g;)
calculating of: ¢;, x;, dj, y; by 1ij(P;(g;)) =

cid;
Tity; -

6 Conclusions and Future Work

We have shown that for any k£ and for any n, any Gabidulin code of the length n and of the
dimension k is equivalent up to permutions that keep the Hamming distance to a GRS code.
In our future work we will present an efficient method for decoding of Gabidulin code by using

the structure of the inverse of the Vandermonde matrix.
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