Power groupoids and inclusion classes
of Abel Grassmann groupoids

R. A. R. Monzo

Flat 10 Albert Mansions, Crouch Hill
London N8 9RE, United Kingdom
bobmonzo@talktalk.net

Abstract

Within the groupoid variety $AG = \left[(xy)z = (zy)x\right]_G$ of Abel Grassmann groupoids, we
determine the structure of all groupoids whose power groupoid is a band, a generalised inflation of
a band or a union of groups. Such groupoids are semigroup chains, inflations of semigroup trees or
AG groupoids in the groupoid inclusion class $\left[\{(xy)z, x(yz)\} \subseteq \{x, y, z\}\right]_G$ respectively.

We prove that $G \in AG \cap \left[(xy)(zw) \in \{xy, xw, zw, yz\}\right]_G$ if and only if its power groupoid
$P(G)$ is an AG inflation of an AG band if and only if $P(G)$ is an AG generalised
inflation of an AG band.

1. Introduction

Groupoids in the (groupoid) variety $AG = \left[(xy)z = (zy)x\right]_G$ have been called Abel
Grassmann’s groupoids [10,11], left invertive groupoids [4] and LA- semigroups
[5]. In this paper we explore how the structure of the power groupoids of
groupoids in AG can determine their structure. Within the variety AG we show
that the collection of all groupoids whose power groupoid is a band [generalised
inflation of a band; a union of groups] determines an inclusion class of
AG groupoids (cf. Theorems 1, 6 and 13). Similar work has been done with
semigroups in [3], [6], [8], [9] and [12].

Section 2 contains preliminary definitions, notation and some known results used
throughout the paper. In Section 3 we determine the structure of AG groupoids in
which either the power groupoid or its square is a groupoid band. Such AG groupoids are semigroup chains or inflations of semigroup trees
respectively. We also determine the structure of AG groupoids whose power
groupoid is a union of groups. Results in this section are inspired by and build on the work of Redei [12], Pondelicek [9], Pelikan [8] and Monzo [6, 7].

2. Notation, definitions and preliminary results

By a groupoid we shall mean a set G with a product $\ast: G \times G \to G$ and we shall denote $\ast(x, y)$ by xy. For $x \in G$ we define $x^1 \equiv x$ and, by induction, $x^n \equiv x^{n-1}x$ for any $n \in \{2, 3, \ldots\}$. For example, $x^4 = [(xx)x]x$. If $U^2 \subseteq U \subseteq G$ then U is called a subgroupoid of G, which we denote by $U \leq G$. Also $G \cong H$ will denote that G and H are isomorphic groupoids.

A groupoid [semigroup] G is an inflation of its subgroupoid [subsemigroup] U if $G = \bigcup G_a (a \in U)$, where (1) $a \in G_a$ for every $a \in U$, (2) $G_a \cap G_b = \emptyset$ if $a \neq b$ and (3) for every $x \in G_a$ and $y \in G_b$, $xy = ab$. In this case, for any $x \in G_a (a \in U)$ we define $\hat{x} \equiv a$, and so $xy = \hat{x}y$ for any $\{x, y\} \subseteq G$.

A groupoid [semigroup] G is a [symmetric] generalised inflation of its subgroupoid [subsemigroup] U if (1) $a \in G_a$ for every $a \in U$, (2) $G_a \cap G_b = \emptyset$ if $a \neq b$, (3) for every $x \in G_a$ there exist α_x and β_x, right and left mappings respectively on U, such that $xy = ba_x \beta_y a$ for every $x \in G_a$ and $y \in G_b$ and (4) $a \in U$ implies $\alpha_a = \kappa_a = \beta_a$, where κ_a is a constant mapping that sends every element to a. [5] $\alpha_a = \beta_a (x \in U)$

An element $a \in G$ is called idempotent [3-potent] if $a = a^2$ [and $a^2 = aa^2$]. The groupoid G is called a groupoid band [3-potent] if every element of G is idempotent [3-potent]. Then $E_G = \{x \in G : xx = x\}$ is the set of idempotents of G.

If in addition a groupoid band is commutative then it will be called a groupoid semilattice.

If $\{a, a'\} \in G$ and $a = (aa')a = a(a')$ then a is called a regular element of G and a' is called a partial inverse of a. If, in addition, $a' = (a'a)a = a'(aa')$ then a' is called an inverse of a. In this case a and a' are called mutual inverses. The set of all partial inverses [inverses] of the element a is denoted by $P(a)[V(a)]$. Then $P_c(a) = \{a' \in P(a) : aa' = a'a\}$ and $V_c(a) = \{a' \in V(a) : aa' = a'a\}$. If $P_c(a) \neq \emptyset$ then a is called a *-regular element of G. Also $P_r(a) = \{a' \in G : (aa')a = a\}$ and $P_l(a) = \{a' \in G : a(a'a) = a\}$ are the sets of left and right partial inverses of a.

The groupoid G is called a regular groupoid [inverse groupoid] if every element of G is regular [has a unique inverse]. We will use REG [INV] to denote the collection of all regular [inverse] groupoids.

If G satisfies the equation $(xy)z = (zy)x$ then G is called an AG groupoid. We use AG to denote the collection of all AG groupoids, SEM to denote the collection of all semigroups and UG to denote the collection of all groupoids that are a union of (not necessarily disjoint) groups. The power groupoid of a groupoid G is defined as $\{ AB : A , B \subseteq G \}_{\neq} \ $ where $AB = \{ ab : a \in A , b \in B \}$. A chain S is a semigroup in which, for any $\{ x,y \} \subseteq S$, either $x = xy = yx$ or $y = xy = yx$. The collection of all semigroup chains will be denoted by C. If $H_i \subseteq K_i (i \in \{ 1,2,...,n \})$ is a finite collection of inclusions, where $H_i , K_i (i \in \{ 1,2,...,n \})$ are meaningful groupoid {semigroup} words over some alphabet, then $[H_i \subseteq K_i ;...;H_n \subseteq K_n] \subseteq \{ [H_i \subseteq K_i ;...;H_n \subseteq K_n] \}$ denotes the collection of all groupoids {semigroups} that satisfy the inclusions $H_i \subseteq K_i (i \in \{ 1,2,...,n \})$ and will be called an inclusion class of groupoids {semigroups}.

If I is any collection of groupoids then $INF (I)$ will denote the collection of all inflations of groupoids in I. A groupoid G is called a groupoid semilattice if $G \subseteq \{ x = x^2 ; xy = yx \}_{\neq}$. A groupoid semilattice is called a groupoid tree if $e = eg = ge$ and $f = fg = gf$ implies $ef = fe \in \{ e,f \}$. If a groupoid semilattice [groupoid tree] G is also a semigroup then we call G a semilattice [tree]. We denote the collection of all (semigroup) trees by T. The collection of all 3-potent AG groupoids $G \subseteq \{ x = x^2 x \}_{\neq}$ will be denoted as AG_2. The following results are well known and will be used throughout this paper.

Result 1. [5] A commutative AG groupoid is a semigroup.

Result 2. [5] An AG groupoid with a right identity element is commutative (and is therefore a semigroup).

Result 3. [5] If $G \in AG$ then for any $\{ x,y,z,w \} \subseteq G$, $(xy)(zw) = (xz)(yw)$.

Result 4. If $G \in AG$ then $E_G \leq G$. If $E_G \in \{ xy \in \{ x,y \} \}_{\neq}$ then $E_G \in C$.

Result 5. [11] Let $G \in \mathbf{AG}$. Then $G \in \left[x = x^2, x = xx^2 \right]_G$ if and only if G is an \mathbf{AG} band $Y = E_G$ of abelian groups of order 2.

Result 6. [3,12] $S \in \left[xy \in \{x, y\} \right]$ iff S is a chain Y of semigroups $S_\alpha \in \left[xy = x \right] \cup \left[xy = y \right]$ ($\alpha \in Y$), where $x = xy = yx$ whenever $x \in S_\alpha, y \in S_\beta$ and $\alpha = \alpha \beta = \beta \alpha$.

Result 7. [1] $S \in \mathbf{SEM}$ is an inflation of a band iff $S \in \left[xy = x^2y^2 \right]$.

Result 8. [2] $S \in \mathbf{SEM}$ is a generalised inflation of a band iff $S \in \left[xy = xyxy \right]$.

Result 9. [13] If $S \in \mathbf{SEM}$ and S^2 is a semilattice of groups then $S \in \mathbf{INF} \left(\{S^2\} \right)$.

Result 10. $G \in \mathbf{AG}$ iff $P \left(G \right) \in \mathbf{AG}$.

Result 11. [10] If $G \in \mathbf{AG}$ then the following statements are equivalent: (1) G is a generalised inflation of an \mathbf{AG} band; (2) G is an inflation of an \mathbf{AG} band; (3) $G \in \left[xy = x^2y^2 \right]_G$ and (4) $G^2 \in \left[x = x^2 \right]_G \cap \mathbf{AG}$.

Result 12. If $G \in \mathbf{AG}$ is a generalised inflation of $U \leq G$ then $G^2 \cong U^2$.

Result 13. [7, Cor. 16] If $G \in \mathbf{AG}$ and $G^2 \in \mathbf{UG}$ then G is an inflation of G^2.

Result 14. [7, Theorem. 12] If $G \in \mathbf{AG}$ then $G \in \mathbf{UG}$ iff $\forall x \in G, \left| P_i \left(x \right) \right| = 1$.

3. Power groupoids and inclusion classes of \mathbf{AG} groupoids

Clearly a semigroup $S \in \left[xy \in \{x, y\} \right]$ if and only if $P \left(S \right) \in \left[x = x^2 \right]$. Such semigroups are chains of left or right-zero semigroups (cf. [12], p.181, [3] and [6], 4.2). In [9] it was proved that a semigroup $S \in \left[xyzw \in \{xy, xw, zw, zw, yz\} \right]$ if and only if $P \left(S \right)^2 \in \left[x = x^2 \right]$ and the structure of such semigroups was completely described. With groupoids, $P \left(G \right) \in \left[x = x^2 \right]_G$ if and only if $G \in \left[xy \in \{x, y\} \right]_G$ and $P \left(G \right)^2 \in \left[x = x^2 \right]_G$ if and only if $G \in \left[(xy)(zw) \in \{xy, xw, zw, zw\} \right]_G$. We
Power groupoids and inclusion classes

95

proceed to find all AG groupoids G in which $P \ (G)$ is a groupoid band and those in which $[P \ (G)]^2$ is a groupoid band.

Theorem 1. $[xy \in \{x, y\}_G \cap AG = C$

Proof: It is easy to see that any groupoid G contained in the intersection of the two groupoid inclusion classes is idempotent. Let $\{x, y, z\} \subseteq G$. Then $xy = x^2y = (yx)x = yx$ and so G is commutative. By Result 1, G is a commutative semigroup. Since $G \in \{xy \in \{x, y\}_G \}$ and G is commutative, either $x = xy = yx$ or $y = xy = yx$; therefore $G \in C$. Conversely, if $G \in C$ then clearly $G \in \{xy \in \{x, y\}_G \}$. Since G is commutative, $G \in AG$.

Theorem 2. $[(xy)(zw) \in \{xy, xw, zy, zw\}_G \cap AG = INF \ (T)$

Proof. Let $G \in \{(xy)(zw) \in \{xy, xw, zy, zw\}_G \cap AG = \}$. Let $\{e, f, g\} \subseteq E_G$. Then $fe = (ef) = (ef)(ff) \in \{ef, f\}$ and so $ef \in \{fe, e\}$. Therefore either $ef = fe$ or $fe = f$ and $ef = e$. But $ef = (fe)e$ and so either $ef = fe$ or $e = ef = (fe)e = fe = f$. So E_G is commutative and therefore is a semigroup. Furthermore, if $e = eg = ge$ and $f = fg = gf$ then $fe = ef = (eg)(fg) \in \{eg, fg\} = \{e, f\}$ and E_G is a tree. Also, since for any $\{a, b, c\} \subseteq G$, $(ab)(ab) \in \{ab\}$, $E_G = G^2$. So $ab = (ab)^2 = a^2b^2$ and $(ab)c = (av)^2c^2 = \left[a^2+b^2\right]^2c^2 = (a^2b^2)c^2 = a^2\left(b^2c^2\right) = a^2\left(b^2c^2\right)^2 = a(bc)$ and so $G \in \{xy = x^2y^2\}$. By Result 9, $G \in INF \ (T)$ and we have shown that $[(xy)(zw) \in \{xy, xw, zy, zw\}_G \cap AG = INF \ (T)$. Conversely, suppose that $G \in INF \ (T)$. Then, since an inflation of a commutative semigroup is commutative, $G \in AG$. Then since $G^2 \in T$, by Lemma 4.6 [6], $G^2 \in \{(xy)(zw) \in \{xy, xw, zy, zw\}_G \}$. Clearly, since G is an inflation of G^2, $G \in \{(xy)(zw) \in \{xy, xw, zy, zw\}_G \} \subseteq \{(xy)(zw) \in \{xy, xw, zy, zw\}_G \}$. So, $INF \ (T) \subseteq \{(xy)(zw) \in \{xy, xw, zy, zw\}_G \} \cap AG$.

Lemma 3. If $G \in AG$ then $P \ (G)$ is an inflation of an AG union of groups iff $P \ (G)$ is a generalised inflation of a union of groups iff $[P \ (G)]^2$ is a union of groups.
Proof. Let $G \in AG$. By definition it is easy to see that if $P(G)$ is an AG inflation of a union of groups then $P(G)$ is an AG generalised inflation of a union of groups, which by Result 12 implies $[P(G)]^2$ is a union of groups, which by Results 10 and 13 implies $P(G)$ is an AG inflation of a union of groups. □

Lemma 4. $G \in AG \cap \big[(xy)(zw) \in \{xz, xw, yz, yw\}\big]_G$ iff $P(G)$ is an AG inflation of an AG groupoid band.

Proof. (\Rightarrow) Using Results 10 and 11, we must show that $P(G) \in \big[xy = x^2y^2\big]_G$. Let $\{a,a'\} \subseteq A \subseteq G$ and $\{b,b'\} \subseteq B \subseteq G$. Then $(aa')(bb') \in \{ab\}$ and so $AB \subseteq A^2B^2$. Also, $(aa')(bb') \in \{ab, ab', a'b, a'b'\} \subseteq AB$ and so $A^2B^2 \subseteq AB \subseteq A^2B^2$. Hence, $P(G) \in \big[xy = x^2y^2\big]_G$. (\Leftarrow) By Result 11, $P(G) \in \big[xy = x^2y^2\big]_G$. Let $\{a,b,c,d\} \subseteq G$ and let $A = \{a,b\}$ and $B = \{c,d\}$. Then $(ab)(cd) \in A^2B^2 = AB = \{ac, ad, bc, bd\}$ and so $G \in \big[(xy)(zw) \in \{xz, xw, yz, yw\}\big]_G$. Since $P(G) \in AG$, by Result 10, $G \in AG$. □

Lemma 5. $G \in AG \cap \big[(xy)(zw) \in \{xy, xw, yz, zw\}\big]_G$ iff $P(G)$ is an AG generalised inflation of an AG groupoid band.

Proof. (\Rightarrow) Using Lemma 3 and Results 10 and 11, we need only show that $[P(G)]^2 \in \big[x = x^2\big]_G$. As in the proof of Theorem 2, $G \in \big[xy = x^2y^2\big]_G$. Therefore, for any $A \subseteq G$ and $B \subseteq G$, $AB \subseteq A^2B^2$. Also, for any $\{a,a'\} \subseteq A$ and $\{b,b'\} \subseteq B$, $(aa')(bb') = (ab)(a'b') \in \{ab, ab', a'b, a'b'\} \subseteq AB$. Hence, $A^2B^2 \subseteq AB \subseteq A^2B^2$ and $AB = A^2B^2 = (AB)^2$ and $[P(G)]^2 \in \big[x = x^2\big]_G$. (\Leftarrow) By Lemma 3 and Results 10 and 11, $[P(G)]^2 \in \big[x = x^2\big]_G$. Let $\{a,b,c,d\} \subseteq G$ and let $A = \{a,c\}$ and $B = \{b,d\}$. Then $(ab)(cd) \in (AB)^2 = AB = \{ab, ad, cb, cd\}$. So, $G \in \big[(xy)(zw) \in \{xy, xw, yz, zw\}\big]_G$. Since $P(G) \in AG$, by Result 10, $G \in AG$. □

Theorem 6. The following statements are equivalent:

(1) $G \in AG \cap \big[(xy)(zw) \in \{xy, xw, yz, zw\}\big]_G$
Power groupoids and inclusion classes

(2) \(G \in AG \cap [(xy)(zw) \in \{xz,xw,yz,yw\}]_g \);
(3) \(G \in INF (T) \);
(4) \(P(G) \) is an \(AG \) inflation of an \(AG \) band;
(5) \(P(G) \) is an \(AG \) generalised inflation of an \(AG \) band and
(6) \(G \in AG \) and \([P(G)]^2 \) is a groupoid band.

We proceed to determine the structure of groupoids in other inclusion classes of \(AG \) groupoids.

Lemma 7. \([xy \in \{x^3, y^3\}] = INF ([xy \in \{x, y\}])\).

Proof: Note that we are dealing with inclusion classes of semigroups, so that the products are associative. Suppose that \(S \in INF ([xy \in \{x, y\}]) \). Then \(S \) is an inflation of a band and so, by Result 7, \(S \in [xy = x^2y^2] \). But \(S^2 \in [xy \in \{x, y\}] \) and therefore \(xy = x^2y^2 \in \{x^2, y^2\} \). Hence,

\(INF ([xy \in \{x, y\}]) \subseteq [xy \in \{x^2, y^2\}] \). However, since \(S \) is an inflation of a band, for every \(a \in S \), \(a^2 = \alpha^2 = \alpha = \alpha^3 = \alpha^3 \) for some idempotent \(\alpha \). Therefore, \(INF ([xy \in \{x, y\}]) \subseteq [xy \in \{x^3, y^3\}] \). Now suppose that \(S \in [xy \in \{x^3, y^3\}] \).

Then \(a^2 = \alpha^3 (a \in S) \) and so \(E_S = S^2 = \{a \in S : a = a^2\} \in [xy \in \{x, y\}] \). For any \(\{a, b\} \subseteq S \), if \(ab = a^2 \) then \(a^2b^2 = a(ab)b = a^3b = \alpha^2(ab) = \alpha^4 = a^2 = ab \).

Similarly, if \(ab = b^2 \) then \(a^2b^2 = ab \). Therefore, \(S \in [xy = x^2y^2] \) and so \(S \) is an inflation of the band \(S^2 \in [xy \in \{x, y\}] \). We have shown that \(INF ([xy \in \{x, y\}]) \subseteq [xy \in \{x^3, y^3\}] \subseteq INF ([xy \in \{x, y\}]) \) as required. ■

Theorem 8. The following statements are equivalent:

(1) \(G \in INF (C) \)
(2) \(G \in INF ([xy \in \{x, y\}] \cap [xy = yx]) = INF ([xy \in \{x, y\}]_g \cap AG) \)
(3) \(G \in [xy \in \{x^2x, y^2y\}]_g \cap AG \)
(4) \(G \in [xy \in \{x^2x, y^2y\}]_g \cap AG \)
(5) \(G \in [xy \in \{x^3, y^3\}] \cap [xy = yx] \).
Proof. It follows easily from Result 4 that
\[I \cap N \cap F (C) = I \cap N \cap F \left(\left[xy \in \{x, y\} \right] \cap \left[xy = yx \right] \right) \]. It then follows easily from Theorem 1 that (1) and (2) are equivalent. It is also easy to see that
\[I \cap N \cap F (C) \subseteq \left[xy \in \{x^2, y^2\} \right] \cap \left[xy \in \{x^2, y^2\} \right] \cap \left[G \cap A \right] \], so that (1) implies (3) and (4). Assume (4). For \(a \in G \), \(a^2 = a^2 a = \left(a^2 \right)^2 \in E_g \). For \(\{e, f\} \subseteq E_g \), \(e f = e^2 e = e \) and so \(e = e f = (e f) e = e f = f \) and \(E_g = \{0\} \). But then for any \(\{a, b, c, d\} \subseteq G \), \(ab = a^2 a = a^2 = c^2 = c^2 c = cd \). Thus, \(E_g = G^2 = \{0\} \). But since \(ab = a^2 = a^2 b^2 = 0 \), \(G \) is an inflation of \(G^2 = \{0\} \), where \(x = 0 \) \((x \in G) \). So
\[xy = (xy)^2 = x^2 y^2 \]. By Result 7, \(G \in I \cap N \cap F (C) \) and so (4) implies (1). Similarly, (3) implies (1). Hence, (1), (2), (3) and (4) are equivalent. Then, using Lemma 7, (1) through (5) are equivalent. \blacksquare

Theorem 9. \(\left[xy = x^2 x \right]_G \cap \left[G \cap A \right] = I \cap N \cap F \left(\{0\} \right) \)

Proof. Let \(a \in G \in \left[xy = x^2 x \right]_G \cap \left[G \cap A \right] \). Then \(a^2 = a^2 a = \left(a^2 \right)^2 \in E_g \). For any \(\{e, f\} \subseteq G \), \(e f = e^2 e = e \) and so \(e = e f = (e f) e = e f = f \) and \(E_g = \{0\} \). But then for any \(\{a, b, c, d\} \subseteq G \), \(ab = a^2 a = a^2 = c^2 = c^2 c = cd \). Thus, \(E_g = G^2 = \{0\} \). But since \(ab = a^2 = a^2 b^2 = 0 \), \(G \) is an inflation of \(G^2 = \{0\} \), where \(x = 0 \) \((x \in G) \). So
\[\left[xy = x^2 x \right]_G \subseteq I \cap N \cap F \left(\{0\} \right) \]. It is straightforward to show that
\(I \cap N \cap F \left(\{0\} \right) \subseteq \left[xy = x^2 x \right]_G \). \blacksquare

Theorem 10. \(\left[(xy) x \in \{x, y\} \right]_G \cap \left[G \cap A \right] \subseteq AG \)

Proof. Let \(a \in G \in \left[(xy) x \in \{x, y\} \right]_G \cap \left[G \cap A \right] \). Then \(a^2 = (a^2 a) a = \left(a^2 \right)^2 \) and \(a a^2 = (a^2 a) a^2 \in \{a^2, a\} \). So either \(a a^2 = a \) or \(a a^2 = (a a^2) a^2 = \left(a^2 \right)^2 a = a^2 a = a \). So \(a^2 a = a = a a^2 \) and \(G \in AG \). \blacksquare

Lemma 11. Let \(G \in AG \) and \((G) \in REG \) . Then \(E_G \neq \emptyset \) implies \(E_G \in C \).

Proof. Let \(A = \{e, f\} \subseteq E_G \). Then there exists \(B \subseteq G \) such that \((AB) A = A (BA) = A \). Let \(b \in B \). Then \((eb) f \in (AB) A = A = \{e, f\} \).

CASE 1: \((eb) f = e\). Note that \(e (be) e = A (BA) = A = \{e, f\} \) and so
\[e = (eb) f = (fb) e = (fe)(be) = \left((fe)(be) \right) e = \left(e(\{fe\}, f(\{fe\}) \right) e \in \{e(\{fe\}, f(\{fe\}) \right) \}.
\]
So, \(e = (eb) f = (ef)(bf) \) and \(ef = \left((ef)(bf) \right) f = \left[f (bf) \right] (ef) \in \{e(\{ef\}, f(\{ef\}) \right) \} \) since \(f (bf) \in A(BA) = A = \{e, f\} \).

CASE 1.1 : \(ef = e(ef) \). Note that \(e = (eb) f = \left[(eb) f \right] e = (ef)(eb) = e(fb) \). Therefore, \(ef = e(ef) = e\left[(eb) f \right] = e\left[f (eb) \right] = e\left((fe)(fb) \right) =
\[e \in \{e(\{fe\}, f(\{fe\}) \right) e \} . \]
But, since \(e \in \{e(\{fe\}, f(\{fe\}) \right) \} \), we can assume that \(e = f (fe) \) or else \(ef = e f = e \). Now \(eb = \left[f (fe) \right] b = \left[b(f e) \right] f \) and so
\[f (eb) = f \left[\left(b(f e) \right) \right] f = \left(\left(fb \right) f (fe) \right) f = f = \left(f (eb) \right) \] Then, \(e = ee = \left[f (fe) \right] \left[e(f b) \right] = \left(f (fe) \right) \left[f (fe) \right] = \left(fe \right) (ef) \), so
\[fe = f \left(\left(fe \right) (ef) \right) \] Since \(e \in \{e(\{fe\}, f(\{fe\}) \right) \} \), we can assume that \(e = f (fe) \) or else \(ef = (fe)e = e \). Then, \(e = (eb) f = (fb) = (fe)(be) \) and
\[so \quad fe = f \left[\left(fe \right)(be) \right] = \left[f (fe) \right] \left[f (be) \right] =
\[\left(fe \right) \left[f (be) \right] \in \{\left(fe \right) f, \left(fe \right)e\} = \{ef\} \] So \(e = (ef)e = (fe)e = ef \).

CASE 2 : \((eb) f = f \). Then
\[f = (eb) f = (fb) e = (fe)(be) = \left[\left(fe \right)(be) \right] f = \left[f (be) \right] (fe) \in \{e(\{fe\}, f(\{fe\}) \right) \} \] So \(fe = \left[(eb) f \right] e = \left[(eb) e \right] (fe) = \left(fe \right) \left(eb \right) e \in \{\left(fe \right) e, \left(fe \right) f \} \).

CASE 2.1 : \(fe = (fe) f = f (ef) \). Note that \(fe = (fe) f = \left[\left(fe \right) f \right] f = f (fe) \). If \(f = f (fe) \) then \(fe = f (fe) = f \) , which implies that \(ef = (fe)e = fe = f \) . So we can assume that \(f = e(\{fe\}) = (ef)e \). Then
\[f = ff = \left[e(\{fe\}) \right] f = \left[f (fe) \right] e = (fe)e = ef \] .

CASE 2.2 : \(fe = (fe)e = ef \). Then, if \(f = e(\{fe\}) = (ef)e \) ,
\[ef = fe = \left[\left(ef \right) e \right] e = e(ef) = e(f e) = f \] and so we can assume that \(f = f (fe) \).
Then, \(f = f (fe) = \left[f (fe) \right] (fe) = (fe) f = (ef) f = fe \), which implies that
$ef = (ef)^2 = (fe)^2 = f^2 = f$. So we have shown that $ef \in \{e, f\}$ and, by Result 4, if $E_G \neq \emptyset$ then $E_G \in C$. ■

Theorem 12. $G \in AG$ and $P(\langle G \rangle) \in UG$ implies $G \in C$ or $G = E_g \cup \{q\}$ where $E_G \in C$, $q \notin E_G$, $qe = eq = e$ for every $e \in E_G - \{q^2\}$ and $q^2x = xq^2 = x$ for every $x \in G$.

Proof. First we will prove that every element of G has a partial inverse with which it commutes, which by Result 14 implies that $G \in UG$.

Let $a \in G$, with $A = \{a\}$. Then since $P(\langle G \rangle) \in UG$ there exists $B \subseteq G$ such that $(AB)A = A(AB) = A$ and $AB = BA = (AB)^2 = (BA)^2$. Let $b \in B$.

Then $(ab)a = a(ba) = a$ and $(ba)a = (ab)(ba) = (ab)(ba)^2 = (ba)^2(ba) = (ab)(ba)$ and so $(ba)a = a$ and $ab = (ba)^2$. Also, $a^2a = a^2[(ba)a] = [a(ba)]a^2 = aa^2$. So for any $x \in G$ we can show similarly that $x^2x = xx^2$. Then $ab = [(ab)a]b = (ba)(ab) = (ba)(ba)^2 = (ba)^2(ba) = (ab)(ba)$ and so $ab = [(ab)(ba)](ba) = (ba)^2(ab) = (ab)^2$. Similarly, there exists $b' \in G$ such that $b = (bb')b$ and $bb' \in E_G$. Then, $ba = (ba)(bb') \in E_G$ and so $ab = (ba)^2 = ba$.

Hence, $G \in UG$ and by Lemma 11, $\emptyset \neq E_g \in C$.

We now show that for any $a \in G, a^2 \in E_g$. Let $A = \{a, a^2\}$ and let $B \in P(\langle G \rangle)$ be such that $B \in V_e(A)$. If $b \in B$ then $(a^2b)a = [(ba)a]a \in (AB)A = A = \{a, a^2\}$. But $(ba)a \in (BA)A = (AB)A = A = \{a, a^2\}$ and so $(a^2b)a \in \{a, a^2\}$. If $(a^2b)a = a^2$ then $a^2 = (a^2b) \in \{a, a^2\}$, which implies that $a^2 \in E_g$. If $(a^2b)a = a$ then $a^2 = a^2(a^2b)$. But $a^2b = (ba)a \in \{a, a^2\}$ and so $a^2 = a^2(a^2b) \in \{a^2, a^2a, (a^2)^2\}$, which implies that $a^2 \in E_g$.

We now prove that for any $\{x, e\} \subseteq G$ satisfying $x \neq x^2 \neq e \in E_g$, $e = ex = xe$ and $e = x^2e = ex^2$. Let $A = \{x, e\}$ and let $B \in V_e(A)$, with $b \in B$. Then $(eb)x \in \{x, e\}$. Suppose that $(eb)x = x$. Now $(eb)e = (be)e \in \{x, e\}$. But this implies that $eb = e$, or else $x = (eb)x = x^2$, a contradiction. Hence, $x = (eb)x = ex$. Then $xb = (ex)b = (bx)e \in \{x, e\}$, which implies $xb = x$, or else
\[x = (eb)x = (xb)x = e = e^2 = x^2. \]
Then \[x^2 = (xb)x \in \{x, e\} \], a contradiction. So we can assume that \((eb)x = e\). Now \(eb = (be)e \in \{x, e\} \), which implies that \(eb = e\) or else \(e = (eb)x = x^2\), a contradiction. So \(e = (eb)x = ex\). Now \(xe = x(eb) \in \{x, e\} \), which implies \(xe = e\) or else \(e = ex = (xe)e = xe = x\), a contradiction. So we have shown that \(e = ex = xe\). (As a consequence, \(e = e^2 = x^2e\).)

We now prove that \(|G - E_g| \leq 1\). Let \(\{x, y\} \subseteq G - E_g\), with \(x \neq y\). We have already proved that \(\{x^2, y^2\} \subseteq E_g\) and we know that \(x \neq x^2\) and \(y \neq y^2\). In the paragraph above we proved that if \(x^2 \neq y^2\), then \(y^2 = y^2x = xy^2\) and \(x^2 = x^2y = y^2x\). Therefore, \(y^2 = y^2x = (y^2x)x = x^2y^2\) and similarly \(x^2 = y^2x^2\). But this is a contradiction, since \(E_g \in C\) implies that \(x^2y^2 = y^2x^2\). So \(x^2 = y^2\), which means that any two non-idempotent elements of \(G\) are in the set \(\{g \in G : g^2 = a\}\), where \(a \in E_g\) and \(a\) is maximal in \(E_g\). We have already shown that \(G \in UG\) and since \(e = xe = ex\) for every \(e \in E_g\) (when \(e \neq x^2\)) and \(x \neq x^2\), \(x = xx^2 = x^2x\) for every \(x \in G_u - E_g\). But then it is easy to see that \(G_u\) is an abelian group of order two. Thus, \(\{x, y\} \subseteq G_u\), with \(a = 1_{G_u}\). Take \(A = \{a, x, y\}\) and let \(B \subseteq G\) satisfy \(B \in V_c(A)\). Then for \(b \in B\), \((ab)a \in \{a, x, y\}\). This implies that \(b^2 = a\) and hence, \(b \in G_u\). If \((ab)a = a\) then \(b = a\) and therefore \((xb)y = xy \in (AB)A = \{a, x, y\}\). If \((ab)a = x\) then \(b = x\) and \(xy = (ax)y = (ab)y \in \{a, x, y\}\). If \((ab)a = y\) then \(b = y\) and \(xy = (xy)a = (xb)a \in \{a, x, y\}\). We have therefore shown that \(xy \in \{a, x, y\}\). But \(xy = a\), implies \(x = y\), \(xy = x\) implies \(y = a\) and \(xy = y\) implies \(x = a\). Hence we have a contradiction to the hypothesis that \(\{x, y\} \subseteq G - E_g\) and \(x \neq y\) and therefore \(|G - E_g| \leq 1\).}

Theorem 13. \(G \in AG\) and \(P(G) \in UG\) if and only if \(G \in \{\{(xy)z, x(yz)\} \subseteq \{x, y, z\}\}_G \cap AG\)

Proof. \((\Rightarrow)\) It follows easily from Theorem 12 that \(G \in \{\{(xy)z, x(yz)\} \subseteq \{x, y, z\}\}_G \cap AG\).

\((\Leftarrow)\) Let \(\{e, f\} \subseteq E_g\). Then \(ef = (fe)e \in \{e, f\}\), so by Result 4, \(E_g \in C\). Note that for any \(z \in G\), \(z = z^2z = zz^2\) and \(z^2 = (z^2)z = (z^2)^2 \in E_g\). Assume that
\{x, y\} \subseteq G - E_g and x \neq y. Then (xy) y = y^2 x = (y^2 y^2) x \in \{x, y\} \cap \{x, y\}$. Since \(x \neq y\) and \(y \neq y^2\), (xy) y = x. Similarly, (yx) x = y. But then
\[y = (yx) x = \left(\left(\left(x y\right) x\right) x\right) x = \left(\left(x y\right) x\right) x - x^2 y x \cap \{x, y, x\} \cap \{x, y, x, x\}.\]
But \(y \notin \{x, x^2\}\) and so \(y = xy = yx\). By symmetry, \(x = yx = xy\) and so \(x = y\). We have shown that either \(G = E_g \in C\) or \(G = E_g \cup \{q\}\), where \(q \notin E_g\). Clearly, \(qq^2 = q^2 q = q\). Let \(e \in E_g\). Then \(q^2 e \in E_g\) and \(q^2 e = (q^2 q^2) e \in \{e, q\}\), which implies that \(q^2 e = e\). Similarly, \(eq^2 = e\). So we have shown that \(q^2 x = xq^2 = x\) for all \(x \in G\). If \(e \neq q^2\) then \(qe = q(ee) \in \{q, e\}\). If \(qe = q\) then \(q = q(e) e = eq\) and then \(q^2 = (qe) q \in \{e, q\}\), a contradiction. Hence, \(qe = e\). Similarly, \(eq = e\). We have shown that \(G\) is commutative and so \(G \in SEM\). For any \(A \in P\) \((G)\), clearly \(A(AA) = (AA) A \subseteq A\). Then \(A \subseteq (AA) A = A(AA)\) if \(q \notin A\). If \(q \in A\) then, since \(q = q^2 q = qq^2\), it is still the case that \(A \subseteq (AA) A = A(AA)\). Then by Result 5 and 10, \(P\) \((G) \in UG\).

Note that in the proof of Theorem 13 we have also proved the following.

Corollary 14. If \(G \in AG\) and \(G\) has the form described in Theorem 12 then \(P\) \((G) \in UG \cap \left[x = x^2 x = xx^2\right]_g\).

Corollary 15. \(G \in \left[\{xy\} z, x (yz)\right] \subseteq \{x, y, z\} \in AG\) implies that \(G\) has the form described in Theorem 12.

Lemma 16. Let \(G \in AG\). Let \(S_n\) be the following statement: Any product \(P\) of \(2n+1\) factors \((a_1, a_2, ..., a_{2n+1}\) say) in \(G\) is equal to a product \(P'\) of the same factors in which \(P'\) contains a product of the form \(a bc\) or \((ab)c\), where \(\{a, b, c\} \subseteq \{a_1, a_2, ..., a_{2n+1}\}\). Then \(S_n\) is true for every positive integer \(n\).

Proof. (By induction on \(n\).) Clearly, \(S_1\) is true. Let \(n \geq 2\) and assume that \(S_n\) is true for all \(t \leq n-1\). Let \(P\) be any product, in \(G\), of the \(2n+1\) factors \(a_1, a_2, ..., a_{2n+1}\) listed in order of their appearance in \(P\).

CASE 1: \(P\) begins in \((a_1 a_2) P'\). If \(P'\) has an odd number of factors and, by the induction hypothesis, \(P'\) (and, therefore, \(P\)) contains a product of the required form. If \(P'\) has an even number of factors then \(P\) begins in
(a_1a_2)P' = (P'a_2)a_1, and by the induction hypothesis P'a_2 contains a product of the required form, so that P is equal to a product containing a product of the required form.

Case 2: If P begins in $a_1P' = a_i(AB)$ We can assume that A and B both have an even number of factors. We can assume that A has at least four factors, or else $AB = (a_2a_3)B = (Ba_3)a_2$, which by the induction hypothesis contains a factor of the required form. Then $A = A_1B_1$ and again we can assume that A_1 has an even number of factors, but not two factors, and B_1 also has an even number of factors. Continuing in this manner we eventually obtain a factor $A_1B_1 = (B_1a_{k+1})a_k$ and B_1a_{k+1} has a factor of the required form. Hence P is equal to a product of the a_j's $(j \in \{1, 2, \ldots, 2n+1\})$ and this product has a factor of the required form.

Lemma 17. Let $G \in AG$ and $n \in \mathbb{N} = \{1, 2, \ldots\}$. Let A_n be the following statement: Any product of n factors equals one of the factors. Then for any $n \in \mathbb{N}$, A_2 is valid if and only if A_{2n} is valid and A_3 is valid if and only if A_{2n+1} is valid.

Proof. $[A_{2n} \Rightarrow A_2]$ Let $\{a, b\} \subseteq G$. Then by A_{2n}, $a^{2n} = a$. So, again by using A_{2n}, $a^2a = a^2a^{2n} \in \{a, a^2\}$. This implies that $a^2 = (a^2)^2$. Then $a^2 = (a^2)^n$, which by A_{2n} equals a. That is, $a = a^2$ for any $a \in G$. Using this fact and applying A_{2n} again gives $ab = (ab)^n \in \{a, b\}$ and so A_2 is valid.

$[A_2 \Rightarrow A_n]$, for any $n \in \mathbb{N}$, $n \geq 3$] Let $\{a, b, c\} \subseteq G$ and assume that A_3 is valid. Then $(ab)c \in \{ab, c\} \subseteq \{a, b, c\}$ and $a(bc) \in \{a, bc\} \subseteq \{a, b, c\}$. So A_3 implies A_3. Assume that A_t is valid for all $t \in \mathbb{N}$, $3 \leq t \leq n-1$. Let $\{a_1, a_2, \ldots, a_q, a_{q+1}, \ldots, a_p\}$ be the factors of an arbitrary product $T = AB$, where T has n factors, a_1, a_2, \ldots, a_q are the factors of A and $a_{q+1}, a_{q+2}, \ldots, a_p$ are the factors of B. Since, by the induction hypothesis, A_2, A_q and A_{n-q} are valid, $T \in \{A, B\} \subseteq \{a_1, a_2, \ldots, a_n\}$ and so A_n is valid.

Note that we have proved that for any $n \in \mathbb{N}$, A_{2n} implies A_2 implies A_{2n}.

$[A_{2n+1} \Rightarrow A_3]$, for any $n \in \mathbb{N}$] Let $a \in G$. Then $a^2a = a^2a^{2n+1} \in \{a, a^2\}$ which implies that $a^2 \in E_G$. Then since $a^2a = (a^2)^n = a = a(a^2)^n = aa^2$, by Result 5
G is a union of groups of order 2. Let $\{u, v, w\} \subseteq G$. Then

$$(uv)w = (uv)(ww^2) = (uv) \left[w \left(w^3 \right)^{w^{-1}} \right] \in \{u, v, w\}.$$ and similarly, $u(vw) \in \{u, v, w\}$. Hence, A_3 is valid.

[$A_3 \Rightarrow A_{2n+1}$, for any $n \in \mathbb{N}$.] Using Lemma 16, the proof of this by induction is straightforward.

Theorem 18. If $G \in AG$ then the following statements are equivalent.

1. $P(G) \in UG$;
2. $G \in C$ or $G = E_G \cup \{q\}$ where $E_G \in C$, $q \notin E_G$, $qe = eq = e$ ($q^2 \neq e \in E_G$) and $q^2 x = xq^2$ ($x \in G$);
3. $G \in \left[\{x(yz), (xy)z\} \subseteq \{x, y, z\} \right]_{AG}$
4. $P(G) \in \left[x^2 x = x^2 \right]_{AG}$
5. $G \in AG$ and satisfies A_{2n+1} for some $n \in \mathbb{N}$ and
6. $G \in AG$ and satisfies A_{2n+1} for every $n \in \mathbb{N}$.

Proof. [$1 \iff 3$] This is Theorem 13.

[$1 \iff 2$] This follows from Theorem 12 and Corollary 14.

[$1 \iff 5 \iff 6$] This follows from Lemmas 16 and 17.

[$2 \Rightarrow 4$] This follows from Corollary 14 and Result 10.

[$4 \Rightarrow 1$] This follows from Result 5. ■

Open Questions

1. Does there exist a symmetric generalised inflation S of a commutative semigroup U such that S is not an inflation of U?

2. Does there exist a symmetric generalised inflation $G \in AG$ of a groupoid $U \in AG$ such that G is not an inflation of U?

3. If $G \in AG$ does $P(G) \in REG$ imply $P(G) \in UG$?
References

Received: August, 2010