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Abstract

We solve the diophantine equations d1 a2
1 − d2 a2

2 = ±NF/Q (IF) to
decide if an ideal in the ring of integers in a quadratic field F with hF = 2
is principal or non-principal. As a consequence of this, we distinguish
prime and irreducible elements.
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1 Introduction

Let F = Q(
√
d) be a real quadratic field, OF the ring of integers of F, ClF its

class group, hF its class number, δF the absolute discriminant of F, δK/F the

relative discriminant of K/F, IF denotes the class of the ideal IF in ClF and

HF is the Hilbert class field of F. For a ∈ Z, b ∈ N, we will write
[a
b

]
= 1

if and only if x2 ≡ a (mod b) is solvable with x ∈ Z and
[a
b

]
= −1 if the

congruence has no solutions. In [1], the authors proved:

Theorem 1.1. Let F be a quadratic number field such that ClF has exponent
2 and IF ⊆ OF is an ideal such that g.c.d.

(
NF/Q (IF), δF

)
= 1. Then IF is a

non-principal ideal if and only if

[
±NF/Q (IF)

d

]
= −1.
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In this paper we are going to relate this equivalence with diophantine equa-
tions of the form

d1 a
2
1 − d2 a

2
2 = ±NF/Q (IF) (1)

for d = d1 d2, d1, d2 ∈ Z. To accomplish this, we are going to find explicitly
the Hilbert class field of a quadratic field such that ClF has exponent 2. The
solubility of equation (1) has been studied using continued fractions, for exam-
ple, in [4], [6], [7] and [8]. As an application, we will give a criterion to decide
whether an element in OF is prime, irreducible or compound for certain class
of quadratic number fields.

2 Extensions of ideals

Let us consider an extension of number fields K/F and OK,OF their rings of
integers respectively. We will denote 〈α1, . . . , αt〉K the ideal of OK generated by
α1, . . . , αt ∈ OK, 〈A1, . . . , At〉F the ideal of OF generated by A1, . . . , At ∈ OF,
NK/Q (α) the absolute norm of α ∈ K, NF/Q (A) the absolute norm of A ∈ F
and NK/F (α) the relative norm of α ∈ K in K/F. If IF is an ideal of OF, then
〈IF〉K is the extension of IF in OK, this is, the ideal of OK generated by the
elements of IF. If IK is an ideal of OK, the contraction of IK to OF is the ideal
IK ∩ OF. It is easy to show that:

Proposition 2.1. Let F ⊆ K be two number fields, OF,OK their ring of
integers and IF = 〈A1, A2〉F an ideal of OF with A1, A2 ∈ OF. Then 〈IF〉K =
〈A1, A2〉K.

Corollary 2.2. Let F ⊆ K be two number fields, OF,OK their rings of
integers and IK an ideal of OK with IK = 〈A1, A2〉K, where A1, A2 ∈ OF. Then
IK ∩ OF = 〈A1, A2〉F.

If we extend an ideal of OF to OK and then restrict it back to OF, the ideal
remains the same. The inverse process can change the ideal. For example, con-
sider F = Q and K = Q(

√
10) and the ideal IK =

〈
2,
√

10
〉

K. The contraction

IK ∩ OF = 〈2〉F and 〈IK ∩ OF〉K = 〈2〉K 6=
〈
2,
√

10
〉

K.

The next result helps us to calculate the ramification index of an ideal in
the composition of two fields.

Proposition 2.3. Let F,K1,K2,L be number fields as in the next diagram,
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where every extension is Galois:

L = K1K2

MMMMMMMMMMM

rrrrrrrrrrr

K1 K2

F = K1 ∩K2

rrrrrrrrrrr

MMMMMMMMMMM

and pF, p1, p2, pL prime ideals in the rings of integers of F,K1,K2,L respec-
tively, such that pF = pL ∩ OF = p1 ∩ OF = p2 ∩ OF, p1 = pL ∩ K1 and
p2 = pL ∩K2. Let q1, q2 ∈ {pF, p1, p2, pL} such that q1 ⊇ q2. If e(q1/q2) denote
the ramification index of q1 over q2, then e(pL/pF) = e(pK1/pF)e(pK2/pF).

Proof. See [9], pp. 263, E.

3 The Hilbert class field of a family of

quadratic fields

In this section we will describe the Hilbert class field of a quadratic field such
that ClF has exponent 2. In [2] Proposition 1.2, H. Cohen and X. Roblot affirm
that if F = Q(

√
d) with d > 0 and hF = 2, then there exist a divisor d2 of

δF with 1 < d2 < δF and d2 ≡ 0, 1 (mod 4), such that HF = F(
√
d2). The

problem is to find d2. They affirm that, using theory of genera or Kummer
theory, d2 can be found in a finite number of steps. We will give a proof of
this fact in which we find explicitly d2. We will finish the section generalizing
this result when the exponent of ClF is 2, including the imaginary case.

As an immediate consequence of Gauss Theorem on the 2-rank of ClF (see
[1], Theorem 3, or [5] Theorem 3.70) we have:

Proposition 3.1. Let F = Q(
√
d) with hF = 2. For some distinct p, q, r >

0 odd rational prime numbers, d has one of the next forms:

1. d = 2 p with p ≡ 1 (mod 4).

2. d = p q with p ≡ q ≡ 1 (mod 4).

3. d = p q with p ≡ 1 (mod 4), q ≡ 3 (mod 4).

4. d = 2 p q with p ≡ q ≡ 3 (mod 4).

5. d = 2 p q with p ≡ 1 (mod 4), q ≡ 3 (mod 4).

6. d = p q r with p ≡ 1 (mod 4), q ≡ r ≡ 3 (mod 4).
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7. d = −p with p ≡ 1 (mod 4).

8. d = −2 p.

9. d = −p q with p ≡ 1 (mod 4), q ≡ 3 (mod 4).

In each one of the cases that we described in the previous proposition, there
is exactly one way of factoring d = d1 d2 such that d1, d2 6= 1, d2 ≡ 1 (mod 4)
and where at least one of the factors is positive:

1. d1 = 2, d2 = p.

2. d1 = p, d2 = q.

3. d1 = q, d2 = p.

4. d1 = 2, d2 = p q.

5. d1 = 2 q, d2 = p.

6. d1 = p, d2 = q r.

7. d1 = −1, d2 = p.

8. d1 = −2, d2 = p if p ≡ 1 (mod 4) and d1 = 2, d2 = −p if p ≡ 3
(mod 4).

9. d1 = −q, d2 = p.

Theorem 3.2. Let d = d1 d2, d2 ≡ 1 (mod 4), d1, d2 6= 1 and d1 > 0 or
d2 > 0. If F = Q(

√
d) with hF = 2, then HF = Q(

√
d1,
√
d2).

Proof. Let K = Q(
√
d1,
√
d2). Note that

{
1,

1 +
√
d2

2

}
and {1,

√
d1} are

bases of K/F using only algebraic integers. If B ⊆ OK is a base of K as an
F-vector space, we will denote ∆(B) the discriminant of B. We know that

∆({1,
√
d1}) = 4d1 and ∆

({
1,

1 +
√
d2

2

})
= d2, furthermore

g.c.d. (4d1, d2) = g.c.d. (d1, d2) = 1.

Then, δK/F = OF and K/F is an unramified extension, including the infinite
primes. Therefore HF = K.

Theorem 3.3. Let d = p0 · · · pg be a square-free rational integer, pi > 0

prime for all i and F = Q(
√
d) such that ClF has exponent 2:

1. If pi ≡ 1, 2 (mod 4) for all i, then HF = Q(
√
p0, . . . ,

√
pg).
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2. If p0 = 2, p1 ≡ 3 (mod 4) and pi ≡ 1 (mod 4) for i ≥ 2, then

HF = Q(
√

2 p1,
√
p2, . . . ,

√
pg).

3. If d ≡ 1, 2 (mod 4) and for some 0 ≤ t < g we have that p0, . . . , pt−1 ≡
1, 2 (mod 4), pt, . . . , pg ≡ 3 (mod 4), then the Hilbert class field of F
is

HF = Q(
√
p0, . . . ,

√
pt−1,

√
pgpt,

√
pgpt+1, . . . ,

√
pgpg−1).

Let us observe that there must be at least two prime numbers pg−1, pg ≡ 3
(mod 4) and the case t = 0 means pi ≡ 3 (mod 4) for i = 0, . . . , g.

4. If d ≡ 3 (mod 4), then HF = Q(
√
p0, . . . ,

√
pg).

Proof. We will only prove the first assertion. For i = 1, . . . , g consider
Li = F(

√
pi). Using the ideas of the proof of Theorem 3.2, it is easy to

show that Li/F is an unramified extension. Since Li/F are unramified and
Li ∩ Lj = F for i 6= j, then L1 · · ·Lg/F is unramified as a consequence of
Proposition 2.3. Finally, using Gauss Theorem on the 2-rank of a quadratic
field, [L1 · · ·Lg : F] = 2g−1 = o(ClF). Therefore, HF = L1 · · ·Lg. The proof of
the other assertions are similar to these one.

We have the imaginary version of the previous theorem. The proof is done
as in the real case.

Theorem 3.4. Let d = −p0 · · · pg be a square-free integer with pi positive

rational prime numbers and F = Q(
√
d) such that the exponent of ClF is 2:

1. If d ≡ 1 (mod 4), where p0, . . . , pt−1 ≡ 1 (mod 4), pt, . . . , pg ≡ 3
(mod 4) for some 0 ≤ t ≤ g + 1, then

HF = Q(
√
p0, . . . ,

√
pt−1,

√
−pt, . . . ,

√
−pg).

The case t = g+1 means that there is no prime number p ≡ 3 (mod 4).

2. If d ≡ 2 (mod 4), where p0 = 2, p1, . . . , pt−1 ≡ 1 (mod 4), pt, . . . , pg

≡ 3 (mod 4) for some 1 ≤ t ≤ g + 1, then

HF = Q(
√
±2,
√
p1, . . . ,

√
pt−1,

√
−pt, . . . ,

√
−pg),

where the sign of 2 is + if d/2 ≡ 1 (mod 4) and − if d/2 ≡ 3 (mod 4).

3. If d ≡ 3 (mod 4), then HF = Q(
√
−1,
√
p0, . . . ,

√
pg).
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4 Principal ideals and diophantine equations

In this section, we are going to find a method to classify principal ideals in
some quadratic fields. The criteria found in [1] is more general than the one we
are going to find, but now we will have the advantage of relating this problem
with the solutions of the diophantine equation of the form d1 b

2
1 − d2 b

2
2 =

±s2NF/Q (I), where the variables are b1 and b2. In this work, when we say
the diophantine equation f(b1, b2) = ±c is solvable, we mean that it has one
solution, b1, b2 ∈ Z for at least one of the signs. Sometimes the equation has
solutions for both signs, other times, only one sign works.

Let F = Q(
√
d) be a quadratic field with hF = 2. As seen in the previous

section, there exist d1, d2 ∈ Z with d2 ≡ 1 (mod 4) such that d = d1 d2 and
at least one is positive. Since every prime that divides d1 or d2 is ramified in F,
then there exist ideals d1, d2 such that NF/Q (d1) = |d1| and NF/Q (d1) = |d2|.
Clearly, d1, d2 are unique. Since d1d2 =

〈√
d
〉

F
, then both ideals are principal

or both are non-principal. From the previous equality we see that d2 = d1
−1

and since d2
1 = 〈d1〉F, then d1 = d1

−1
, hence d1 = d2.

First, we will study the case d = 2 p, 0 < p ≡ 5 (mod 8) a rational prime.
Here we have a simple criterion to identify principal and non-principal ideals.
Let F = Q(

√
2 p), HF = K = Q(

√
2,
√
p) the Hilbert class field of F and OF,OK

the respective rings of integers. Clearly, OF = Z +
√

2 pZ.

HF = K = Q(
√

2,
√
p)

nnnnnnnnnnnnnn

OK F = Q(
√

2 p)

OF

mmmmmmmmmmmmmm Q

Z

llllllllllllllllll

Since 2 | δF, then 〈2〉F ramifies and if p2 =
〈
2,
√

2 p
〉

F, then 〈2〉F = p2
2. We have

p ≡ 5 (mod 8) hence

(
2

p

)
=

[
2

p

]
=

[
2

2 p

]
= −1 (see [1], Lemma 4), then p2

is a non-principal ideal and, since p2
2 is principal, we have hF is even. Now we

will study the case hF = 2.

Lemma 4.1. Let F = Q(
√

2 p) with 0 < p ≡ 5 (mod 8), hF = 2, p2 =〈
2,
√

2 p
〉

F and K = Q(
√

2,
√
p). Then:

1. 〈p2〉K =
〈√

2
〉

K.
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2. If JF is a non-principal ideal of OF, then there exists B = b1
√

2+b2
√
p ∈

OK such that b1, b2 ∈ Z and 〈JF〉K = 〈B〉K.

Proof. Clearly, 〈p2〉K =
〈
2,
√

2 p
〉

K. In OK,
√

2 | 2 and
√

2 |
√

2 p, hence〈√
2
〉

K | 〈p2〉K. On one hand, since NK/Q (α) = NF/Q
(
NK/F (α)

)
, we have

NK/Q

(√
2
)

= NF/Q

(
NK/F

(√
2
))

= NF/Q (−2) = 4, (2)

and on the other hand

NK/Q (〈p2〉K) = NF/Q
(
NK/F (〈p2〉K)

)
= NF/Q

(
p2

2
)

= NF/Q (p2)
2 = 4 (3)

(see [9], pp 235, C and D) Now, 1 follows from (2) and (3).
Since hF = 2, then p2 = JF and p2JF is principal. Let p2JF = 〈A〉F. If we

consider this equality in K we have

〈A〉K = 〈p2〉K 〈JF〉K =
〈√

2
〉

K
〈JF〉K .

The field K is the Hilbert class field of F, then 〈JF〉K must be a principal ideal,
say 〈JF〉K = 〈β〉K. Because of this〈√

2
〉

K
〈β〉K =

〈√
2 β
〉

K
= 〈A〉K ,

which shows that
√

2 β µ = A for some unit µ ∈ OK and A = a1 + a2

√
2 p.

Since 〈β〉K = 〈µβ〉K we can suppose
√

2 β = A = a1 + a2

√
2 p.

From the previous equality we have
√

2 | A and, since
√

2 | a2

√
2 p, then√

2 | a1, where a1 ∈ Z and a1 must be even. Therefore
√

2 β = 2
a1

2
+ a2

√
p
√

2 =
√

2
(a1

2

√
2 + a2

√
p
)
,

with
a1

2
, a2 ∈ Z. Hence, for each non-principal ideal JF ⊆ OF there exists an

element of the form b1
√

2 + b2
√
p ∈ OK where b1, b2 ∈ Z such that 〈JF〉K =〈

b1
√

2 + b2
√
p
〉

K. This proves 2.

Observe that if JF is an ideal of OF such that 〈JF〉K = 〈β〉K for some
β = b1

√
2 + b2

√
p, then

NK/Q (β) = (b1
√

2 + b2
√
p)(b1

√
2− b2

√
p)(−b1

√
2 + b2

√
p)(−b1

√
2− b2

√
p),

this is NK/Q (β) = (2 b21 − p b22)
2. Furthermore, NK/Q (〈JF〉K) = (NF/Q (JF))2

and |2 b21 − p b22| = NF/Q (JF). From this, if JF is a non-principal ideal, then,
2 b21−p b22 = ±NF(JF) has an integer solution on the variables b1, b2 for at least
one sign. Also, on any real quadratic field F = Q(

√
d), if JF is a principal ideal

of OF, then one of the equations b21 − d b22 = ±NF/Q (JF) must have an integer
solution.
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Proposition 4.2. Let d ≡ 5 (mod 8) be a rational integer, c ∈ N odd and
b1, b2, b3, b4 variables. Consider the equations:

1. b21 − 2 d b22 = ±c.

2. 2 b23 − d b24 = ±c.

It is not possible that 1 and 2 are solvable at the same time.

Proof. Since d ≡ 5 (mod 8), −2 d ≡ 6 (mod 8). The squares modulo 8 are
0, 1, 4, multiplying this values times 6 we get 0, 6, 0 modulo 8. With this in
mind, the possible odd values of b21− 2 d b22 ≡ b21 + 6 b22 (mod 8) are ±1. With
a similar procedure, the only odd values that 2 b23−d b24 ≡ 2 b23 + 3 b24 (mod 8)
can take modulo 8 are ±3. Therefore, the proposition holds.

From the previous proof we can conclude that:

Theorem 4.3. Let F = Q(
√

2 p) be a real quadratic field with hF = 2, p ≡ 5
(mod 8) a rational prime and OF the ring of integers of F. If IF is an ideal of
OF with NF/Q (IF) odd, then:

1. IF is principal if and only if at least one of the equations b21 − 2 p b22 =
±NF/Q (IF) have a solution with b1, b2 ∈ Z.

2. IF is a non-principal ideal if and only if there exists a solution of 2 b21 −
p b22 = ±NF/Q (IF) with b1, b2,∈ Z.

3. IF is a principal ideal if and only if NF/Q (IF) ≡ ±1 (mod 8).

If an ideal IF has even norm, we can factor it as IF = pk
2IF

′, where IF
′ has

odd norm and p2 is the only ideal of OF with NF/Q (p2) = 2. If k is even, the
ideal is principal if and only if IF

′ is principal. If k is odd, then IF is principal
if and only if IF

′ is a non-principal ideal.

Theorem 4.4. Let F = Q(
√

2 p) be a real quadratic field with hF = 2, p ≡ 5
(mod 8), OF its ring of integers and IF an ideal of OF with NF/Q (IF) even. If
IF = pk

2IF
′ as before, then IF is principal if and only if one of the following

assertions is true:

1. k is odd and NF/Q (IF
′) ≡ ±1 (mod 8).

2. k is even and NF/Q (IF
′) ≡ ±3 (mod 8).

We have proved that, when d = 2 p > 0 with p ≡ 5 (mod 8) and hF = 2,
if IF is a principal ideal of OF with odd norm, then 〈IF〉K has a generator

of the form a1 + a2

√
d, and if the ideal is non-principal, it has a generator

a1

√
d1 + a2

√
d2. We will say that an element of the form a1 + a2

√
d is a type 1
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element and the type 2 elements will be those with the form a1

√
d1 +a2

√
d2. It

will be important to observe what happens if we multiply this kind of elements.
Let d = d1 d2:

(a1 + a2

√
d)(a3

√
d1 + a4

√
d2) = (a1 a3 + a2 a4 d2)

√
d1 + (a1 a4 + a2 a3 d1)

√
d2,

(a1

√
d1 + a2

√
d2)(a3

√
d1 + a4

√
d2) = (a1 a3 d1 + a2 a4 d2) + (a1 a4 + a2 a3)

√
d,

this products are in agreement with the fact that a principal ideal times a non-
principal ideal is a non-principal ideal, while the product of two non-principal

ideals gives a principal ideal. Also, observe that d2
1 = 〈d1〉F and

〈√
d1

〉2
K =

〈d1〉K, which implies 〈d1〉2K =
〈√

d1

〉2
K, and using the unique factorization on

ideals, 〈d1〉K =
〈√

d1

〉
K. In the same way, 〈d2〉K =

〈√
d2

〉
K. In some cases

it is possible that a1, a2 6∈ Z, but a1 + a2

√
d or a1

√
d1 + a2

√
d2 are algebraic

integers, for example, if d ≡ 1 (mod 4), then
1 +
√
d

2
is an algebraic integer.

Next, we will see that with certain hypothesis we can generalize the previous
results and we will see what happens in the other cases.

Proposition 4.5. Let F = Q(
√
d) with d = d1 d2 square free, d1, d2 ∈ Z

and K = Q(
√
d1,
√
d2). If IF, JF are ideals of OF such that 〈IF〉K = 〈α〉K and

〈JF〉K = 〈β〉K with α, β ∈ OK type 2 elements, then IF = JF in ClF.

Proof. Let d1, d2 be the only ideals of OF with norms |d1|, |d2| respectively.
Let us multiply 〈IF〉K = 〈α〉K and 〈JF〉K = 〈β〉K by

√
d1. Since α, β and√

d1 are type 2 elements, then α
√
d1 and β

√
d2 are type 1 elements, this is

〈IFd1〉K and 〈JFd1〉K have type 1 generators, which shows that IFd1 and JFd1

are principal ideals in OF, so, they are related. Because of this, there exist
A,B ∈ OF − {0} such that A IF d1 = B JF d1. Using the cancellation law,
A IF = B JF and IF = JF.

Proposition 4.6. Let F = Q(
√
d) with d = d1 d2 a square-free rational

integer, d1, d2 ∈ Z and K = Q(
√
d1,
√
d2). If IF, JF are ideals in OF such that

IF = JF in ClF and 〈IF〉K = 〈α〉K with α ∈ OK a type 2 element, then there
exist a type 2 element β ∈ OK such that 〈JF〉K = 〈β〉K.

Proof. Since IF = JF, then there exist A,B ∈ OF−{0} such that AIF = BJF.
Hence, 〈AIF〉K = 〈Aα〉K = 〈BJF〉K. From the previous equality, 〈JF〉K must
be a principal ideal, say 〈JF〉K = 〈β〉K for some β ∈ OK. Therefore, there
exists a unit µ ∈ OK such that Aα = B β µ. We may assume that β = βµ and
Aα = B β. Operating,

β =
A

B
α,
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where
A

B
∈ K is a type 1 element and α is a type 2 element. Even though

one of the elements is not necessarily an algebraic integer, the product is still
a type 2 algebraic integer and β is the element we are looking for.

Since 〈d1〉K =
〈√

d1

〉
K, then there always exists a class of ClF with an ideal

such that, when we extend it to OK it has a type 2 generator. Using the
previous results, for each factorization d = d1 d2 we have a class related with
the type 2 elements that emerge with this numbers. Nevertheless, this classes
are not necessarily unequal, it is possible that one class of ideals correspond
to the type 2 elements of two distinct factorizations of d, as it can be seen on
the Corollary 4.8. The next result shows that this criterion is stronger, not
only it helps us to identify ideals of OF related with d1 and d2, it also works
to classify the ideals of OK such that when we restrict them to OF they are
related with this pair of ideals.

Proposition 4.7. Let F = Q(
√
d) with d = d1 d2 a square-free integer,

d1, d2 ∈ Z, K = Q(
√
d1,
√
d2) and d1, d2 the only ideals of OF with norms

|d1|, |d2| respectively. If IK = 〈α〉K is an ideal of OK with α = a1

√
d1 + a2

√
d2,

a1, a2 ∈ Q, then IF = IK ∩ OF is an ideal such that IF = d1 = d2.

Proof. Let β1 = α
√
d1, β2 = α

√
d2 ∈ OF. Let us consider the ideal JK =

〈β1, β2〉K. We know that NK/Q (JK) | g.c.d.
(
NK/Q (β1), NK/Q (β2)

)
. Since

d1 and d2 are relatively primes and using the definition of β1 and β2, then
NK/Q

(√
d1

)
and NK/Q

(√
d2

)
are relatively primes too. This implies that

g.c.d.
(
NK/Q (β1), NK/Q (β2)

)
= |NK/Q (α)|

and, in consequence, NK/Q (JK) | NK/Q (α). Since α | JK, then IK = JK, this
is 〈α〉K = 〈β1, β2〉K. We know that β1, β2 ∈ OF, so, using Corollary 2.2, we
obtain IF = IK ∩ OF = 〈β1, β2〉F, an ideal that, when we extend it to OK it is
IK = 〈α〉K, so, for Proposition 4.5, IF is related with d1 and d2.

The next corollaries generalize what we found for the case d = 2 p. Observe

that if d ≡ 1 (mod 4), then an integral basis of OF is

{
1,

1 +
√
d

2

}
and since

any type 2 algebraic integer multiplied by
√
d1 or

√
d2 must be in OF, then

in this case we can have elements of the form
a1

√
d1 + a2

√
d2

2
with a1, a2 ∈ Z

odd. Because of this, we need to include a s2 = 4 in the right side of the
diophantine equations that we will use next.

Corollary 4.8. Let F = Q(
√
d) with d = d1 d2 square-free, hF = 2, HF =

Q(
√
d1,
√
d2), d1, d2 the only ideals of OF with NF/Q (d1) = |d1|, NF/Q (d2) =

|d2| and IF ⊆ OF an ideal. If d1, d2 are principal ideals, then IF is a principal
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ideal if and only if there exists a solution of d1 b
2
1 − d2 b

2
2 = ±s2NF/Q (IF) with

b1, b2 ∈ Z where s = 1 if d ≡ 2, 3 (mod 4) or s = 2 if d ≡ 1 (mod 4).

Corollary 4.9. Let F = Q(
√
d) with d = d1 d2 square-free, hF = 2, HF =

Q(
√
d1,
√
d2), d1, d2 the only ideals of OF with NF/Q (d1) = |d1| and NF/Q (d2) =

|d2|, IF ⊆ OF an ideal and s = 1 if d ≡ 2, 3 (mod 4) or s = 2 if d ≡ 1
(mod 4). If d1, d2 are non-principal ideals, then:

1. IF is principal if and only if at least one of the equations b21 − d b22 =
±s2NF/Q (IF) has a solution with b1, b2 ∈ Z.

2. IF is a non-principal ideal if and only if there exists a solution of d1 b
2
1−

d2 b
2
2 = ±s2NF/Q (IF) with b1, b2,∈ Z.

Example 4.10. Let d = 2 · 3 · 5 · 7 and F = Q(
√
d). In the next table we

can see the different factorizations of d with d1, d2 positive integers.

d1 d2

1 210
2 105
3 70
5 42
6 35
7 30
10 21
14 15

Let p2, p3, p5, p7 be the only ideals of OF with norm 2, 3, 5, 7 respectively. Since d
has four prime factors and some of this are congruent with 3 modulo 4, then the
2-rank of ClF is 2, in fact ClF ∼= Z/2Z×Z/2Z, where p2p7 and p3p5 are princi-
pal ideals, p2, p7, p3p5p7, p2p3p5 are in the same class, p3, p5, p2p5p7, p2p3p7 are
in a second class of non-principal ideals and p2p3, p2p5, p5p7, p3p7 are in the
last class. In this case, an ideal IF ⊆ OF is principal if and only if

b21 − 210 b22 = ±NF/Q (IF) and 14b21 − 15 b22 = ±NF/Q (IF)

are solvable; IF ∈ p2 if and only if

2 b21 − 105 b22 = ±NF/Q (IF) and 7b21 − 30 b22 = ±NF/Q (IF)

are solvable; IF ∈ p3 if and only if

3 b21 − 70 b22 = ±NF/Q (IF) and 5b21 − 42 b22 = ±NF/Q (IF)
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are solvable; IF ∈ p2p3 if and only if

6 b21 − 35 b22 = ±NF/Q (IF) and 10 b21 − 21 b22 = ±NF/Q (IF)

are solvable.

In the case d = 2 p > 0 with p ≡ 5 (mod 8) we already saw that d1, d2

are non-principal ideals. We will finish this section showing that if p ≡ 1
(mod 8) the mentioned ideals are principal. The next example will be helpful
as a guide for the proof.

Example 4.11. Let d = d1 d2 with d1 = 2 and d2 = 17, d1, d2 the only
ideals of OF such that NF/Q (d1) = d1 and NF/Q (d2) = d2. In this case d1, d2

are principal ideals. In fact, the prime 3 splits in F since 34 ≡ 1 (mod 3)
and (

δF

3

)
=

(
4 · 34

3

)
=

(
34

3

)
=

(
1

3

)
= 1.

Also,

〈3〉F =
〈

3, 1 +
√

34
〉

F

〈
3, 1−

√
34
〉

F
.

None of this ideals are principal, since otherwise, there is α = a1 + a2

√
34

with NF/Q (α) = ±3. We will prove that α can not exist. Since a2
1 − 34 a2

2 is
odd, then a1 must be odd, hence a2

1 ≡ 1 (mod 8). If a2 is even, then 34 a2
2 ≡ 0

(mod 8) and if a2 is odd, then 34 a2
2 ≡ 2 (mod 8). Therefore a2

1− 34 a2
2 ≡ ±1

(mod 8). This proves that there are no elements with norm ±3 modulo 8,
hence,

〈
3, 1 +

√
34
〉

F and
〈
3, 1−

√
34
〉

F are non-principal ideals.
It is clear that 17 b21 − 2 b22 = ±3 has no integer solution, watching it as a

congruence modulo 8. Therefore, none of the four equations a2
1 − 34 a2

2 = ±3
and 17 b21 − 2 b22 = ±3 has an integer solution. Using the contrapositive of
Corollary 4.9, the ideals d1 and d2 must be non-principals.

The previous example can be generalized when d = 2 p, p ≡ 1 (mod 8).

Proposition 4.12. Let F = Q(
√

2 p) with p > 0 a rational prime and
p ≡ 1 (mod 8). Then, there exists a non-principal ideal IF of OF such that
the equation p b21 − 2 b22 = ±NF/Q (IF) has no integer solution.

Proof. In general, if p ≡ 1 (mod 8), then p b21 − 2 b22 ≡ ±1 (mod 8), so, it
is enough to find a non-principal ideal with norm ±3 (mod 8).

Let a ∈ Z be such that

(
a

p

)
= −1. Since g.c.d. (p, 8) = 1, there exist b ∈ Z

such that b ≡ a (mod p) and b ≡ 3 (mod 8). Using Dirichlet’s Theorem
on primes in arithmetic progression, there exist an infinity of rational prime
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numbers ≡ b (mod 8 p). Let q be one of this prime numbers. Since q ≡ 3
(mod 8) and q ≡ a (mod p) we have(

2

q

)
= −1,

(
q

p

)
=

(
p

q

)
= −1,

[
q

2 p

]
= −1,

(
δF

q

)
= 1.

From this, there is an ideal q with NF/Q (q) = q such that q is a non-principal
ideal. Now, we observe that p b21− 2 b22 ≡ ±3 (mod 8) has no integer solution
since q ≡ 3 (mod 8).

Corollary 4.13. Let F = Q(
√

2 p) with p > 0 a rational prime, p ≡ 1
(mod 8), hF = 2 and d1, d2 the only ideals of OF such that NF/Q (d1) = 2 and
NF/Q (d2) = p. Then, d1 and d2 are principal ideals.

Proof. Using Proposition 4.12, there is a non-principal ideal IF that does not
satisfy the equation p b21 − 2 b22 = ±NF/Q (IF). Because of the Proposition 4.6,
none of the non-principal ideals solve the equation, so the class that solves the
equation is the one with the principal ideals. The assertion follows using the
contrapositive of Corollary 4.9.

In the imaginary case, the next result asserts that d1, d2 are non-principal
ideals unless |d1| = 1 or |d2| = 1.

Proposition 4.14. Let d = d1 d2 < 0 be a square-free rational integers
with |d1| 6= 1 6= |d2|, F = Q(

√
d) and d1, d2 the only ideals of OF with norms

|d1|, |d2| respectively. The ideals d1, d2 are non-principal.

Proof. Let A = a1 +a2

√
d with NF/Q (A) = a2

1−d a2
2 = a2

1 + |d| a2
2 square-free.

Using this condition, a2 6= 0, so NF/Q (A) ≥ |d|. Since d1, d2 are square-free
integers and |d1| < |d|, |d2| < |d|, then there is no element with norm |d1| or
|d2|, so d1, d2 are non-principal ideals.

Corollary 4.15. Let F = Q(
√
d) with d = d1 d2 < 0, hF = 2, HF =

Q(
√
d1,
√
d2), |d1| 6= 1 6= |d2|, IF ⊆ OF an ideal and s = 1 if d ≡ 2, 3

(mod 4), s = 2 if d ≡ 1 (mod 4). Then:

1. IF is principal if and only if the equation b21 − d b22 = s2NF/Q (IF) has a
solution with b1, b2 ∈ Z.

2. IF is a non-principal ideal if and only if d1 b
2
1 − d2 b

2
2 = ±s2NF/Q (IF) is

solvable with b1, b2 ∈ Z.

In [10], H. Stark classified the imaginary quadratic fields with hF = 2:

Theorem 4.16. If F = Q(
√
d) is an imaginary quadratic field, then hF = 2

if and only if d = −5, −6, −10, −13, −15, −22, −35, −37, −51, −58, −91,
−115, −123, −187, −235, −267, −403, −427.

We can apply the Corollary 4.15 to these 18 numbers except for d = −5,
−13, −37, that are the ones without the condition |d1| 6= 1 6= |d2|. In these
cases we use Theorem 1.1 to classify principal ideals.
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5 Classification of prime and irreducible

elements in quadratic fields with hF = 2

Now we are going to study an application of Theorem 1.1 or of the affirmation 3
of Theorem 4.3. We will use this to classify prime, irreducible and compound
elements of the ring of integers of a quadratic field with hF = 2. The next
proposition will be helpful to achieve this. It’s proof is simple, so we leave it
to the readers.

Proposition 5.1. Let F be a number field, OF the ring of integers of F and
P ∈ OF − {0}. Then:

1. P is a prime element if and only if 〈P 〉 is a prime ideal.

2. P is an irreducible element if and only if the ideal 〈P 〉 is maximal in the
set of of proper principal ideals of OF.

If hF = 2, then the product of two non-principal ideals gives a principal
ideal. From Proposition 5.1 it follows that P is irreducible but not prime if
and only if 〈P 〉 = pq where p, q are non-principal prime ideals.

Let IF be an ideal such that g.c.d.
(
NF/Q (IF), δF

)
> 1. If we want to know if

IF is principal, we factor IF = I1I2 in such a way that g.c.d.
(
NF/Q (I1), δF

)
= 1

and each prime ideal that divides I2 is a ramified ideal. Then IF is principal

if and only if I1 = I2
−1
. If hF = 2, then IF is principal if and only if I1, I2

are both principal or both non-principal ideals.

Theorem 5.2. Let F = Q(
√
d) be a real quadratic field with d a square-free

rational integer, hF = 2 and P ∈ OF such that g.c.d.
(
NF/Q (P ), δF

)
= 1. Then

P is prime if and only if one of the following assertions holds:

1. |NF/Q (P )| = q is a rational prime such that

(
δF

q

)
= 1 and

[q
d

]
= 1 or[

−q
d

]
= 1.

2. NF/Q (P ) = q2 where q is a rational prime number such that

(
δF

q

)
= −1.

Proof. It is enough to prove that |NF/Q (P )| = q is prime if and only if 1 holds.
Remember that NF/Q (IF) is prime if and only if IF is a ramified or split prime

ideal. By hypothesis, g.c.d.
(
NF/Q (P ), δF

)
= 1, so

(
δF

q

)
= 1. Using Theorem

1.1, it follows that IF is a principal ideal if and only if
[q
d

]
= 1 or

[
−q
d

]
= 1,

in particular, if IF = 〈P 〉 then 1 holds. The assertion 2 happens when q is an
inert prime.
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Theorem 5.3. Let F = Q(
√
d) be a real quadratic field with d a square-free

rational integer, hF = 2 and P ∈ OF such that g.c.d.
(
NF/Q (P ), δF

)
= 1. Then

P is irreducible if and only if one of the next assertions holds:

1. P is a prime element.

2. |NF/Q (P )| = pq, where p, q are rational prime elements with

(
δF

p

)
=(

δF

q

)
= 1 and

[
±p
d

]
=

[
±q
d

]
= −1, for at least one of the signs, where

±p and ±q can have the same sign or not.

Proof. If P is a non-prime irreducible element, then 〈P 〉 = pq, where p, q
are non-principal prime ideals. The norm of each of these ideals must be
prime numbers, since otherwise p and q must be both principal ideals. Let

NF/Q (p) = p, NF/Q (q) = q. Hence

(
δF

p

)
=

(
δF

q

)
= 1. The condition[

±p
d

]
=

[
±q
d

]
= −1 proves that the ideals are non-principal.

The case when F is an imaginary quadratic field is similar, the only dif-
ference is that instead of ±, we only need +, since there are only positive
norms.

Example 5.4. Let F = Q(
√

10). In this example, ClF = {1,
〈
2,
√

10
〉
}, so

hF = 2. The ramified primes are 2 and 5 and 〈2,
√

10〉 and 〈5,
√

10〉 are non-

principal ideals. A Prime p splits if

(
δF

p

)
= 1, this is, if p ≡ 1, 3, 9, 13, 27,

31, 37, 39 (mod 40). On the other hand, using Theorem 4.3,

[
±a
10

]
= 1 if

and only if a ≡ ±1 (mod 8). If p ≡ 7, 11, 17, 19, 21, 23, 29, 33 (mod 40),
then p is inert. Hence, we have:

1. P ∈ OF is a prime element if and only if one of the next assertions holds:

a) |NF/Q (P )| = p for a rational prime p ≡ ±1 (mod 8).

b) |NF/Q (P )| = p2, with p ≡ 7, 11, 17, 19, 21, 23, 29, 33 (mod 40).

2. P ∈ OF is irreducible but not a prime element if |NF/Q (P )| = pq with p, q
prime numbers such that p ≡ 2, 3, 5 (mod 8) and q ≡ 2, 3, 5 (mod 8).

Example 5.5. Let F = Q(
√

34). Since ClF = {OF, p3}, where p3 =〈
3, 1 +

√
34
〉
, then hF = 2. Using Theorem 3.2, d1 = 2, d2 = 17 ≡ 1 (mod 8),

hence d1 =
〈
6 +
√

34
〉

is a principal ideal. This means that we can not give
the solution modulo 8 as we did in the previous example, so we must express
the result modulo 34 · 4 = 136, using Theorem 1.1.
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1. P ∈ OF is a prime element if and only if one of the next assertions is
true:

a) |NF/Q (P )| = p for some rational prime p ≡ 1, 2, 9, 15, 17, 25, 33,
47, 49, 55, 81, 87, 89, 103, 111, 121, 127, 135 (mod 136).

b) |NF/Q (P )| = p2, for some rational prime p ≡ 7, 13, 19, 21, 23, 31,
35, 39, 41, 43, 53, 57, 59, 63, 65, 67, 69, 71, 73, 77, 79, 83, 93, 95,
97, 101, 105, 113, 115, 117, 123, 129 (mod 136).

2. P ∈ OF is irreducible but not prime if |NF/Q (P )| = pq with p ≡ 3, 5, 11,
27, 29, 37, 45, 61, 75, 91, 99, 107, 109, 125, 131, 133 (mod 136), q ≡ 3,
5, 11, 27, 29, 37, 45, 61, 75, 91, 99, 107, 109, 125, 131, 133 (mod 136)
and p, q rational primes.

Example 5.6. Let us consider F = Q(
√
−5), where δF = −20, hF = 2 and

ClF = {OF,
〈
2, 1 +

√
−5
〉

F}. Using Theorem 1.1, we know that an ideal IF ⊆

OF with gcd(NF/Q (IF), δF) = 1 is principal if and only if

[
NF/Q (IF)

5

]
= 1. It

is easy to see that
〈
2, 1 +

√
−5
〉

is a non-principal ideal since b21 + 5 b22 = 2 has

no solution with b1, b2 ∈ Z and the only ideal with norm 5 is
〈√
−5
〉

F. So:

1. P ∈ OF is a prime element if and only if one of the next assertions is
true:

a) |NF/Q (P )| = p for some prime p ≡ 0, 1, 4 (mod 5). This happens
when p ≡ 1, 5, 9 (mod 20).

b) |NF/Q (P )| = p2, with p ≡ 11, 13, 17, 19 (mod 20) a rational prime
number.

2. P ∈ OF is irreducible but not prime if |NF/Q (P )| = pq with p ≡ 2, 3, 7
(mod 20) and q ≡ 2, 3, 7 (mod 20).
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