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Abstract
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1 Introduction

Let F = Q(\/E) be a real quadratic field, Op the ring of integers of I, Cl its
class group, hy its class number, dp the absolute discriminant of IF, dx/r the
relative discriminant of K/FF, Jr denotes the class of the ideal Jp in Clp and

Hy is the Hilbert class field of F. For a € Z, b € N, we will write [%} =1
if and only if 22 = @ (mod b) is solvable with z € Z and [%} — 1 if the

congruence has no solutions. In [1], the authors proved:

Theorem 1.1. Let F be a quadratic number field such that Clg has exponent
2 and Jg C O is an ideal such that g.c.d. (N]F/Q (JF),cSF) = 1. Then Jr is a
+Nr/0 (jw)} _ -

non-principal ideal if and only if [ g
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In this paper we are going to relate this equivalence with diophantine equa-
tions of the form

d1 CL% - dg CL% = iNF/Q (315‘) (1)

for d = dy dsy, di,dy € Z. To accomplish this, we are going to find explicitly
the Hilbert class field of a quadratic field such that Clr has exponent 2. The
solubility of equation (1) has been studied using continued fractions, for exam-
ple, in [4], [6], [7] and [8]. As an application, we will give a criterion to decide
whether an element in O is prime, irreducible or compound for certain class
of quadratic number fields.

2 Extensions of ideals

Let us consider an extension of number fields K/F and Ok, Op their rings of
integers respectively. We will denote (a1, ..., ;) the ideal of Ok generated by
ay,...,ap € Ok, (A1,..., Ay the ideal of Op generated by Ai,..., A; € O,
Nk /g (a) the absolute norm of o € K, Ng/q (A) the absolute norm of A € F
and Ng/r (o) the relative norm of o € K in K/F. If Jp is an ideal of Op, then
(Jp)x is the extension of Jg in Ok, this is, the ideal of Ok generated by the
elements of Jp. If Jk is an ideal of Ok, the contraction of Jx to O is the ideal
Jx N Og. It is easy to show that:

Proposition 2.1. Let F C K be two number fields, Og, Ox their ring of
integers and Jp = (Aq, A2)p an ideal of Op with Ay, Ay € Op. Then (Jp)yx =
<A17A2>K- ]

Corollary 2.2. Let F C K be two number fields, Op, Ok their rings of
integers and Jg an ideal of Ox with Jg = (Ay, Ag)y, where Ay, Ay € Op. Then
Ik NOf = <A1, A2>]F. ]

If we extend an ideal of O to Ok and then restrict it back to O, the ideal
remains the same. The inverse process can change the ideal. For example, con-
sider F = Q and K = Q(v/10) and the ideal Jx = (2,v/10),. The contraction

Jx N O = (2)p and (Jx N Op)x = (2) # (2,V10),.
The next result helps us to calculate the ramification index of an ideal in
the composition of two fields.

Proposition 2.3. Let F, Ky, Ky, L be number fields as in the next diagram,
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where every extension is Galois:

L =K;K,
Kl\ /Kz
]F:KlﬂKg

and pg,P1, P2, pr. prime ideals in the rings of integers of F, Ky, Ky, IL respec-
tively, such that pr = po N O = p1 N O = po N Of, p1 = pL N Ky and
po = pLNKy. Let q1,q2 € {pr, 1, P2, pr} such that g1 2 q2. If e(q1/92) denote
the ramification index of qi over qa, then e(pL/pr) = e(px,/pr)e(Px,/Pr)-

Proof. See [9], pp. 263, E. ]

3 The Hilbert class field of a family of
quadratic fields

In this section we will describe the Hilbert class field of a quadratic field such
that Cly has exponent 2. In [2] Proposition 1.2, H. Cohen and X. Roblot affirm
that if F = Q(v/d) with d > 0 and hy = 2, then there exist a divisor dy of
op with 1 < dy < 6 and dy = 0,1 (mod 4), such that Hr = F(y/dy). The
problem is to find dy. They affirm that, using theory of genera or Kummer
theory, ds can be found in a finite number of steps. We will give a proof of
this fact in which we find explicitly dy. We will finish the section generalizing
this result when the exponent of Cly is 2, including the imaginary case.

As an immediate consequence of Gauss Theorem on the 2-rank of Cly (see
[1], Theorem 3, or [5] Theorem 3.70) we have:

Proposition 3.1. Let F = @(\/3) with hg = 2. For some distinct p,q,r >
0 odd rational prime numbers, d has one of the next forms:

1. d=2p withp=1 (mod 4).

2. d=pquwithp=q=1 (mod4).

3. d=pquwithp=1 (mod4),¢q=3 (mod4).
4. d=2pqwithp=q=3 (mod4).

5. d=2pqwithp=1 (mod4),¢=3 (mod4).

6. d=pqr withp=1 (mod4),g=r=3 (mod4).
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7.d=—pwithp=1 (mod4).
8. d=—-2p.
9. d=—pquwithp=1 (mod4),g=3 (mod 4). O

In each one of the cases that we described in the previous proposition, there
is exactly one way of factoring d = d; do such that dy,ds # 1, ds =1 (mod 4)
and where at least one of the factors is positive:

1. dy =2, dy = p.
2. dy =p, dy =q.
3. dy =gq, dy =p.
4. dy =2,dy =pq.
5. dy =2q, dy =p.
di=p,dy=qr.
dy =—1,dy = p.

8. di = —2,dy =pifp=1 (mod4) and d; = 2,dy = —p if p = 3
(mod 4).

9. d1 = —q, d2 =P.
Theorem 3.2. Let d = dyds, dy =1 (mod 4), dy,ds # 1 and d; > 0 or
dy > 0. If F = Q(\/d) with hg = 2, then Hg = Q(\/d1, /d3).

1 d
Proof. Let K = Q(v/di,v/dy). Note that {1, +2\/_2} and {1,v/d;} are

bases of K/F using only algebraic integers. If B C Ok is a base of K as an
F-vector space, we will denote A(B) the discriminant of B. We know that

1 d
A({1,v/d;}) = 4d;, and A ({1, +2\/_2}) = dy, furthermore

ng <4d1, dg) = ng (dh d2> =1.

Then, dxg/r = O and K/IF is an unramified extension, including the infinite
primes. Therefore Hy = K. O

Theorem 3.3. Let d = py---py be a square-free rational integer, p; > 0
prime for all i and F = Q(\/d) such that Clg has exponent 2:

L Ifp;=1,2 (mod 4) for all i, then Hr = Q(\/Po, - - -, \/Pyg)-
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2. Ifpo=2,p1 =3 (mod4) andp;=1 (mod 4) fori > 2, then
H]F:Q(\/ 2171,\/27_2,---,\/27_9)-

3. Ifd=1,2 (mod 4) and for some 0 <t < g we have that py,...,pi—1 =
1,2 (mod4), pi,...,py =3 (mod 4), then the Hilbert class field of F
18

HF = @(\/p_(]) ey \/pt—h \/pgpt7 \/pgpt—i-h e/ pgpg—l)-

Let us observe that there must be at least two prime numbers py_1,py = 3
(mod 4) and the case t =0 means p; =3 (mod 4) fori=20,...,g.

4. Ifd=3 (mod 4), then Hr = Q(y/Po; - - -, /Dg)-

Proof. We will only prove the first assertion. For ¢ = 1,..., g consider
L; = F(y/p;). Using the ideas of the proof of Theorem 3.2, it is easy to
show that L;/F is an unramified extension. Since L;/F are unramified and
L;NL; = F for ¢ # j, then L; ---L,/F is unramified as a consequence of
Proposition 2.3. Finally, using Gauss Theorem on the 2-rank of a quadratic
field, [L;--- L, : F] = 297! = o(Cly). Therefore, Hy = L, - --L,. The proof of
the other assertions are similar to these one. O

We have the imaginary version of the previous theorem. The proof is done
as in the real case.

Theorem 3.4. Let d = —pg---py be a square-free integer with p; positive
rational prime numbers and F = Q(\/a) such that the exponent of Clg is 2:

1. Ifd =1 (mod4), where py,...,pr—1 = 1 (mod4), p,...,p; = 3
(mod 4) for some 0 <t < g+ 1, then

HIF - Q(\/p_()7 ey \/pt—l; V Pty \V _pg)
The case t = g+ 1 means that there is no prime number p =3 (mod 4).

2. Ifd=2 (mod4), where pg =2, p1,...,p—1 =1 (mod 4), py, ..., D0,
=3 (mod 4) for some 1 <t <g+1, then

HF:Q<Vi27\/])_1a"-7\/pt—la\/_pta-"v\/ _pg)a
where the sign of 2 is+ ifd/2 =1 (mod 4) and — ifd/2 =3 (mod 4).

3. Ifd=3 (mod 4), then Hy = Q(v/—1,\/po, - - - /Dyg)- O
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4 Principal ideals and diophantine equations

In this section, we are going to find a method to classify principal ideals in
some quadratic fields. The criteria found in [1] is more general than the one we
are going to find, but now we will have the advantage of relating this problem
with the solutions of the diophantine equation of the form d; b? — dy b3 =
+5* Npjq (I), where the variables are b; and b,. In this work, when we say
the diophantine equation f(by,by) = +c is solvable, we mean that it has one
solution, by, by € Z for at least one of the signs. Sometimes the equation has
solutions for both signs, other times, only one sign works.

Let F = Q(v/d) be a quadratic field with iz = 2. As seen in the previous
section, there exist dy,dy € Z with do =1 (mod 4) such that d = d; dy and
at least one is positive. Since every prime that divides d; or ds is ramified in I,
then there exist ideals 91,05 such that Ng/q (91) = |di] and Ng/g (01) = |ds].

Clearly, 01,05 are unique. Since 0105 = <\/3> then both ideals are principal

or both are non-principal. From the previous equality we see that 0, = 0 -

and since 97 = (d;)g, then 97 =9y, hence ?; = 0,.
First, we will study the case d = 2p, 0<p=5 (mod 8) a rational prime.
Here we have a simple criterion to identify principal and non-principal ideals.

Let F = Q(+v/2p), Hr = K = Q(v/2, v/P) the Hilbert class field of F and O, Ok
the respective rings of integers. Clearly, Op = Z + /2 pZ.

He = K = Q(v/2, /)

OK/F Qv7p)

Z

Since 2 | 0, then (2); ramifies and if p, = (2,1/2p),, then (2); = p3. We have

2 2 2

p=>5 (mod 8) hence (—) = [—] = {—} = —1 (see [1], Lemma 4), then po
p p 2p

is a non-principal ideal and, since p3 is principal, we have hg is even. Now we

will study the case hgp = 2.

Lemma 4.1. Let F = Q(v/2p) with 0 < p =5 (mod8), hp = 2, py =
<2, \/2p>]F and K = Q(V/2, VP). Then:

<p2>K = <\/§>K
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2. If 3r is a non-principal ideal of O, then there ezists B = b1\/§+b2\/]_9 €
Ok such that by, by € Z and (Jr)i = (B)x-

Proof. Clearly, (p2)y = <2,\/2p>K. In Og, v2 | 2 and v2 | /2Zp, hence
<\/§>K | {p2)%. On one hand, since Ni/q (@) = Ny/g (Ni/r (@), we have

Nk/q (\/5) = Nr/q (NK/IF <\/§>) = Nrjg (—2) = 4, (2)
and on the other hand

Niya ((P2)x) = Nijo (Nxsr ((p2)k)) = Nijg (p2°) = Neyg ()’=4  (3)

(see [9], pp 235, C and D) Now, 1 follows from (2) and (3).
Since hy = 2, then py = Jr and poJr is principal. Let poJr = (A)p. If we
consider this equality in K we have

(A = (pa)e @e = (V2) ()

The field K is the Hilbert class field of F, then (Jg)y must be a principal ideal,
say (Jr)ix = (B)x. Because of this

(V2), (B = (V28)_ = (A),

which shows that \/§ﬁ,u = A for some unit p € Og and A = a; + as\/2p.
Since () = (1 B)x we can suppose

\/56214:&14—@2\/2]9.

From the previous equality we have v/2 | A and, since v/2 | agy/2p, then
V2 | a1, where a; € Z and a; must be even. Therefore

V28 =22+, pv2 = V3 (2V2+ap)

a
with 31, as € Z. Hence, for each non-principal ideal Jr C O there exists an

element of the form b2 + bay/p € Ox where by, by € Z such that (Jp)x =
<b1\/§ + bQ\/@K. This proves 2. O

Observe that if Jp is an ideal of O such that (Jr), = (B)x for some
B = biV/2 + by /P, then

Nijo (8) = (01V2 + ban/P) (112 — bar/D) (=01 V2 + bar/D) (—b1V2 — by /D),

this is Ng/g (8) = (207 — pb3)®. Furthermore, Nk ((Jr)x) = (Nr/g (Jr))?
and 207 — pb3| = Nyq (Jr). From this, if Jg is a non-principal ideal, then,
202 —pbs = +Np(Jr) has an integer solution on the variables by, by for at least
one sign. Also, on any real quadratic field F = @(\/3), if Jr is a principal ideal
of Op, then one of the equations b5 — d b3 = £ Ny /g (Jr) must have an integer
solution.
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Proposition 4.2. Letd =5 (mod 8) be a rational integer, ¢ € N odd and
b1, ba, b3, by variables. Consider the equations:

1. b3 —2db3 = ~+ec.
2. 202 — db? = +c.
It is not possible that 1 and 2 are solvable at the same time.

Proof. Sinced =5 (mod 8), —2d =6 (mod 8). The squares modulo 8 are
0, 1,4, multiplying this values times 6 we get 0,6,0 modulo 8. With this in
mind, the possible odd values of b? —2d b3 = b?+6b2 (mod 8) are 1. With
a similar procedure, the only odd values that 2b% —d b3 = 202 +3b7 (mod 8)
can take modulo 8 are +3. Therefore, the proposition holds. O

From the previous proof we can conclude that:

Theorem 4.3. Let F = Q(\/2p) be a real quadratic field with hy =2, p =5
(mod 8) a rational prime and Oy the ring of integers of F. If Jr is an ideal of
OFr with Ng/q (Jr) odd, then:

1. Jg is principal if and only if at least one of the equations b3 — 2pbi =
+Nr/g (Ir) have a solution with by, by € Z.

2. Jp is a non-principal ideal if and only if there exists a solution of 213 —
pb% = ZENF/Q (j[p) with bl, bg, €.

3. Jr is a principal ideal if and only if Ny/g (Jr) = £1  (mod 8). O

If an ideal Jr has even norm, we can factor it as Jr = p5Jg’, where Jp" has
odd norm and p; is the only ideal of Or with Ng/q (p2) = 2. If k is even, the
ideal is principal if and only if Jp" is principal. If k is odd, then Jp is principal
if and only if Jz is a non-principal ideal.

Theorem 4.4. Let F = Q(\/2p) be a real quadratic field with hy =2, p =5
(mod 8), O its ring of integers and Tz an ideal of Op with Ny/q (Ir) even. If
Jr = pk3%’ as before, then Jy is principal if and only if one of the following
assertions s true:

1. k is odd and Ny (Jr') = £1 (mod 8).
2. k is even and Nyjg (J¢') = £3  (mod 8). O

We have proved that, when d =2p > 0 with p =5 (mod 8) and hy = 2,
if Jg is a principal ideal of Op with odd norm, then (Jr), has a generator

of the form a; + axV/d, and if the ideal is non-principal, it has a generator
a1v/dy 4+ asv/dy. We will say that an element of the form a; + asV/d is a type 1
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element and the type 2 elements will be those with the form a;+/d; +as\/ds. It
will be important to observe what happens if we multiply this kind of elements.
Let d = d1 dgi

(ar + a2\/3)(a3\/ dy + a4\/d_2) = (a1 a3+ asag de)/dy + (a1 ay + as az dy)/da,
(alv d1 + a2\/d_2)(a3\/ d1 + CL4\/d_2> = (CL1 as d1 + ag ay dQ) + (CLl a4 + ao a;:,)\/a,

this products are in agreement with the fact that a principal ideal times a non-
principal ideal is a non-principal ideal, while the product of two non- pr1n01pal

ideals gives a principal ideal. Also, observe that 92 = (d;); and <\/_ >K =
(d1)g, which implies <01)K = <\/d_1>§(, and using the unique factorization on

ideals, (01)yx = (Vdi),. In the same way, (02); = (\/d2),. In some cases
it is possible that aq,as & Z, but a; + asv/d or ai1v/dy + as+/dy are algebraic
1+Vd

integers, for example, if d =1 (mod 4), then is an algebraic integer.

Next, we will see that with certain hypothesis we can generalize the previous
results and we will see what happens in the other cases.

Proposition 4.5. Let F = Q(v/d) with d = dy dy square free, dy,dy € 7

and K = Q(v/dy,/ds). If Jr, Jr are ideals of Op such that (Tp)g = () and
(Jr)x = (B)g with o, B € Ok type 2 elements, then Iz = Jp in Cly.

Proof. Let 01,02 be the only ideals of Op with norms |dy|, |da| respectively.
Let us multiply (Jp)x = {(a)x and (Jp)g = (B)x by V/di. Since a, 3 and
Vd; are type 2 elements, then av/d; and 3+/ds are type 1 elements, this is
(Jp01)g and (Jrd1 )y have type 1 generators, which shows that Jgd; and Jrd,
are principal ideals in Op, so, they are related. Because of this, there exist
A B e O — {O} such that AJrp0; = BJr0;. Using the cancellation law,
AJF—BJ]F andJ]F—J]F O

Proposition 4.6. Let F = Q(\/E) with d = dydy a square-free rational
integer, di,dy € Z and K = Q(dy,\/dy). If Jg,Ir are ideals in Op such that
Jrp = Jr in Clg and (Jg)y = () with o € Ok a type 2 element, then there
exist a type 2 element B € Ok such that (Jr)x = (B)k-

Proof. Since Jr = J, then there exist A, B € Oy — {0} such that AJr = BJp.
Hence, (AJp), = (Aa)g = (BJr)g. From the previous equality, (Jr), must
be a principal ideal, say (Jr)i = (8)g for some § € Ok. Therefore, there
exists a unit p € Ok such that Aa = B [ u. We may assume that § = Gu and
Aa = B . Operating,

62504)
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A
where 5 € K is a type 1 element and « is a type 2 element. Even though

one of the elements is not necessarily an algebraic integer, the product is still
a type 2 algebraic integer and 3 is the element we are looking for. O

Since (01) <\/_ >K, then there always exists a class of Cly with an ideal
such that, When we extend it to Ok it has a type 2 generator. Using the
previous results, for each factorization d = d; dy we have a class related with
the type 2 elements that emerge with this numbers. Nevertheless, this classes
are not necessarily unequal, it is possible that one class of ideals correspond
to the type 2 elements of two distinct factorizations of d, as it can be seen on
the Corollary 4.8. The next result shows that this criterion is stronger, not
only it helps us to identify ideals of O related with 0; and 09, it also works
to classify the ideals of Ok such that when we restrict them to Op they are
related with this pair of ideals.

Proposition 4.7. Let F = Q(v/d) with d = dydy a square-free integer,
di,dy € Z, K = Q(\/dy,\/dy) and 01,05 the only ideals of Op with norms
\dy|, |da| respectively. If Tx = (@) is an ideal of Og with a = a1\/dy + az/da,
ai,as € Q, then Jp = Ix N O is an ideal such that Jp = 07 = 0.

Proof. Let 31 = av/d;, s = av/dy € Op. Let us consider the ideal Jx =

(B1, o). We know that Nisq (Jx) | g.c.d. (Nrsg (61), Nejg (B2)).  Since
dy and ds are relatively primes and using the definition of 3, and s, then

Nk /g (\/I ) and Nk q (\/£) are relatively primes too. This implies that

g.c.d. (Ngsq (1), Nrsg (82)) = [N/ ()]

and, in consequence, Nk g (Jk) | Nk/o (@). Since o | Jk, then Jg = Jk, this
is () = (B, P2)x. We know that (3,8 € Op, so, using Corollary 2.2, we
obtain Jr = Jx N Or = (01, Ba2)y, an ideal that, when we extend it to Ok it is
Jx = (a)y, so, for Proposition 4.5, Jp is related with 9; and 0. ]

The next corollaries generalize what we found for the case d = 2 p. Observe

1 d
that if d =1 (mod 4), then an integral basis of O is {1, +2\/—} and since

any type 2 algebraic integer multiplied by /d; or v/ds must be in Op, then

a1V/di + azv/dsy

in this case we can have elements of the form 5 with a1, a0 € Z

odd. Because of this, we need to include a s> = 4 in the right side of the
diophantine equations that we will use next.

Corollary 4.8. Let F = Q(\/_) with d = dy dy square-free, hy = 2, Hy =

Q(Vdy,\/dy), 01,05 the only ideals of Op with Nijg (01) = |di], Ngjg (92) =
|da| and Jp C Op an ideal. If 91,04 are principal ideals, then Iy is a principal
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ideal if and only if there exists a solution of dy bf — ds b3 = £5* Ny /g (Jr) with
bi,by € Z where s =1 ifd=2,3 (mod4) ors=2ifd=1 (mod4). O

Corollary 4.9. Let F = Q(v/d) with d = dy dy square-free, hg = 2, Hy =

Q(Vdi,V/ds), 01,05 the only ideals of Op with Ny g (01) = |di| and Nyq (02) =
|da|, Jr € Op an ideal and s = 1 if d = 2,3 (mod 4) or s =2 ifd =1
(mod 4). If 01,09 are non-principal ideals, then:

1. Jg s principal if and only if at least one of the equations b3 — db3 =
+5*Np/q (Jr) has a solution with by, by € Z.

2. Jr is a non-principal ideal if and only if there exists a solution of dy b? —

ds b% = :i:S2N]F/Q (j]g') with bl, bQ, € 7. OJ

Example 4.10. Let d =2-3-5-7 and F = Q(\/d). In the neat table we
can see the different factorizations of d with dy, dy positive integers.

U
=

dy
210
105
70

42

35

30

21

15

N O Ot W N

[ —
= O

Let po, p3, ps5, p7 be the only ideals of Op with norm 2,3, 5,7 respectively. Since d
has four prime factors and some of this are congruent with 3 modulo 4, then the
2-rank of Cly 1s 2, in fact Cly = 7 /27 X 7./ 27, where pap7 and psps are princi-
pal ideals, pa, Pz, P3psP7, P2psps are in the same class, Ps, Ps, PaPspr, Papspr are

in a second class of non-principal ideals and Ppsps, Pops, PsPr, P3pr are in the
last class. In this case, an ideal Jp C O is principal if and only if

b} — 21003 = £Npjq (Jr) and 1467 — 1565 = £ Ny /g (Ir)
are solvable; Jr € pg if and only if

207 — 10565 = £Ngjg (Jr) and 76 — 3003 = £Np/q (Jr)

are solvable; Jr € p3 if and only if

307 — 7003 = £Npjg (Jr) and 5b; — 4205 = £Np/q (Tr)
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are solvable; Ty € paps if and only if
6b; — 3505 = £N5/p (Jr) and 1067 — 2105 = £Np/q (Jr)
are solvable.

In the case d = 2p > 0 with p =5 (mod 8) we already saw that 0q,0,
are non-principal ideals. We will finish this section showing that if p = 1
(mod 8) the mentioned ideals are principal. The next example will be helpful
as a guide for the proof.

Example 4.11. Let d = dydy with dy = 2 and dy = 17, 01,09 the only
ideals of O such that Ngjg (91) = dy and Nyjg (02) = do. In this case 91,0,
are principal ideals. In fact, the prime 3 splits in F since 34 = 1 (mod 3)

()¢
(3= (3,1+ \/3_4>F (3.1- \/3_4>F.

None of this ideals are principal, since otherwise, there is o = ai + as\/34
with Ny (o) = £3. We will prove that o can not exist. Since ai — 3443 is
odd, then a; must be odd, hence a® =1 (mod 8). If ay is even, then 34a3 =0
(mod 8) and if ay is odd, then 34a2 =2 (mod 8). Therefore a3 — 34 a3 = +1
(mod 8). This proves that there are no elements with norm +3 modulo 8,
hence, <3, 1+ \/ﬂ%F and <3, 1-— \/3_4>IF are non-principal ideals.

It is clear that 1702 — 2b3 = £3 has no integer solution, watching it as a
congruence modulo 8. Therefore, none of the four equations a? — 34a3 = £3
and 17b% — 2b3 = +3 has an integer solution. Using the contrapositive of
Corollary 4.9, the ideals 91 and 02 must be non-principals.

Also,

The previous example can be generalized when d =2p, p=1 (mod 8).

Proposition 4.12. Let F = Q(v/2p) with p > 0 a rational prime and
p=1 (mod 8). Then, there exists a non-principal ideal Jp of Or such that
the equation pbj — 2b3 = £Nyq (Jr) has no integer solution.

Proof. In general, if p=1 (mod 8), then pb? — 203 = +1 (mod 8), so, it
is enough to find a non-principal ideal with norm £3 (mod 8).
Let a € Z be such that { £ ) = —1. Since g.c.d. (p,8) = 1, there exist b € Z

p
such that b = @ (mod p) and b = 3 (mod 8). Using Dirichlet’s Theorem
on primes in arithmetic progression, there exist an infinity of rational prime
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numbers = b (mod 8p). Let ¢ be one of this prime numbers. Since ¢ = 3
(mod 8) and ¢ = a (mod p) we have

B (-0 [ ()

From this, there is an ideal q with Ng/g (q) = ¢ such that q is a non-principal
ideal. Now, we observe that pb? — 202 = +3 (mod 8) has no integer solution
since ¢ =3 (mod 8). O

Corollary 4.13. Let F = Q(\/2p) with p > 0 a rational prime, p = 1
(mod 8), hg = 2 and 01,05 the only ideals of Op such that Ngq (91) = 2 and
Nijg (02) = p. Then, 01 and 05 are principal ideals.

Proof. Using Proposition 4.12, there is a non-principal ideal Jr that does not
satisfy the equation pbj — 2b3 = £Ng/g (Jr). Because of the Proposition 4.6,
none of the non-principal ideals solve the equation, so the class that solves the
equation is the one with the principal ideals. The assertion follows using the
contrapositive of Corollary 4.9. O

In the imaginary case, the next result asserts that 0;, 0, are non-principal
ideals unless |d;| =1 or |dy] = 1.

Proposition 4.14. Let d = dydy < 0 be a square-free rational integers
with |dy| # 1 # |dy|, F = Q(+/d) and 91,05 the only ideals of Op with norms
|d1|, |da| Tespectively. The ideals 91,05 are non-principal.

Proof. Let A = a; +asV/d with Ny/q (A) = a} —d a3 = a} + |d| a3 square-free.
Using this condition, as # 0, so Ng/g (A) > |d|. Since di,d, are square-free
integers and |dy| < |d|, |d2| < |d|, then there is no element with norm |d;| or
|d3], so 01,09 are non-principal ideals. O

Corollary 4.15. Let F = Q(v/d) with d = dydy, < 0, hg = 2, Hy =
Q(Vdy,Vdy), |di| # 1 # |do|, Ir € Or an ideal and s = 1 if d = 2,3

(mod 4), s=2ifd=1 (mod4). Then:
1. Jg is principal if and only if the equation b3 — db3 = s*Ng,q (Jr) has a
solution with by, by € Z.

2. Jg is a non-principal ideal if and only if dy b — do b3 = £5*Np/q (Ir) is
solvable with by, by € Z. [

In [10], H. Stark classified the imaginary quadratic fields with hp = 2:
Theorem 4.16. IfF = Q(v/d) is an imaginary quadratic field, then hy = 2
if and only if d = —5, —6, —10, —13, —15, —22, —35, —37, —51, —58, —91,
—115, —123, —187, —235, —267, —403, —427. [
We can apply the Corollary 4.15 to these 18 numbers except for d = —5,

—13, —37, that are the ones without the condition |d;| # 1 # |d2|. In these
cases we use Theorem 1.1 to classify principal ideals.
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5 Classification of prime and irreducible
elements in quadratic fields with hp = 2

Now we are going to study an application of Theorem 1.1 or of the affirmation 3
of Theorem 4.3. We will use this to classify prime, irreducible and compound
elements of the ring of integers of a quadratic field with hg = 2. The next
proposition will be helpful to achieve this. It’s proof is simple, so we leave it
to the readers.

Proposition 5.1. Let F be a number field, Og the ring of integers of F and
P € Op — {0}. Then:

1. P is a prime element if and only if (P) is a prime ideal.

2. P is an irreducible element if and only if the ideal (P) is maximal in the
set of of proper principal ideals of Or. O

If hg = 2, then the product of two non-principal ideals gives a principal
ideal. From Proposition 5.1 it follows that P is irreducible but not prime if
and only if (P) = pq where p, q are non-principal prime ideals.

Let Jp be an ideal such that g.c.d. (NF/@ (Tr), 5F) > 1. If we want to know if
Jy is principal, we factor Jr = J1Js in such a way that g.c.d. (NF/@ (31), (ﬁg) =1
and each prime ideal that divides J, is a ramified ideal. Then Jr is principal
if and only if J; = J, i hg = 2, then Jp is principal if and only if J;,J,
are both principal or both non-principal ideals.

Theorem 5.2. Let F = (@(\/E) be a real quadratic field with d a square-free
rational integer, hy = 2 and P € Op such that g.c.d. (N]F/Q (P), 515) =1. Then
P is prime if and only if one of the following assertions holds:

J
1. |Nwg (P)| = q is a rational prime such that <—F) =1 and [%] =1or

q
—q
—| =1
&
Or

2. Nyjq (P) = ¢ where q is a rational prime number such that <—) = —1.
q

Proof. It is enough to prove that |Ng/q (P)| = ¢ is prime if and only if 1 holds.
Remember that Ng/q (Jg) is prime if and only if Jr is a ramified or split prime

0

ideal. By hypothesis, g.c.d. (Ng/q (P),dr) = 1, so (—F> = 1. Using Theorem
q

1.1, it follows that Jr is a principal ideal if and only if [g] =1or {%q} =1,

in particular, if Jp = (P) then 1 holds. The assertion 2 happens when ¢ is an
inert prime. O
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Theorem 5.3. Let F = Q(\/E) be a real quadratic field with d a square-free
rational integer, hg = 2 and P € Oy such that g.c.d. (N]F/@ (P), 515) = 1. Then
P is irreducible iof and only if one of the next assertions holds:

1. P is a prime element.

J,
2. |Ngjq (P)| = pq, where p,q are rational prime elements with (—F) =
p
0, + +
(—F> =1 and [Fp} = [Tq] = —1, for at least one of the signs, where
q

+p and £q can have the same sign or not.

Proof. If P is a non-prime irreducible element, then (P) = pq, where p, q
are non-principal prime ideals. The norm of each of these ideals must be
prime numbers, since otherwise p and q must be both principal ideals. Let

1) 1)
Nrjg () = p, Nejo(q) = q. Hence (—F> = (—F> = 1. The condition
p q
+ +
{Fp} = {Fq} = —1 proves that the ideals are non-principal. ]

The case when F is an imaginary quadratic field is similar, the only dif-
ference is that instead of £, we only need +, since there are only positive
norms.

Example 5.4. Let F = Q(v/10). In this ezample, Clr = {1,(2,V/10)}, so
hg = 2. The ramified primes are 2 and 5 and (2,+/10) and (5,+/10) are non-
)
principal ideals. A Prime p splits if (—F) =1, this s, if p=1, 3, 9, 13, 27,
p

+
31, 37, 39 (mod 40). On the other hand, using Theorem 4.3, 1—3] =11if

and only if a = +1 (mod 8). Ifp=7, 11, 17, 19, 21, 23, 29, 33 (mod 40),

then p is inert. Hence, we have:

1. P € O is a prime element if and only if one of the next assertions holds:

a) |Ngjg (P)| =p for a rational prime p = £1 (mod 8).
b) |Nejg (P)| = p?, with p =7, 11, 17, 19, 21, 23, 29, 33 (mod 40).

2. P € Ok is irreducible but not a prime element if | Ny (P)| = pq with p, q
prime numbers such thatp =2,3,5 (mod 8) andq=2,3,5 (mod 8).

Example 5.5. Let F = Q(v/34). Since Clz = {Op,p3}, where ps =
(3,1+ \/3_4>, then hg = 2. Using Theorem 3.2, d; = 2,dy = 17=1 (mod 8),
hence 0, = <6 + \/3_4> 15 a principal ideal. This means that we can not give

the solution modulo 8 as we did in the previous example, so we must express
the result modulo 34 - 4 = 136, using Theorem 1.1.
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1. P € Op is a prime element if and only if one of the next assertions is
true:

a) |Nwq (P)| = p for some rational prime p = 1, 2, 9, 15, 17, 25, 33,
A7, 49, 55, 81, 87, 89, 103, 111, 121, 127, 135 (mod 136).
b) |Nwsq (P)| = p?, for some rational prime p = 7, 13, 19, 21, 23, 31,

35, 39, 41, 43, 53, 57, 59, 63, 65, 67, 69, 71, 73, 77, 79, 83, 93, 95,
97, 101, 105, 113, 115, 117, 123, 129 (mod 136).

2. P € O is irreducible but not prime if | N/ (P)| = pq with p = 3, 5, 11,
27, 29, 37, 45, 61, 75, 91, 99, 107, 109, 125, 131, 133 (mod 136), ¢ = 3,
5, 11, 27, 29, 37, 45, 61, 75, 91, 99, 107, 109, 125, 131, 133 (mod 136)
and p, q rational primes.

Example 5.6. Let us consider F = Q(v/—5), where dp = —20, hg = 2 and
Clg = {OF, <2, 1+ \/—5>F}. Using Theorem 1.1, we know that an ideal Jp C

Npg (I
O with gcd(Nw/q (Ir), 0r) = 1 is principal if and only if [WQ#(F)} =1. 1t
15 easy to see that <2, 1+ \/—5> is a non-principal ideal since b? +505 = 2 has
no solution with by, by € Z and the only ideal with norm 5 is <\/—5>]F. So:

1. P € Or 1s a prime element if and only if one of the next assertions is
true:

a) |Nwg (P)| =p for some prime p=0, 1,4 (mod 5). This happens
when p=1,5,9 (mod 20).

b) |Npjq (P)| =p?, withp =11,13,17,19 (mod 20) a rational prime
number.

2. P € O is irreducible but not prime if |Ny/q (P)| = pq withp =2, 3, 7
(mod 20) and ¢ =2, 3,7 (mod 20).
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