Symmetry Identities Related to the Generalized Twisted q-Euler Polynomials with Weak Weight α

C. S. Ryoo

Department of Mathematics,
Hannam University, Daejeon 306-791, Korea

Copyright © 2015 C. S. Ryoo. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we study the symmetry for generalized twisted q-Euler numbers $E_{n,\chi,q,\zeta}^{(\alpha)}$ and polynomials $E_{n,\chi,q,\zeta}^{(\alpha)}(x)$ with weak weight α. We obtain some interesting identities of the power sums and generalized twisted q-Euler polynomials $E_{n,\chi,q,\zeta}^{(\alpha)}(x)$ using the symmetric properties for the p-adic invariant q-integral on \mathbb{Z}_p.

Mathematics Subject Classification: 11B68, 11S40, 11S80

Keywords: Euler numbers and polynomials, generalized twisted q-Euler numbers and polynomials, symmetric properties, power sums.

1 Introduction

Throughout this paper we use the following notations. By \mathbb{Z}_p we denote the ring of p-adic rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{Q}_p denotes the field of p-adic rational numbers, \mathbb{C} denotes the complex number field, and \mathbb{C}_p denotes the completion of algebraic closure of \mathbb{Q}_p. Let ν_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-\nu_p(p)} = p^{-1}$. When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, or p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$ one normally assume that $|q| < 1$. If $q \in \mathbb{C}_p$, we normally assume that $|q - 1|_p < p^{-\frac{1}{p-1}}$ so that $q^x = \exp(x \log q)$ for $|x|_p \leq 1$(see [1-8]). Throughout this paper we use
the notation:
\[[x]_q = \frac{1 - q^x}{1 - q}, \quad [x]_{-q} = \frac{1 - (-q)^x}{1 + q}. \]
Hence, \(\lim_{q \to 1} [x] = x \) for any \(x \) with \(|x|_p \leq 1 \) in the present \(p \)-adic case.

Let \(UD(\mathbb{Z}_p) \) be the space of uniformly differentiable function on \(\mathbb{Z}_p \). For \(g \in UD(\mathbb{Z}_p) \) the fermionic \(p \)-adic invariant \(q \)-integral on \(\mathbb{Z}_p \) is defined by Kim as follows:

\[
I_{-q}(g) = \int_{\mathbb{Z}_p} g(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{[p^N]_{-q}} \sum_{x=0}^{p^N-1} g(x) (-q)^x, \text{ see [1].} \tag{1.1}
\]

If we take \(g_n(x) = g(x + n) \) in (1.1), then we see that

\[
q^n I_q(g_n) + (-1)^{n-1} I_q(g) = [2]_q \sum_{l=0}^{n-1} (-1)^{n-1-l} q^l g(l). \tag{1.2}
\]

Note that
\[
\lim_{q \to 1} I_{-q}(g) = I_{-1}(g) = \int_{\mathbb{Z}_p} g(x) d\mu_{-1}(x).
\]

Let a fixed positive integer \(d \) with \((p, d) = 1 \), set
\[
X = X_d = \lim_{N \to \infty} (\mathbb{Z}/dp^N \mathbb{Z}), \quad X_1 = \mathbb{Z}_p, \quad X^* = \bigcup_{0 < a < dp} a + dp\mathbb{Z}_p,
\]

\[
a + dp^N \mathbb{Z}_p = \{ x \in X \mid x \equiv a \pmod{dp^N} \},
\]
where \(a \in \mathbb{Z} \) satisfies the condition \(0 \leq a < dp^N \) (cf. [1, 4, 5, 8]).

Let \(T_p = \bigcup_{N \geq 1} C_{p^N} = \lim_{N \to \infty} C_{p^N} \), where \(C_{p^N} = \{ \zeta^{p^N} = 1 \} \) is the cyclic group of order \(p^N \). For \(\zeta \in T_p \), we denote by \(\phi_{\zeta} : \mathbb{Z}_p \to \mathbb{C} \) the locally constant function \(x \mapsto \zeta^x \) (see [6, 8]). In [8], we introduced generalized twisted \(q \)-Euler numbers \(E_{n, \chi, q, \zeta}^{(\alpha)} \) and polynomials \(E_{n, \chi, q, \zeta}^{(\alpha)}(x) \) attached to \(\chi \). Let \(\chi \) be the primitive Dirichlet character with conductor \(d \in \mathbb{N} \) with \(d \equiv 1 \pmod{2} \) and \(\zeta \in T_p \). We assume that \(\alpha \in \mathbb{Z} \) and \(q \in \mathbb{C}_p \) with \(|q - 1|_p < 1 \). Let \(g(y) = \chi(y) \phi_{\zeta}(y) e^{(y + x)t} \). By (1.1), we derive

\[
\int_X \chi(y) \phi_{\zeta}(y) e^{(y+x)t} d\mu_{-q^t}(y) = \frac{[2]_q^\alpha \sum_{\alpha=0}^{d-1} \chi(a)(-1)^a \zeta^a q^{\alpha a} e^{at}}{\zeta^d q^{\alpha d} e^{\alpha t} + 1} e^{xt} \tag{1.3}
\]

By using Taylor series of \(e^{(y+x)t} \) in the above equation (1.3), we obtain

\[
\sum_{n=0}^{\infty} \left(\int_X \chi(y) \phi_{\zeta}(y) (y + x)^n d\mu_{-q^t}(y) \right) \frac{t^n}{n!} = \sum_{n=0}^{\infty} E_{n, \chi, q, \zeta}^{(\alpha)}(x) \frac{t^n}{n!}.
\]
By comparing coefficients of \(\frac{t^n}{n!} \) in the above equation, we have the Witt formula for the generalized twisted \(q \)-Euler polynomials attached to \(\chi \) as follows:

Theorem 1.1 For positive integers \(n \) and \(\zeta \in T_p \), we have

\[
E_{n,\chi,q,\zeta}^{(\alpha)}(x) = \int_X \chi(y) \phi_\zeta(y)(y + x)^n d\mu_{-q^\alpha}(y). \tag{1.4}
\]

Observe that for \(x = 0 \), the equation (1.4) reduces to (1.5).

Corollary 1.2 For positive integers \(n \) and \(\zeta \in T_p \), we have

\[
E_{n,\chi,q,\zeta}^{(\alpha)} = \int_X \chi(y) y^n \phi_\zeta(y) d\mu_{-q^\alpha}(y). \tag{1.5}
\]

By (1.4) and (1.5), we have the following theorem.

Theorem 1.3 For positive integers \(n \) and \(\zeta \in T_p \), we have

\[
E_{n,\chi,q,\zeta}^{(\alpha)}(x) = \sum_{l=0}^{n} \binom{n}{l} E_{l,\chi,q,\zeta}^{(\alpha)} x^{n-l}. \tag{1.6}
\]

2 Some identities for generalized twisted \(q \)-Euler polynomials with weak weight \(\alpha \)

In this section, we assume that \(q \in \mathbb{C}_p \) and \(\zeta \in T_p \). We obtain some interesting identities of the power sums and generalized twisted \(q \)-Euler polynomials \(E_{n,\chi,q,\zeta}^{(\alpha)}(x) \) using the symmetric properties for the \(p \)-adic invariant \(q \)-integral on \(\mathbb{Z}_p \). If \(n \) is odd from (1.2), we obtain

\[
q^n I_q(g_n) + I_q(g) = [2]_q \sum_{l=0}^{n-1} (-1)^l q^l g(l). \tag{2.1}
\]

Substituting \(g(x) = \chi(x) \zeta^x e^{xt} \) into the above, we obtain

\[
q^{and} \int_X \chi(x + nd) \zeta^{x+nd} e^{(x+nd)t} d\mu_{-q^\alpha}(x) + \int_X \chi(x) \zeta^x e^{xt} d\mu_{-q^\alpha}(x) = [2]_q^{nd} \sum_{j=0}^{n-1} (-1)^j \chi(j) \zeta^j q^{\alpha j} e^{jt}. \tag{2.2}
\]

For \(k \in \mathbb{Z}_+ \), let us define the \(p \)-adic functional \(T_{k,\chi,q,\zeta}^{(\alpha)}(n) \) as follows:

\[
T_{k,\chi,q,\zeta}^{(\alpha)}(n) = \sum_{l=0}^{n} (-1)^l \chi(l) q^{\alpha l} \zeta^l l^k. \tag{2.3}
\]
After some elementary calculations, we have

\[q^{\alpha nd} \int_X \chi(x)\zeta^{x+nd}e^{(x+nd)t}d\mu_{-q^\alpha}(x) + \int_X \chi(x)\zeta^xe^{xt}d\mu_{-q^\alpha}(x) = (1 + \zeta^{d\alpha nd}e^{d\alpha dt}) \frac{[2]_{q^\alpha} \sum_{a=0}^{d-1} \chi(a)(-1)^{a\alpha q^\alpha e^{\alpha at}}}{\zeta^{d\alpha nd}e^{d\alpha dt} + 1}. \]

From the above, we get

\[q^{\alpha nd} \int_X \chi(x)\zeta^{x+nd}e^{(x+nd)t}d\mu_{-q^\alpha}(x) + \int_X \chi(x)\zeta^xe^{xt}d\mu_{-q^\alpha}(x) = \frac{2}{\int_{Z_p} \zeta^{ndzq^{\alpha nd}e^{\alpha ndt}d\mu_{-1}(x)}}. \]

By (2.2), (2.3), and (2.4), we arrive at the following theorem:

Theorem 2.1 Let \(n \) be odd positive integer. Then we obtain

\[\frac{\int_X \chi(x)\zeta^xe^{xt}d\mu_{-q^\alpha}(x)}{\int_{Z_p} \zeta^{ndzq^{\alpha nd}e^{\alpha ndt}d\mu_{-1}(x)}} = \sum_{m=0}^{\infty} \left(\frac{[2]_{q^\alpha} T^{(a)}_{m,q,\zeta}(nd - 1)}{2} \right) \frac{t^m}{m!}. \]

Let \(w_1 \) and \(w_2 \) be odd positive integers. By Theorem 2.1, and after some elementary calculations, we have the following theorem.

Theorem 2.2 Let \(w_1 \) and \(w_2 \) be odd positive integers. Then we have

\[\frac{\int_X \chi(x)\zeta^{w_2x}e^{w_2xt}d\mu_{-q^{w_2}}(x)}{\int_{Z_p} \zeta^{w_1w_2dx}q^{w_1w_2dx}e^{w_1w_2dx}d\mu_{-1}(x)} = \frac{[2]_{q^{w_2}}}{2} \sum_{m=0}^{\infty} \left(T^{(w_2)}_{m,w_1w_2,q,\zeta}(w_1d - 1)w_2^m \right) \frac{t^m}{m!}. \]

Then we set

\[S(w_1, w_2) = \frac{\int_X \int_X \chi(x_1)\chi(x_2)\zeta^{(w_1x_1+w_2x_2)}e^{(w_1x_1+w_2x_2+w_1w_2x)}d\mu_{-q^{w_2}}(x_1)d\mu_{-q^{w_2}}(x_2)}{\int_{Z_p} \zeta^{w_1w_2dx}q^{w_1w_2dx}e^{w_1w_2dx}d\mu_{-1}(x)}. \]

By \(S(w_1, w_2) \) and Theorem 2.2, after elementary calculations, we obtain

\[S(w_1, w_2) = \left(\sum_{m=0}^{\infty} E_{m,w_1,w_2}^{(w_1)}(w_2x)w_1^m \frac{t^m}{m!} \right) \left(\frac{[2]_{q^{w_2}}}{2} \sum_{m=0}^{\infty} T^{(w_2)}_{m,w_1w_2,q,\zeta}(w_1d - 1)w_2^m \frac{t^m}{m!} \right). \]

By using Cauchy product in the above, we obtain

\[S(w_1, w_2) = \sum_{m=0}^{\infty} \left(\frac{[2]_{q^{w_2}}}{2} \sum_{j=0}^{m} \binom{m}{j} E_{j,w_1,w_2}^{(w_1)}(w_2x)w_1^j T^{(w_2)}_{m-j,w_1w_2,q,\zeta}(w_1d - 1)w_2^{m-j} \right) \frac{t^m}{m!}. \]
From the symmetry of $S(w_1, w_2)$ in w_1 and w_2, we also see that $S(w_1, w_2)$

$$S(w_1, w_2) = \left(\int_X \chi(x_2) \xi^{w_2} e^{(w_2+w_1)x_2} d\mu_{-w_1}(x_2) \right) \left(\int_Z \chi(x_1) \xi^{w_1} e^{x_1w_1} d\mu_{-w_2}(x_1) \right) \left(\int_Z \chi(x_1) \xi^{w_1} e^{x_1w_1} d\mu_{-w_1}(x_1) \right) \left(\int_Z \chi(x_1) \xi^{w_1} e^{x_1w_1} d\mu_{-w_2}(x_1) \right).$$

Thus we obtain

$$S(w_1, w_2) = \sum_{m=0}^{\infty} \left[\frac{[2]}{2} \sum_{j=0}^{m} \binom{m}{j} w_1^{m-j} w_2^j E_{w_1, w_2}^{(w_1)}(w_1x) T_{m-j, w_1}(w_2d-1)w_1^{-j} \right] \frac{t^m}{m!}.$$

Thus we arrive at the following theorem:

Theorem 2.3 Let w_1 and w_2 be odd positive integers. Then we have

$$[2]_{q} w_1 \sum_{j=0}^{m} \binom{m}{j} w_1^{m-j} w_2^j E_{j, w_1, w_2}^{(w_1)}(w_1x) T_{m-j, w_1}(w_2d-1)w_1^{-j} = [2]_{q} w_2 \sum_{j=0}^{m} \binom{m}{j} w_1^j w_2^{m-j} E_{j, w_1, w_2}^{(w_1)}(w_2x) T_{m-j, w_1}(w_1d-1),$$

where $E_{j, w_1, w_2}^{(w_1)}(x)$ and $T_{m-j, w_1}(k)$ denote generalized twisted q-Euler polynomials with weak weight w_1 and p-adic functional, respectively.

By Theorem 1.3 and Theorem 2.3, we have the following corollary.

Corollary 2.4 Let w_1 and w_2 be odd positive integers. Then we obtain

$$[2]_{q} w_1 \sum_{j=0}^{m} \sum_{k=0}^{j} \binom{m}{j} \binom{j}{k} w_1^{m-k} w_2^j E_{k, w_1, w_2}^{(w_1)}(w_2d-1)x^{j-k} = [2]_{q} w_2 \sum_{j=0}^{m} \sum_{k=0}^{j} \binom{m}{j} \binom{j}{k} w_1^j w_2^{m-j} E_{k, w_1, w_2}^{(w_1)}(w_1d-1)x^{j-k}.$$

If we take $x = 0$ in Theorem 2.3, we also derive the interesting identity for generalized twisted q-Euler numbers with weak weight as follows:

Corollary 2.5 Let w_1 and w_2 be odd positive integers. Then we obtain

$$[2]_{q} w_1 \sum_{j=0}^{m} \binom{m}{j} w_1^{m-j} w_2^j E_{j, w_1, w_2}^{(w_1)}(w_2d-1) = [2]_{q} w_2 \sum_{j=0}^{m} \binom{m}{j} w_1^j w_2^{m-j} E_{j, w_1, w_2}^{(w_1)}(w_1d-1).$$
By substituting Taylor series of $e^{x t}$ into (2.2), we obtain

$$
\sum_{m=0}^{\infty} \left(q^{a n d} \zeta^{n d} \int_{X} \chi(x + n d) \zeta^{x} (x + n d)^{m} d\mu_{-q^{a}} (x) + \int_{X} \chi(x) \zeta^{x} x^{m} d\mu_{-q^{a}} (x) \right) \frac{t^{m}}{m!} = \sum_{m=0}^{\infty} \left([2] q^{n d} \sum_{j=0}^{n d-1} (-1)^{j} \chi(j) \zeta^{j} q^{a j} j^{m} \right) \frac{t^{m}}{m!}
$$

By comparing coefficients $\frac{t^{m}}{m!}$ in the above equation and (2.3), we have the following theorem.

Theorem 2.6 Let χ be the primitive Dirichlet character with conductor $d \in \mathbb{N}$ with $d \equiv 1 (\text{mod} \; 2)$ and $\zeta \in T_{p}$. Then we have

$$
T^{(\alpha)}_{m, \chi, q, \zeta} (n d - 1) = q^{a n d} \zeta^{n d} E^{(\alpha)}_{m, \chi, q, \zeta} (n d) + E^{(\alpha)}_{m, \chi, q, \zeta} \left(\frac{2}{q^{a d}} \right).
$$

References

Received: June 1, 2015; Published: June 21, 2015