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Abstract

In this paper, we introduce the direct product of BF-algebras and
we obtain some properties of this concept.
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1 Introduction

In 2007, the concept of BF-algebras was introduced by A. Walendziak [3]. A
BF-algebra is an algebra A = (A; %, 0) of type (2, 0), that is, a nonempty set
A together with a binary operation * and a constant 0, satisfying the following
axioms for all z,y € A:

(Bl) z xx =0,

(B2) z x 0 = =z,

(BF) O (xxy) =y *z.

In [3], Walendziak also introduced the notion of commutativity of BF-algebras.
A BF-algebra A is commutative if zx(0xy) = y*(0xx) for all z,y € A. In 2011,
J.C. Endam and J.P. Vilela [2] characterized the commutativity of BF-algebras
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and established the relationship of BF-algebras and groups. Walendziak also
introduced the notions of subalgebras, ideals, and normality in BF-algebras,
and established their properties. A subset I of A is called an ideal of A if it
satisfies the following for all z,y € A:

(I1) 0 € I,

(I2) x«y el and y € I imply z € I.

We say that an ideal I is normal if for any x,y,2z € A, x xy € I implies
(zxx)* (2*y) €. A nonzero ideal I of A is said to be proper if I # A. A
nonempty subset N of A is called a subalgebra of A if zxy € N for any x,y € N.
It is known that an ideal need not be a subalgebra, and a subalgebra need not
be an ideal. While a normal ideal is a subalgebra. Walendziak then used the
concept of normality of BF-algebras to construct quotient BF-algebras. That
is, given a normal ideal I of a BF-algebra A, the relation ~; is defined by
x ~yyif and only if z xy € I for any z,y € A. Then ~; is a congruence
relation of A. For z € A, write z/I for the congruence class containing x, that
is, x/I = {y € A: z ~; y}. We denote A/I = {z/I: = € A} and define
by /I " y/I = (x xy)/I. Note that =/I = y/I if and only if x ~; y. Then
the algebra A/I = (A/I; ', 0/1) is a BF-algebra. The algebra A /I is called
the quotient BF-algebra of A modulo I. The concept of BF-homomorphism
was also introduced by A. Walendziak. A map ¢ : A — B is called a BF-
homomorphism if p(x xy) = ¢(x) * p(y) for any z,y € A. The kernel of
¢, denoted by ker ¢, is defined to be the set {xr € A : ¢(x) = 0g}. A
BF-homomorphism ¢ is called a BF-monomorphism, BF-epimorphism, or BF-
isomorphism if ¢ is one-one, onto, or a bijection, respectively. In [3], A.
Walendziak established the first isomorphism theorem for BF-algebras. In
[1], J.C. Endam and J.P. Vilela established the second and third isomorphism
theorems for BF-algebras. In this paper, we introduced the direct product of
BF-algebras and established some of its properties.

2 Direct Product of BF-algebras

We begin with some examples of BF-algebras.

Example 2.1 [3] Let R be the set of real numbers and let A = (R; *, 0)
be the algebra with the operation * defined by

x ify=0,
rxy=<% vy ifx=0,
0 otherwise.

Then A is a BF-algebra.
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Example 2.2 [3] Let A = [0, c0) = {& € R: = > 0}. Define the binary
operation x on A as follows: z xy = |x — y| for all z,y € A. Then (A; %, 0) is
a BF-algebra.

Example 2.3 [3] Let A = {0, 1, 2, 3} and * be defined by the following
table:

W N = O *
W N = OO
S WO
N O W NN
SN O W W

Then (A; %, 0) is a BF-algebra.

Let A = (A4;%,04) and B = (B;*,05) be BF-algebras. Define the direct
product of A and B to be the structure A x B = (A x B;®, (04,05)), where
A x B is the set {(a,b) : a € A and b € B} and whose binary operation ® is
given by (ay, by) ® (az, ba) = (ay * as, by xby). Note that the binary operation ®
is componentwise. Thus, the properties (B1), (B2), and (BF) of A x B follow
from those of A and B. Hence, the following theorem easily follows.

Theorem 2.4 The direct product of two BF-algebras is also a BF-algebra.

Now, we extend this direct product to any finite family of BF-algebras.
Let I, = {1, 2,..., n} and let {A; = (A;;%,0;) : i € 1} be a finite family of
BF-algebras. Define the direct product of BF-algebras A;,..., A, to be the

structure H A, = ( H Ai;®, (0q, ... ,On)) , where
i=1

i=1
HAZ.:AI><---xAn:{(al,...,an):a,-EAi,iEIn}
i=1

and whose operation ® is given by

(al,...,&n)@)(bl,...,bn) = (a1 *bl,...,an*bn).
Obviously, ® is a binary operation on H A;.
i=1
Remark 2.5 If{A; = (A;;%,0;): i € I,} is a family of BF-algebras, then
HA,» is a BF-algebra.
i=1
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Lemma 2.6 Let {A; = (A;;%,0;): i 6 I} be a family of BF-algebras. Then

each A; is commutative if and only if HAi 15 commutative.
i=1

Proof: Let each A; be commutative. If (ai,...,a,), (by,...,b,) € H A;, then
a;,b; € A; and a; * (0; % b;) = b; % (0; * a;) for all ¢+ € 1,,. Thus, -

(a1,...,a,) ® ((01,...,0,) ® (b1, ...,bn)) = (a1,...,a,) ® (01 %by,...,0,%b,)
(a1 (01 % by), ..., ap % (On * by))

(b1 % (01 % ay), . 7bn* (O % an))
= (
= (

bl,..., )@(Ol*al,...,On*an)
bl,..., )@((01,...,On)@(@1,...,an)).

n
Therefore, HAi is commutative.
i=1

Conversely, let HAi be commutative. If a;,b; € A; for all i € 1,,, then
=1

(al,.. ) bl,..., GHA and

(a1,...,a,) ® ((01,...,0, ) (bl,...,bn))
= (b1,...,0p) ®((01,...,0,) ® (ay,...,a,)).

Thus,

(ap % (01 %b1),...,a, % (0, %0,)) = (a1,...,a,) ® (03 %by,...,0, %0by)
= (ar,...,a,) ® ((Or,...,0,) ® (by,...,bn))
= (b,..,b,) ®((01,...,0,) ® (ay, ..., a,))
= (b1,...,bn) ® (01 xay,...,0, %a,)
= (51*(01*a1) by (0, % ay)).

This implies that a; % (0% b;) = b; % (0% a;) for all ¢ € I,,. Therefore, each A; is
commutative. O

Theorem 2.7 Let{y; : A; — B;: i € I,} be a family of BF-homomorphisms.

If ¢ is the map HAi — HB,; given by (ay,...,a,) — (p1(ar),...,onlan)),

i=1 =1

then ¢ is a BF-homomorphism with ker ¢ = err i, o H A;) = H wi(A

i=1 i=1 i=1
Furthermore, ¢ is a BF-monomorphism (respectively, BF-epimorphism) if and

only if p; is.
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Proof: Let {¢; : A; = B; : i € 1,} be a family of BF-homomorphisms and let

¢ be the map HAi — HB"' given by (ai,...,a,) = (p1(a1),...,en(a,)).

=1 =1

If (a1,...,an), (b1,-..,bn) € [] Ay, then

o((ar, ... a,) ® (by, ..., b)) = @((ag *xby,... ,an*by))

(p1(ag xb1), ..., on(an xby))

= (pr(ar) x@1(b1), - onlan) * on(bn))
(p1(a1),- .- pnlan) ® (@1(b1), - ... pnlbn))

= p((ar,...,a,)) ®o((by,...,b,)).

This shows that ¢ is a BF-homomorphism. Moreover,

(a1,...,a,) €ker o < o((ay,...,a,)) = (01,...,0,)

(p1(ar),...,on(an)) = (01,...,0,)
wi(a;) = 0; for each i € T,
a; € ker ¢; for each 1 € I,

CLl,..., G errgoz

T ¢3¢

Thus, ker ¢ = err ;. Let A = HA Then
i=1
(by,...,b,) € 0(A) & 3 (ay,... an) EAB (b, ..., bn) = ((ay,. .., an))
< 3 (ay, ... a,) €A (by, ..., by) = (p1(ar), ..., on(an))
SJda, €A 23b = goi(ai) w(A4;) for each i € 1,

& (b, ..., by) € H%
Thus, o( [ 4i) = H%(A)

1=1 i=1
To prove the last statement, let ¢ be one-to-one. If p;(a;) = ¢(b;) for each
1 € 1,,, then

90<<a17"'7an)) = (901 al)ﬁ"w(pn(an))
(

Since ¢ is one-to-one, (ay,...,a,) = (b1, ...,by,), that is, a; = b; for each
1 € I,. Therefore, p; is one-to-one for each i € I,. Conversely, let ; be
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one-to-one for each ¢ € I,. If p((ay,...,a,)) = ¢((b1,...,bs)), then

(pr(ar), - onlan)) = ¢((as, ... an))
= @((by,...,by))
= (901<bl)77(pn<bn))

Thus, ¢;(a;) = ¢;(b;) for each i € 1,,. Since each ¢; is one-to-one, a; = b; for
each i € I, and so (ay,...,a,) = (by,...,b,). Therefore, ¢ is one-to-one.
Finally, we show that ¢ is onto if and only if each ¢; is. Let ¢ be onto. If

b; € B; for each i € 1,,, then (by,...,b,) € H B;. Since ¢ is onto, there exists
i=1
(a,...,a,) € HAZ- such that
i=1

(bb s 7bn) = (10((@17 B 7an)) = (901((11)7 - '79071(6171))7

that is, b; = ¢;(a;) for each ¢ € I,. Therefore, @; is onto for each i € I,,.

Conversely, let ¢; be onto for each i € 1. If (by,...,b,) € H B;, then b; € B;
i=1

for each i € 1,,. Since each ¢; is onto, there exists a; € A; such that b; = v;(a;)

for each i € I,, so that

(b1, ..., bn) = (v1(@1), -, pnlan) = (a1, ..., a,)).

Therefore, ¢ is onto and so the theorem is finally proved. 0

any two families of BF-algebras such that A; = B; for each i € I,. Then

H A; H B;.
=1 =1

Theorem 2.9 Let {A; = (A;;%,0;): i € L} be a family of BF-algebras and
let J; be a mormal ideal of A; for each i € I,. Then H J; is a normal ideal

=1
n

i=1 1=1 i=1

i=1
Proof: Let {A; = (A;;%,0;): i € I,} be a family of BF-algebras and let .J; be a
normal ideal of A; for each ¢ € I,,. Then (04,...,0,) € H J; since 0; € J; for

i=1
n

each 7 € I,, and so HJi is not empty. Let (ai,...,a,), (b1,...,b,) € HAZ"

i=1 i=1
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If (by,....by), (a1,-..,a0) ® (bi,...,by) € [] i then b € J; for each i €

i=1

I, and (a; *xby,...,a, xb,) = (a1,...,a,) ® (by,...,b,) € H‘]i implies that
i=1
a; x b; € J; for eachz €1, By (12) a; € J; for eachie I, and so (ay,...,ay)

is an element of H J;. Thus, H J; is an ideal of HA

=1 =1 =1

Let (¢1,...,¢,) € HAi‘ If (a1,...,a,) ® (by,...,b,) € HJ“ then
i—1 i—1

(ay % by, .. a, %xby) = (ar,...,a,) ® (by,...,b,) € H‘]i so that a; x b; € J;

for each i € 1,, and so (¢; x a;) * (¢; x b;) € J; for each i € I,,. Moreover,

((c1y.vvyen) ® (ar, ..., a,)) ® ((c1,...,¢) ® (b1,...,0p))
= (c1%ay,...,cp*xa,) ®(c1 *by,... ,cp%0by)

= ((c1 *ay) * (c1 % b1),...,(ch*ay)*(c,xby)) € HJ’

Therefore, H J; is a normal ideal of HA,-.

i=1 =1
For simplicity, let J = H J;yand A = H A;. Define ¢: A/J — H(A,/Jz)

i=1 i=1 i=1
given by o((aq,...,a,)/J) = (a1/J1,...,a,/Jy) for all (aq,...,a,)/J € A/J.
Let (ay,...,a,)/J, (b1,...,bn)/J € AJJ. If (a1,...,a,)/J = (b1,...,bn)/J,
then (aq,...,a,) ~y (b1,...,b,), that is,

(ay by, .. anxby) = (a1, ...,a,) ® (by,...,b,) € J.
Thus, a; *x b; € J; for all i € 1,,, that is, a; ~, b; so that a;/J; = b;/J;. It
follows that

o((ar,...,an) /) = (a1/J1,...,an/In)
= (by/J1,.... b0/ )
= (b1, ..., bn)/J).

This shows that ¢ is well-defined. If (aq,...,a,)/J, (b1,...,b,)/J € A/J, then

o((at,...,an) /I % (by,....0.)/T) = ©(((ar,...,a,) ® (by,...,b,))/J)
= ((ag *xby,...,a,*xby)/J)
= ((ag xb1)/J1, ..., (an*by)/Jn)
= (ay/ ¥ b/ J1,...,an) T * by/ )
= (a1/J1,...,an/Jn) ® (b1/J1, ..., b0/ Tn)
= po((ar,...,an)/J) ®o((b1,...,by)/J).
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This shows that ¢ is a BF-homomorphism.
If p((ar,...,an)/J) = @((by,...,b,)/J), then

(ar/J1, - an/dn) = p((ar,...,a,)/J)
= o((b1,...,bn)/J)
= (bi/J1,. . 00/ T0).

Thus, a;/J; = b;/J; for all i € 1,,. Hence, a; ~j, b;, that is, a; x b; € J; for all
i € 1, so that (a,...,a,) ® (by,...,b,) = (a1 *by,...,a, xb,) € J. Thus,
(ay,...,an) ~y (by,...,b,) and so (ai,...,a,)/J = (by,...,b,)/J. This shows

that ¢ is one-to-one.
If (ar/ ). an/Jn) € [](Ai/J), then a; € A; for all i € I, that is,

i=1
(ay,...,a,) € A. It follows that (a1 /J1,...,a,/Jn) = ©((a1,...,a,)/J), where
(ay,...,a,)/J € AJJ. This shows that ¢ is onto. Therefore, ¢ is a BF-

isomorphism, that is, HAi / H J; = H(AZ/JZ) O

=1 =1 i=1
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