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Abstract

In this paper, the concept of the Birkhoff centre B(L) of an Almost
Distributive Lattice L with maximal elements is introduced and proved
that B(L) is a relatively complemented ADL. Mainly it is proved that
the elements of B(L) are in one-to-one correspondence with the com-
plemented ideals of L and also with the factor-congruences on L and
hence with the direct decompositions of L.
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1 Introduction

The concept of an Almost Distributive Lattice was introduced by U.M.Swamy
and G.C.Rao [4] in 1980. It is an algebraic structure which satisfies almost
all the properties of a distributive lattice with the smallest element except
the commutativity of the operations V and A and the right distributivity of
V over A. It is well known that the Birkhoff centre of a bounded partially
ordered set P is a Boolean algebra in which the operations are L.u.b. and
glb. in P [1]. In [4], U.M.Swamy, G.C.Rao, R.V.G.Ravi Kumar and Ch.
Pragathi have extended the above concept for a general partially ordered set
P and proved that B(P) is a relatively complemented distributive lattice in
which the operations are l.u.b. and g.1.b, in P (provided B(P) is non-empty).
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Also, they have observed that, for a lattice, Birkhoff centres as a lattice and
as a partially ordered set coincide. In this paper, we introduce the concept of
the Birkhoff centre B(L) of an Almost Distributive Lattice L with maximal
elements and prove that B(L) is a relatively complemented almost distributive
lattice. Mainly we obtain a one-to-one correspondences between the Birkhoff
centre of L and the set of complemented ideals of L and between the Birkhoff
centre of L and the set of factor-congruences on L.

2 Preliminaries

In this section we recollect some preliminary concepts and results on Almost
Distributive Lattices from [2].

Definition 2.1. [2] An algebra (L,V, A\, 0) of type (2, 2, 0) is said to be an
Almost Distributive Lattice (ADL) if it satisfies the following conditions.
(1) avV0=a
(2)0ANa=0
(3) (aVb)ANe=(aNnc)V (bAc)
(4) an(bVe)=(aNb)V(aAc)
(5)aV (bAc)=(aVb)A(aVc)
(6) (aVD)ANb=1b
for all a,b,c € L. The element 0 is called, as usual, the zero element of L.

Example 2.2. [2] Let X be a non-empty set. Fix xy € X. For any x,y €
X, define

S ifr=uax0 Jy ifr=uwx
“y‘{y fata " xvy‘{x if £ # 20

Then (X,V, A, x0) is an ADL with xqy as its zero element. This ADL is called
a discrete ADL.

Example 2.3. [2] Let (R, +,-,0, 1) be a commutative regular ring with iden-
tity. For any a € R, let ag be an idempotent element such that agR = aR. For
any x,y € R, define x Ny = xoy and NV y =x+y+ xoy. Then (R,V,A,0) is
an ADL.

Example 2.4. Fvery distributive lattice with zero is an ADL.
For any a,b in an ADL L, we say that a is less than or equal to b and write

a < b,if a ANb=a. Then < is a partial ordering on L.
Throughout this paper, unless otherwise stated, L denotes an ADL (L, V, A, 0).
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Lemma 2.5. [2/ For any a,b € L, we have

(1) an0=0and0Va=a

(2)aNa=a=aVa

(3) (aAND)Vb=baV(bANa)=a anda N (aVb)=a
(4)aNb=b <= aVb=a

(5)anb=a < aVb=1D

(6) aNb<banda<aVb

(7) a Nb=0bA a whenever a < b

(8) aV (bVa)=aVb.

Theorem 2.6. [2] For any a,b € L, the following are equivalent to each
other.

(1) (aANb)Va=a

(2)aN(bVa)=a

(3) (bAa)Vb=1b

(4) bA(aVb)=10

(5)aNb=DbAa

(6)avVb=0bVa

(7) The supremum of a and b exists and equals to a V' b

(8) There exists x € L such that a <z and b <z

(9) The infimum of a and b exists and equals to a N b.

Theorem 2.7. [2] For any a,b,c € L, we have
(1) (avVb)ANe=(bVa)Ac

(2) N is associative in L

(8) aNbAc=bAaAc.

From the above theorem, it follows that, for any « € L, the set {a Az | a €
L} forms a bounded distributive lattice and, in particular, we have
((and)vVe)Axz=((aVe)AN(bVe)) Az
for all a,b,c,z € L. An element m € L is said to be maximal if m < z implies
m = x. It can be easily observed that m is maximal if and only if m Az =z
for all z € L.

Definition 2.8. [2/ A non-empty subset I of L is said to be an ideal of L
iof it satisfies the following;

(i)a,bel =avVvbel

(i)acl,re L=aNz el

If I is an ideal of L, then x Aa € I for any a € [ and © € L; For,
xNa=xzANaNa=aANxzAa € I. Therefore in this case, any right ideal
in the usual sense is a left ideal two and hence a two sided ideal in the usual
sense. However a left ideal may not be a right ideal. For consider the following
example.



542 U. M. Swamy and S. Ramesh

Example 2.9. Let D be a discrete ADL. For any 0 # x € D, the set {0,z}
1s a left ideal but not a right ideal of D.

Definition 2.10. /2] A non-empty subset F' of L is said to be a filter of L,
if it satisfies the following;

(i) a,be F=aNnbeF

(i)a€e F,xe L=xVacF.

If F is a filter of L, then a Vx € F for any a € F and x € L; For,
aVz=(aVz)A(aVz)=(xVa)A(aVa)=(xA(aVz)V(aA(aVa))=
(xA(aVx))Va e F. Therefore in any ADL, every left filter in the usual sense
is a right filter and hence a two sided filter in the usual sense. However a right
filter may not be a left filter. For, consider the following example.

Example 2.11. Let D be a discrete ADL. For any 0 # x € D, the set {z}
1s a right filter but not a left filter of D.

It is known that, for any x,y € L with z < y, the interval [z, y| is a bounded
distributive lattice. Now, an ADL L is said to be relatively complemented if,
for any z,y € L with = < y, the interval [z, y] is a complemented distributive
lattice.

Theorem 2.12. [2] The following are equivalent for any ADL L;
(1) L is relatively complemented
(2) Given x,y € L, there exists a € L such that xt Aa =0 and xVa=2zVy
(8) For any x € L, the interval [0, z] is complemented.

3 The Birkhoff Centre

In this section we define the Birkhoff centre of an Almost Distributive Lattice
L with maximal elements and prove that the Birkhoff centre of L is a rela-
tively complemented ADL. We obtain a one-to-one correspondences between
the set B(L), of complemented ideals of L and the set of factor-congruences
on L. Throughout this paper we consider only ADLs which contain atleast
one maximal element.

Definition 3.1. Given an ADL L, define
B(L):={a € L| there exists b € L such that aAb =0 and aVb is mazimal}.

If anb =0 and aVbis maximal, then bAa = 0 and bV a is maximal; in this
case, a and b are called complements to each other. Note that complement of
an element need not be unique; for example, in a discrete ADL, every non-zero
element is a complement of 0. If L; and Ly are ADLs with maximal elements,
then it can be easily verified that L; X L is so; Infact (mq, ms) is a maximal
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element in L X Ly if and only if m; and m, are maximal elements in L; and Lo
respectively. In the following we extend the result on a bounded distributive
lattice L corresponding to decompositions of L into products of two bounded
distributive lattices.

Theorem 3.2. For any a € L, a € B(L) if and only if there exist two
ADLs Ly and Lo with maximal elements and an isomorphism f : L — Ly X Lo
such that f(a) = (my,0), where my is a mazimal element in L.

Proof. Suppose that a € B(L). Then there exists b € L such that a Ab =0
and a V b is maximal.
Put Ly = (a) ={aAz|xz € L} and Ly = (b) ={bAz |z € L}

Then L; and Ly are ADLs (subADLs of L) and a and b are maximal elements

of L; and Ly respectively. Define f : L — L; x Ly by
flx)y=(aNz,bAx)foral zelL.

Then f is an isomorphism from L onto L; X Ly such that f(a) = (a,0), and

a is a maximal element of L;. Conversely suppose that there exist two ADLs

L, and L, with maximal elements and an isomorphism f : L — Ly x Ly such

that f(a) = (mq,0), where m; is a maximal element of L;. Choose a maximal

element mg in Ly. Then there exists b € L such that f(b) = (0,m3). Now,

flaNb) = fla) A f(b) = (m1,0) A (0,ms) = (0,0) = f(0) and f(a Vb) =

fla) v f(b) = (m1,0) V (0,my) = (my,m2) which is maximal in L; X Ls.

Therefore a A b =0 and a V b is maximal. Thus a € B(L). O

In the following we observe that the Birkhoff centre of L is a relatively com-
plemented subADL of L.

Theorem 3.3. B(L) is a relatively complemented ADL under the opera-
tions induced by those of L.

Proof. Clearly 0 € B(L) and hence B(L) is a non-empty subset of L. Let a;
and ay € B(L). Let by and by € L be complements of a; and as respectively;
that is, a1 Aby =0 =as A by and aq V by, as V by are maximal.

(&1/\&2)/\(61\/[)2) = (al/\&g/\b1>\/(a1/\a2/\b2)
= (al/\bl/\&g/\bl)\/(al/\(&g/\bg))
=0 ('.'al/\b1:O:ag/\bg)

and, for all x € L,

((Cbl N CLQ) V (bl V bg)) Nr = [((ll V bl V bg) VAN (CLQ V bl V bg)] NzT
= x (since a; V by and ay V by are maximal)

and hence (a; A ag) V (by V by) is maximal. Therefore by V by is a complement
of a; A ay and hence a; A as € B(L). From this, it follows that by A by is a
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complement of a; V as and hence a; V ay € B(L). Therefore B(L) is an ADL
under the operations induced by those of L. Let a,b € B(L). Then there exist
¢,d € L such that aAc =0 =0Ad and aV c and bV d are maximal. Put
r=cAband y=aVd. Then
rAy = cAbA(aVd)
= (¢cAbANa)V(cAbAA)
=0 (since aANc=0=>bAd)
and, for any t € L,
(xVy At = ((cAb)V(aVd) At
= (eVaVvd)AN(bVaVd) At
= (aVe)AN(DVA) N
t (since a V ¢ and bV d are maximal).
Therefore x € B(L). Now, aAz =aAcAb=0andaVz=aV(cA(aVD)) =
(aVe)A(aVb) =aVb (since aVcis maximal). Therefore B(L) is a relatively
complemented ADL. O

In the following we observe that the Birkhoff centre of a relatively comple-
mented ADL with maximal elements is equal to itself.

Theorem 3.4. L is relatively complemented if and only if B(L) = L.

Proof. Suppose L is relatively complemented. Let x € L such that z is not
maximal. Then there exists a maximal element m of L such that z < m. (for
example, if n is maximal in L, then = V n is also maximal and z < z V n).
Since L is relatively complemented, there exists y € L such that x Ay = 0 and
x Vy = m. Therefore z € B(L) and hence B(L) = L. The converse follows
from theorem 3.3. U

The following is a straightforward verification.
Theorem 3.5. If Ly and Ly are ADLs, then B(Ly x Ly) = B(Ly) x B(Ls).

Let L be an ADL. The relation n := {(a,b) € LxL | aAb = b and bAa = a}
is a congruence relation on L and is the smallest such that L/n is a lattice.
We have the following;

Theorem 3.6. B(L/n) is isomorphic to B(L) /M550 -

Proof. Let a/n € B(L/n). Then there exists b € L such that a/n Ab/n=0/n
and a/nV b/n is maximal in L/n. Therefore a Ab = 0 and (aV b)/n is maximal
in L/n. Now, for any « € L, we have ((aVb) Ax)/n= (aVb)/nANx/n=uz/n.
Then ((aVb) Ax,x) € n and hence (aV b) Az = z. Therefore a V b is maximal
in L. Hence a € B(L). Consider the map f : B(L) — B(L/n) defined
by f(a) = a/n for any a € B(L). Then f is an epimorphism and Kerf =
n N (B(L) x B(L)). Hence by the fundamental theorem of homomorphisms,
B(L)/mB(L)xB(L) = B(L/n). [
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It is known that an ideal I of an ADL L is complemented if and only if I = (a)
for some a € L [2]. Infact, we have the following.

Theorem 3.7. An ideal I of L is complemented if and only if I = (a) for
some a € B(L).

Proof. Let I be an ideal of L. Suppose that [ is complemented. Then there
exists an ideal I’ of L such that /NI’ = (0) and IV I’ = L. Choose a maximal
element m of L. Then m = aV b for somea € [ and b € I'. Since INI" = (0),
a Ab =0 and we have that a V b is maximal. Therefore a € B(L). Now, since
a € L, we have that (a) C I. Also,
rel = bAhzelInl =(0)

= bAz=0

= z=mAz=(aVbANz=aAx

= 1z € (a).
Therefore (a) = I. Similarly (b) = I’. Conversely, suppose that I = (a) for
some a € B(L). Then there exists b € L such that a Ab = 0 and a V b is
maximal. Now, (a) N (b) = (0) and (a) V (b) = (a V b) = L. Therefore I is
complemented. O

Given any filter F' of an ADL L, define
¢, ={(a,b) € Lx L|xNa=zADbfor some x € F}.
Then ¢,. is a congruence on L. We write ¢, := {(a,b) € Lx L | xt Aa = x A\b},
for any x € L.
The following is a routine verification.

Theorem 3.8. We have the following;
(i) For any filters F, G of L, ¢, N ¢, = ¢ and ¢ 0 &y, = Gpoes
(ii) For any x € L, ¢,y = bz, where [x):={yVa|yeL}
(111) For any x € L, ¢, = A if and only if x is mazximal
(iv) For any x € L, ¢, = L X L if and only if x = 0.

A congruence 0 on an ADL L is said to be a factor-congruence on L if
there exists a congruence ¢ on L such that 0 N¢ = A and § o ¢ = L x L;
or, equivalently, x +— (0(x),¢(x)) is an isomorphism of L onto L/0 x L/¢.
In other words, factor congruences correspond to direct decompositions of L.
The following gives a correspondence between factor congruences on L and
elements of B(L) (see Theorem 3.2).

Theorem 3.9. A congruence 0 on L is a factor-congruence if and only if
0 = ¢, for some a € B(L).

Proof. Suppose that 0 is a factor-congruence on L. Then there exists a congru-
ence ¢ on L such that 0N¢ = A and # 0o ¢ = L x L. Choose a maximal element
m of L. Then (m,0) € 6 o ¢ and hence there exists b € L such that (m,b) € ¢
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and (b,0) € 0. Also, (0,m) € 6 0o ¢ and hence there exists a € L such that
(0,a) € ¢ and (a,m) € 6. Now, (0,b Aa) € 6N ¢ = A. Therefore a Ab = 0.
Since (m,b) € ¢, (m,bV a) € ¢. Since (bV a,a),(a,m) € 0, (m,bVa) € 0.
Therefore (m,bV a) € 6 N ¢ and hence bV a = m, which is maximal. Thus
a € B(L). Now, we will show that ¢, = 0. Let z,y € L. If (z,y) € ¢q, then
aNzx =aAy. Since (a,m) € 6, we get that (a A z,x),(a ANy,y) € 0. Since
ahz =aly, (x,y) € 0. Therefore ¢, C 0. If (x,y) € 0, then (aAx,aNy) € 6.
Since (0,a) € ¢, (0,a A z),(0,a Ay) € ¢. Therefore (a ANz,aNy) € pNO=A
and hence a A x = a Ay. Hence (z,y) € ¢o. Thus ¢, = 0 and a € B(L).
Conversely, suppose that 6 = ¢, for some a € B(L). Then there exists b € L
such that a A b =0 and a V b is maximal. Now,

PN Pp = ¢ NPy =Dy = Pruvyy = Pavp = A (since a V b is maximal)

Ba 0 6= b1 0 By = Dy = Gy = Bars = b0 = L x L.
Therefore 0 is a factor-congruence on L. O

Corollary 3.10. L is relatively complemented if and only if ¢, is a factor
congruence for every a € L.
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