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Abstract

In this paper, the concept of the Birkhoff centre B(L) of an Almost
Distributive Lattice L with maximal elements is introduced and proved
that B(L) is a relatively complemented ADL. Mainly it is proved that
the elements of B(L) are in one-to-one correspondence with the com-
plemented ideals of L and also with the factor-congruences on L and
hence with the direct decompositions of L.
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1 Introduction

The concept of an Almost Distributive Lattice was introduced by U.M.Swamy
and G.C.Rao [4] in 1980. It is an algebraic structure which satisfies almost
all the properties of a distributive lattice with the smallest element except
the commutativity of the operations ∨ and ∧ and the right distributivity of
∨ over ∧. It is well known that the Birkhoff centre of a bounded partially
ordered set P is a Boolean algebra in which the operations are l.u.b. and
g.l.b. in P [1]. In [4], U.M.Swamy, G.C.Rao, R.V.G.Ravi Kumar and Ch.
Pragathi have extended the above concept for a general partially ordered set
P and proved that B(P ) is a relatively complemented distributive lattice in
which the operations are l.u.b. and g.l.b, in P (provided B(P ) is non-empty).
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Also, they have observed that, for a lattice, Birkhoff centres as a lattice and
as a partially ordered set coincide. In this paper, we introduce the concept of
the Birkhoff centre B(L) of an Almost Distributive Lattice L with maximal
elements and prove that B(L) is a relatively complemented almost distributive
lattice. Mainly we obtain a one-to-one correspondences between the Birkhoff
centre of L and the set of complemented ideals of L and between the Birkhoff
centre of L and the set of factor-congruences on L.

2 Preliminaries

In this section we recollect some preliminary concepts and results on Almost
Distributive Lattices from [2].

Definition 2.1. [2] An algebra (L,∨,∧, 0) of type (2, 2, 0) is said to be an
Almost Distributive Lattice (ADL) if it satisfies the following conditions.

(1) a ∨ 0 = a

(2) 0 ∧ a = 0

(3) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

(4) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(5) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(6) (a ∨ b) ∧ b = b
for all a, b, c ∈ L. The element 0 is called, as usual, the zero element of L.

Example 2.2. [2] Let X be a non-empty set. Fix x0 ∈ X. For any x, y ∈
X, define

x ∧ y =

{
x0 if x = x0

y if x �= x0
and x ∨ y =

{
y if x = x0

x if x �= x0

Then (X,∨,∧, x0) is an ADL with x0 as its zero element. This ADL is called
a discrete ADL.

Example 2.3. [2] Let (R, +, ·, 0, 1) be a commutative regular ring with iden-
tity. For any a ∈ R, let a0 be an idempotent element such that a0R = aR. For
any x, y ∈ R, define x∧ y = x0y and x∨ y = x + y + x0y. Then (R,∨,∧, 0) is
an ADL.

Example 2.4. Every distributive lattice with zero is an ADL.

For any a, b in an ADL L, we say that a is less than or equal to b and write
a ≤ b, if a ∧ b = a. Then ≤ is a partial ordering on L.

Throughout this paper, unless otherwise stated, L denotes an ADL (L,∨,∧, 0).
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Lemma 2.5. [2] For any a, b ∈ L, we have
(1) a ∧ 0 = 0 and 0 ∨ a = a
(2) a ∧ a = a = a ∨ a
(3) (a ∧ b) ∨ b = b, a ∨ (b ∧ a) = a and a ∧ (a ∨ b) = a
(4) a ∧ b = b ⇐⇒ a ∨ b = a
(5) a ∧ b = a ⇐⇒ a ∨ b = b
(6) a ∧ b ≤ b and a ≤ a ∨ b
(7) a ∧ b = b ∧ a whenever a ≤ b
(8) a ∨ (b ∨ a) = a ∨ b.

Theorem 2.6. [2] For any a, b ∈ L, the following are equivalent to each
other.

(1) (a ∧ b) ∨ a = a
(2) a ∧ (b ∨ a) = a
(3) (b ∧ a) ∨ b = b
(4) b ∧ (a ∨ b) = b
(5) a ∧ b = b ∧ a
(6) a ∨ b = b ∨ a
(7) The supremum of a and b exists and equals to a ∨ b
(8) There exists x ∈ L such that a ≤ x and b ≤ x
(9) The infimum of a and b exists and equals to a ∧ b.

Theorem 2.7. [2] For any a, b, c ∈ L, we have
(1) (a ∨ b) ∧ c = (b ∨ a) ∧ c
(2) ∧ is associative in L
(3) a ∧ b ∧ c = b ∧ a ∧ c.

From the above theorem, it follows that, for any x ∈ L, the set {a∧x | a ∈
L} forms a bounded distributive lattice and, in particular, we have

((a ∧ b) ∨ c) ∧ x = ((a ∨ c) ∧ (b ∨ c)) ∧ x
for all a, b, c, x ∈ L. An element m ∈ L is said to be maximal if m ≤ x implies
m = x. It can be easily observed that m is maximal if and only if m ∧ x = x
for all x ∈ L.

Definition 2.8. [2] A non-empty subset I of L is said to be an ideal of L
if it satisfies the following;

(i) a, b ∈ I ⇒ a ∨ b ∈ I
(ii) a ∈ I, x ∈ L ⇒ a ∧ x ∈ I.

If I is an ideal of L, then x ∧ a ∈ I for any a ∈ I and x ∈ L; For,
x ∧ a = x ∧ a ∧ a = a ∧ x ∧ a ∈ I. Therefore in this case, any right ideal
in the usual sense is a left ideal two and hence a two sided ideal in the usual
sense. However a left ideal may not be a right ideal. For consider the following
example.
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Example 2.9. Let D be a discrete ADL. For any 0 �= x ∈ D, the set {0, x}
is a left ideal but not a right ideal of D.

Definition 2.10. [2] A non-empty subset F of L is said to be a filter of L,
if it satisfies the following;

(i) a, b ∈ F ⇒ a ∧ b ∈ F
(ii) a ∈ F, x ∈ L ⇒ x ∨ a ∈ F .

If F is a filter of L, then a ∨ x ∈ F for any a ∈ F and x ∈ L; For,
a ∨ x = (a ∨ x) ∧ (a ∨ x) = (x ∨ a) ∧ (a ∨ x) = (x ∧ (a ∨ x)) ∨ (a ∧ (a ∨ x)) =
(x∧ (a∨ x))∨ a ∈ F. Therefore in any ADL, every left filter in the usual sense
is a right filter and hence a two sided filter in the usual sense. However a right
filter may not be a left filter. For, consider the following example.

Example 2.11. Let D be a discrete ADL. For any 0 �= x ∈ D, the set {x}
is a right filter but not a left filter of D.

It is known that, for any x, y ∈ L with x ≤ y, the interval [x, y] is a bounded
distributive lattice. Now, an ADL L is said to be relatively complemented if,
for any x, y ∈ L with x ≤ y, the interval [x, y] is a complemented distributive
lattice.

Theorem 2.12. [2] The following are equivalent for any ADL L;
(1) L is relatively complemented
(2) Given x, y ∈ L, there exists a ∈ L such that x∧a = 0 and x∨a = x∨y
(3) For any x ∈ L, the interval [0, x] is complemented.

3 The Birkhoff Centre

In this section we define the Birkhoff centre of an Almost Distributive Lattice
L with maximal elements and prove that the Birkhoff centre of L is a rela-
tively complemented ADL. We obtain a one-to-one correspondences between
the set B(L), of complemented ideals of L and the set of factor-congruences
on L. Throughout this paper we consider only ADLs which contain atleast
one maximal element.

Definition 3.1. Given an ADL L, define
B(L) := {a ∈ L | there exists b ∈ L such that a∧b = 0 and a∨b is maximal}.
If a∧b = 0 and a∨b is maximal, then b∧a = 0 and b∨a is maximal; in this

case, a and b are called complements to each other. Note that complement of
an element need not be unique; for example, in a discrete ADL, every non-zero
element is a complement of 0. If L1 and L2 are ADLs with maximal elements,
then it can be easily verified that L1 × L2 is so; Infact (m1, m2) is a maximal
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element in L1×L2 if and only if m1 and m2 are maximal elements in L1 and L2

respectively. In the following we extend the result on a bounded distributive
lattice L corresponding to decompositions of L into products of two bounded
distributive lattices.

Theorem 3.2. For any a ∈ L, a ∈ B(L) if and only if there exist two
ADLs L1 and L2 with maximal elements and an isomorphism f : L → L1 ×L2

such that f(a) = (m1, 0), where m1 is a maximal element in L1.

Proof. Suppose that a ∈ B(L). Then there exists b ∈ L such that a ∧ b = 0
and a ∨ b is maximal.

Put L1 = (a) = {a ∧ x | x ∈ L} and L2 = (b) = {b ∧ x | x ∈ L}
Then L1 and L2 are ADLs (subADLs of L) and a and b are maximal elements
of L1 and L2 respectively. Define f : L → L1 × L2 by

f(x) = (a ∧ x, b ∧ x) for all x ∈ L.
Then f is an isomorphism from L onto L1 × L2 such that f(a) = (a, 0), and
a is a maximal element of L1. Conversely suppose that there exist two ADLs
L1 and L2 with maximal elements and an isomorphism f : L → L1 × L2 such
that f(a) = (m1, 0), where m1 is a maximal element of L1. Choose a maximal
element m2 in L2. Then there exists b ∈ L such that f(b) = (0, m2). Now,
f(a ∧ b) = f(a) ∧ f(b) = (m1, 0) ∧ (0, m2) = (0, 0) = f(0) and f(a ∨ b) =
f(a) ∨ f(b) = (m1, 0) ∨ (0, m2) = (m1, m2) which is maximal in L1 × L2.
Therefore a ∧ b = 0 and a ∨ b is maximal. Thus a ∈ B(L).

In the following we observe that the Birkhoff centre of L is a relatively com-
plemented subADL of L.

Theorem 3.3. B(L) is a relatively complemented ADL under the opera-
tions induced by those of L.

Proof. Clearly 0 ∈ B(L) and hence B(L) is a non-empty subset of L. Let a1

and a2 ∈ B(L). Let b1 and b2 ∈ L be complements of a1 and a2 respectively;
that is, a1 ∧ b1 = 0 = a2 ∧ b2 and a1 ∨ b1, a2 ∨ b2 are maximal.

(a1 ∧ a2) ∧ (b1 ∨ b2) = (a1 ∧ a2 ∧ b1) ∨ (a1 ∧ a2 ∧ b2)
= (a1 ∧ b1 ∧ a2 ∧ b1) ∨ (a1 ∧ (a2 ∧ b2))
= 0 (∵ a1 ∧ b1 = 0 = a2 ∧ b2)

and, for all x ∈ L,

((a1 ∧ a2) ∨ (b1 ∨ b2)) ∧ x = [(a1 ∨ b1 ∨ b2) ∧ (a2 ∨ b1 ∨ b2)] ∧ x
= x (since a1 ∨ b1 and a2 ∨ b2 are maximal)

and hence (a1 ∧ a2) ∨ (b1 ∨ b2) is maximal. Therefore b1 ∨ b2 is a complement
of a1 ∧ a2 and hence a1 ∧ a2 ∈ B(L). From this, it follows that b1 ∧ b2 is a
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complement of a1 ∨ a2 and hence a1 ∨ a2 ∈ B(L). Therefore B(L) is an ADL
under the operations induced by those of L. Let a, b ∈ B(L). Then there exist
c, d ∈ L such that a ∧ c = 0 = b ∧ d and a ∨ c and b ∨ d are maximal. Put
x = c ∧ b and y = a ∨ d. Then

x ∧ y = c ∧ b ∧ (a ∨ d)
= (c ∧ b ∧ a) ∨ (c ∧ b ∧ d)
= 0 (since a ∧ c = 0 = b ∧ d)

and, for any t ∈ L,
(x ∨ y) ∧ t = ((c ∧ b) ∨ (a ∨ d)) ∧ t

= (c ∨ a ∨ d) ∧ (b ∨ a ∨ d) ∧ t
= (a ∨ c) ∧ (b ∨ d) ∧ t
= t (since a ∨ c and b ∨ d are maximal).

Therefore x ∈ B(L). Now, a∧ x = a∧ c∧ b = 0 and a∨ x = a∨ (c∧ (a∨ b)) =
(a∨ c)∧ (a∨ b) = a∨ b (since a∨ c is maximal). Therefore B(L) is a relatively
complemented ADL.

In the following we observe that the Birkhoff centre of a relatively comple-
mented ADL with maximal elements is equal to itself.

Theorem 3.4. L is relatively complemented if and only if B(L) = L.

Proof. Suppose L is relatively complemented. Let x ∈ L such that x is not
maximal. Then there exists a maximal element m of L such that x ≤ m. (for
example, if n is maximal in L, then x ∨ n is also maximal and x ≤ x ∨ n).
Since L is relatively complemented, there exists y ∈ L such that x∧ y = 0 and
x ∨ y = m. Therefore x ∈ B(L) and hence B(L) = L. The converse follows
from theorem 3.3.

The following is a straightforward verification.

Theorem 3.5. If L1 and L2 are ADLs, then B(L1×L1) = B(L1)×B(L2).

Let L be an ADL. The relation η := {(a, b) ∈ L×L | a∧b = b and b∧a = a}
is a congruence relation on L and is the smallest such that L/η is a lattice.
We have the following;

Theorem 3.6. B(L/η) is isomorphic to B(L)/η|B(L)×B(L)
.

Proof. Let a/η ∈ B(L/η). Then there exists b ∈ L such that a/η ∧ b/η = 0/η
and a/η∨ b/η is maximal in L/η. Therefore a∧ b = 0 and (a∨ b)/η is maximal
in L/η. Now, for any x ∈ L, we have ((a ∨ b) ∧ x)/η = (a ∨ b)/η ∧ x/η = x/η.
Then ((a∨ b)∧ x, x) ∈ η and hence (a∨ b)∧x = x. Therefore a∨ b is maximal
in L. Hence a ∈ B(L). Consider the map f : B(L) → B(L/η) defined
by f(a) = a/η for any a ∈ B(L). Then f is an epimorphism and Kerf =
η ∩ (B(L) × B(L)). Hence by the fundamental theorem of homomorphisms,
B(L)/η|B(L)×B(L)

∼= B(L/η).
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It is known that an ideal I of an ADL L is complemented if and only if I = (a)
for some a ∈ L [2]. Infact, we have the following.

Theorem 3.7. An ideal I of L is complemented if and only if I = (a) for
some a ∈ B(L).

Proof. Let I be an ideal of L. Suppose that I is complemented. Then there
exists an ideal I ′ of L such that I ∩ I ′ = (0) and I ∨ I ′ = L. Choose a maximal
element m of L. Then m = a∨ b for some a ∈ I and b ∈ I ′. Since I ∩ I ′ = (0),
a ∧ b = 0 and we have that a ∨ b is maximal. Therefore a ∈ B(L). Now, since
a ∈ L, we have that (a) ⊆ I. Also,

x ∈ I ⇒ b ∧ x ∈ I ∩ I ′ = (0)
⇒ b ∧ x = 0
⇒ x = m ∧ x = (a ∨ b) ∧ x = a ∧ x
⇒ x ∈ (a).

Therefore (a) = I. Similarly (b) = I ′. Conversely, suppose that I = (a) for
some a ∈ B(L). Then there exists b ∈ L such that a ∧ b = 0 and a ∨ b is
maximal. Now, (a) ∩ (b) = (0) and (a) ∨ (b) = (a ∨ b) = L. Therefore I is
complemented.

Given any filter F of an ADL L, define
φ

F
:= {(a, b) ∈ L × L | x ∧ a = x ∧ b for some x ∈ F}.

Then φ
F

is a congruence on L. We write φx := {(a, b) ∈ L×L | x∧a = x∧ b},
for any x ∈ L.

The following is a routine verification.

Theorem 3.8. We have the following;
(i) For any filters F , G of L, φ

F
∩ φ

G
= φ

F∩G
and φ

F
o φ

G
= φ

F∨G

(ii) For any x ∈ L, φ
[x)

= φx, where [x) := {y ∨ x | y ∈ L}
(iii) For any x ∈ L, φx = Δ if and only if x is maximal
(iv) For any x ∈ L, φx = L × L if and only if x = 0.

A congruence θ on an ADL L is said to be a factor-congruence on L if
there exists a congruence φ on L such that θ ∩ φ = Δ and θ o φ = L × L;
or, equivalently, x → (θ(x), φ(x)) is an isomorphism of L onto L/θ × L/φ.
In other words, factor congruences correspond to direct decompositions of L.
The following gives a correspondence between factor congruences on L and
elements of B(L) (see Theorem 3.2).

Theorem 3.9. A congruence θ on L is a factor-congruence if and only if
θ = φa for some a ∈ B(L).

Proof. Suppose that θ is a factor-congruence on L. Then there exists a congru-
ence φ on L such that θ∩φ = Δ and θ o φ = L×L. Choose a maximal element
m of L. Then (m, 0) ∈ θ o φ and hence there exists b ∈ L such that (m, b) ∈ φ



546 U. M. Swamy and S. Ramesh

and (b, 0) ∈ θ. Also, (0, m) ∈ θ o φ and hence there exists a ∈ L such that
(0, a) ∈ φ and (a, m) ∈ θ. Now, (0, b ∧ a) ∈ θ ∩ φ = Δ. Therefore a ∧ b = 0.
Since (m, b) ∈ φ, (m, b ∨ a) ∈ φ. Since (b ∨ a, a), (a, m) ∈ θ, (m, b ∨ a) ∈ θ.
Therefore (m, b ∨ a) ∈ θ ∩ φ and hence b ∨ a = m, which is maximal. Thus
a ∈ B(L). Now, we will show that φa = θ. Let x, y ∈ L. If (x, y) ∈ φa, then
a ∧ x = a ∧ y. Since (a, m) ∈ θ, we get that (a ∧ x, x), (a ∧ y, y) ∈ θ. Since
a∧x = a∧y, (x, y) ∈ θ. Therefore φa ⊆ θ. If (x, y) ∈ θ, then (a∧x, a∧y) ∈ θ.
Since (0, a) ∈ φ, (0, a ∧ x), (0, a ∧ y) ∈ φ. Therefore (a ∧ x, a ∧ y) ∈ φ ∩ θ = Δ
and hence a ∧ x = a ∧ y. Hence (x, y) ∈ φa. Thus φa = θ and a ∈ B(L).
Conversely, suppose that θ = φa for some a ∈ B(L). Then there exists b ∈ L
such that a ∧ b = 0 and a ∨ b is maximal. Now,

φa ∩ φb = φ
[a)

∩ φ
[b)

= φ
[a)∩[b)

= φ
[a∨b)

= φa∨b = Δ (since a ∨ b is maximal)
φa o φb = φ

[a)
o φ

[b)
= φ

[a)∨[b)
= φ

[a∧b)
= φa∧b = φ0 = L × L.

Therefore θ is a factor-congruence on L.

Corollary 3.10. L is relatively complemented if and only if φa is a factor
congruence for every a ∈ L.
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