# Birkhoff Centre of an Almost Distributive Lattice

U. M. Swamy

umswamy@yahoo.com

#### S. Ramesh

Department of Mathematics Andhra University, Visakhapatnam, India rameshsirisetti@yahoo.co.in

#### Abstract

In this paper, the concept of the Birkhoff centre B(L) of an Almost Distributive Lattice L with maximal elements is introduced and proved that B(L) is a relatively complemented ADL. Mainly it is proved that the elements of B(L) are in one-to-one correspondence with the complemented ideals of L and also with the factor-congruences on L and hence with the direct decompositions of L.

Mathematics Subject Classification: 06D99

**Keywords:** Almost Distributive Lattices (ADLs), relatively complemented ADLs, ideals, filters, factor-congruences.

### 1 Introduction

The concept of an Almost Distributive Lattice was introduced by U.M.Swamy and G.C.Rao [4] in 1980. It is an algebraic structure which satisfies almost all the properties of a distributive lattice with the smallest element except the commutativity of the operations  $\vee$  and  $\wedge$  and the right distributivity of  $\vee$  over  $\wedge$ . It is well known that the Birkhoff centre of a bounded partially ordered set P is a Boolean algebra in which the operations are l.u.b. and g.l.b. in P [1]. In [4], U.M.Swamy, G.C.Rao, R.V.G.Ravi Kumar and Ch. Pragathi have extended the above concept for a general partially ordered set P and proved that B(P) is a relatively complemented distributive lattice in which the operations are l.u.b. and g.l.b, in P (provided B(P) is non-empty).

Also, they have observed that, for a lattice, Birkhoff centres as a lattice and as a partially ordered set coincide. In this paper, we introduce the concept of the Birkhoff centre B(L) of an Almost Distributive Lattice L with maximal elements and prove that B(L) is a relatively complemented almost distributive lattice. Mainly we obtain a one-to-one correspondences between the Birkhoff centre of L and the set of complemented ideals of L and between the Birkhoff centre of L and the set of factor-congruences on L.

## 2 Preliminaries

In this section we recollect some preliminary concepts and results on Almost Distributive Lattices from [2].

**Definition 2.1.** [2] An algebra  $(L, \vee, \wedge, 0)$  of type (2, 2, 0) is said to be an Almost Distributive Lattice (ADL) if it satisfies the following conditions.

- (1)  $a \lor 0 = a$
- (2)  $0 \wedge a = 0$
- (3)  $(a \lor b) \land c = (a \land c) \lor (b \land c)$
- $(4) \ a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
- $(5) \ a \lor (b \land c) = (a \lor b) \land (a \lor c)$
- (6)  $(a \lor b) \land b = b$

for all  $a, b, c \in L$ . The element 0 is called, as usual, the zero element of L.

**Example 2.2.** [2] Let X be a non-empty set. Fix  $x_0 \in X$ . For any  $x, y \in X$ , define

$$x \wedge y = \begin{cases} x_0 & \text{if } x = x_0 \\ y & \text{if } x \neq x_0 \end{cases} \quad and \quad x \vee y = \begin{cases} y & \text{if } x = x_0 \\ x & \text{if } x \neq x_0 \end{cases}$$

Then  $(X, \vee, \wedge, x_0)$  is an ADL with  $x_0$  as its zero element. This ADL is called a discrete ADL.

**Example 2.3.** [2] Let  $(R, +, \cdot, 0, 1)$  be a commutative regular ring with identity. For any  $a \in R$ , let  $a_0$  be an idempotent element such that  $a_0R = aR$ . For any  $x, y \in R$ , define  $x \wedge y = x_0y$  and  $x \vee y = x + y + x_0y$ . Then  $(R, \vee, \wedge, 0)$  is an ADL.

**Example 2.4.** Every distributive lattice with zero is an ADL.

For any a, b in an ADL L, we say that a is less than or equal to b and write  $a \le b$ , if  $a \land b = a$ . Then  $\le$  is a partial ordering on L.

Throughout this paper, unless otherwise stated, L denotes an ADL  $(L, \vee, \wedge, 0)$ .

**Lemma 2.5.** [2] For any  $a, b \in L$ , we have

- (1)  $a \wedge 0 = 0$  and  $0 \vee a = a$
- (2)  $a \wedge a = a = a \vee a$
- (3)  $(a \wedge b) \vee b = b, a \vee (b \wedge a) = a \text{ and } a \wedge (a \vee b) = a$
- (4)  $a \wedge b = b \iff a \vee b = a$
- (5)  $a \wedge b = a \iff a \vee b = b$
- (6)  $a \wedge b \leq b$  and  $a \leq a \vee b$
- (7)  $a \wedge b = b \wedge a$  whenever a < b
- (8)  $a \lor (b \lor a) = a \lor b$ .

**Theorem 2.6.** [2] For any  $a, b \in L$ , the following are equivalent to each other.

- (1)  $(a \wedge b) \vee a = a$
- $(2) \ a \wedge (b \vee a) = a$
- $(3) (b \wedge a) \vee b = b$
- $(4) \ b \land (a \lor b) = b$
- (5)  $a \wedge b = b \wedge a$
- (6)  $a \lor b = b \lor a$
- (7) The supremum of a and b exists and equals to  $a \lor b$
- (8) There exists  $x \in L$  such that  $a \leq x$  and  $b \leq x$
- (9) The infimum of a and b exists and equals to  $a \wedge b$ .

**Theorem 2.7.** [2] For any  $a, b, c \in L$ , we have

- (1)  $(a \lor b) \land c = (b \lor a) \land c$
- $(2) \land is associative in L$
- (3)  $a \wedge b \wedge c = b \wedge a \wedge c$ .

From the above theorem, it follows that, for any  $x \in L$ , the set  $\{a \land x \mid a \in L\}$  forms a bounded distributive lattice and, in particular, we have

$$((a \land b) \lor c) \land x = ((a \lor c) \land (b \lor c)) \land x$$

for all  $a, b, c, x \in L$ . An element  $m \in L$  is said to be maximal if  $m \leq x$  implies m = x. It can be easily observed that m is maximal if and only if  $m \wedge x = x$  for all  $x \in L$ .

**Definition 2.8.** [2] A non-empty subset I of L is said to be an ideal of L if it satisfies the following;

- (i)  $a, b \in I \Rightarrow a \lor b \in I$
- (ii)  $a \in I, x \in L \Rightarrow a \land x \in I$ .

If I is an ideal of L, then  $x \wedge a \in I$  for any  $a \in I$  and  $x \in L$ ; For,  $x \wedge a = x \wedge a \wedge a = a \wedge x \wedge a \in I$ . Therefore in this case, any right ideal in the usual sense is a left ideal two and hence a two sided ideal in the usual sense. However a left ideal may not be a right ideal. For consider the following example.

**Example 2.9.** Let D be a discrete ADL. For any  $0 \neq x \in D$ , the set  $\{0, x\}$  is a left ideal but not a right ideal of D.

**Definition 2.10.** [2] A non-empty subset F of L is said to be a filter of L, if it satisfies the following;

- (i)  $a, b \in F \Rightarrow a \land b \in F$ (ii)  $a \in F, x \in L \Rightarrow x \lor a \in F$ .
- If F is a filter of L, then  $a \vee x \in F$  for any  $a \in F$  and  $x \in L$ ; For,  $a \vee x = (a \vee x) \wedge (a \vee x) = (x \vee a) \wedge (a \vee x) = (x \wedge (a \vee x)) \vee (a \wedge (a \vee x)) = (x \wedge (a \vee x)) \vee a \in F$ . Therefore in any ADL, every left filter in the usual sense is a right filter and hence a two sided filter in the usual sense. However a right filter may not be a left filter. For, consider the following example.

**Example 2.11.** Let D be a discrete ADL. For any  $0 \neq x \in D$ , the set  $\{x\}$  is a right filter but not a left filter of D.

It is known that, for any  $x,y\in L$  with  $x\leq y$ , the interval [x,y] is a bounded distributive lattice. Now, an ADL L is said to be relatively complemented if, for any  $x,y\in L$  with  $x\leq y$ , the interval [x,y] is a complemented distributive lattice.

**Theorem 2.12.** [2] The following are equivalent for any ADL L;

- (1) L is relatively complemented
- (2) Given  $x, y \in L$ , there exists  $a \in L$  such that  $x \wedge a = 0$  and  $x \vee a = x \vee y$
- (3) For any  $x \in L$ , the interval [0, x] is complemented.

# 3 The Birkhoff Centre

In this section we define the Birkhoff centre of an Almost Distributive Lattice L with maximal elements and prove that the Birkhoff centre of L is a relatively complemented ADL. We obtain a one-to-one correspondences between the set B(L), of complemented ideals of L and the set of factor-congruences on L. Throughout this paper we consider only ADLs which contain at least one maximal element.

**Definition 3.1.** Given an ADL L, define  $B(L) := \{a \in L \mid \text{ there exists } b \in L \text{ such that } a \land b = 0 \text{ and } a \lor b \text{ is maximal} \}.$ 

If  $a \wedge b = 0$  and  $a \vee b$  is maximal, then  $b \wedge a = 0$  and  $b \vee a$  is maximal; in this case, a and b are called complements to each other. Note that complement of an element need not be unique; for example, in a discrete ADL, every non-zero element is a complement of 0. If  $L_1$  and  $L_2$  are ADLs with maximal elements, then it can be easily verified that  $L_1 \times L_2$  is so; Infact  $(m_1, m_2)$  is a maximal

element in  $L_1 \times L_2$  if and only if  $m_1$  and  $m_2$  are maximal elements in  $L_1$  and  $L_2$  respectively. In the following we extend the result on a bounded distributive lattice L corresponding to decompositions of L into products of two bounded distributive lattices.

**Theorem 3.2.** For any  $a \in L$ ,  $a \in B(L)$  if and only if there exist two ADLs  $L_1$  and  $L_2$  with maximal elements and an isomorphism  $f: L \to L_1 \times L_2$  such that  $f(a) = (m_1, 0)$ , where  $m_1$  is a maximal element in  $L_1$ .

*Proof.* Suppose that  $a \in B(L)$ . Then there exists  $b \in L$  such that  $a \wedge b = 0$  and  $a \vee b$  is maximal.

Put  $L_1 = (a) = \{a \land x \mid x \in L\}$  and  $L_2 = (b) = \{b \land x \mid x \in L\}$ Then  $L_1$  and  $L_2$  are ADLs (subADLs of L) and a and b are maximal elements of  $L_1$  and  $L_2$  respectively. Define  $f: L \to L_1 \times L_2$  by

$$f(x) = (a \land x, b \land x)$$
 for all  $x \in L$ .

Then f is an isomorphism from L onto  $L_1 \times L_2$  such that f(a) = (a,0), and a is a maximal element of  $L_1$ . Conversely suppose that there exist two ADLs  $L_1$  and  $L_2$  with maximal elements and an isomorphism  $f: L \to L_1 \times L_2$  such that  $f(a) = (m_1, 0)$ , where  $m_1$  is a maximal element of  $L_1$ . Choose a maximal element  $m_2$  in  $L_2$ . Then there exists  $b \in L$  such that  $f(b) = (0, m_2)$ . Now,  $f(a \wedge b) = f(a) \wedge f(b) = (m_1, 0) \wedge (0, m_2) = (0, 0) = f(0)$  and  $f(a \vee b) = f(a) \vee f(b) = (m_1, 0) \vee (0, m_2) = (m_1, m_2)$  which is maximal in  $L_1 \times L_2$ . Therefore  $a \wedge b = 0$  and  $a \vee b$  is maximal. Thus  $a \in B(L)$ .

In the following we observe that the Birkhoff centre of L is a relatively complemented subADL of L.

**Theorem 3.3.** B(L) is a relatively complemented ADL under the operations induced by those of L.

*Proof.* Clearly  $0 \in B(L)$  and hence B(L) is a non-empty subset of L. Let  $a_1$  and  $a_2 \in B(L)$ . Let  $b_1$  and  $b_2 \in L$  be complements of  $a_1$  and  $a_2$  respectively; that is,  $a_1 \wedge b_1 = 0 = a_2 \wedge b_2$  and  $a_1 \vee b_1, a_2 \vee b_2$  are maximal.

$$(a_1 \wedge a_2) \wedge (b_1 \vee b_2) = (a_1 \wedge a_2 \wedge b_1) \vee (a_1 \wedge a_2 \wedge b_2) = (a_1 \wedge b_1 \wedge a_2 \wedge b_1) \vee (a_1 \wedge (a_2 \wedge b_2)) = 0 (: a_1 \wedge b_1 = 0 = a_2 \wedge b_2)$$

and, for all  $x \in L$ ,

$$((a_1 \wedge a_2) \vee (b_1 \vee b_2)) \wedge x = [(a_1 \vee b_1 \vee b_2) \wedge (a_2 \vee b_1 \vee b_2)] \wedge x$$
$$= x \quad \text{(since } a_1 \vee b_1 \text{ and } a_2 \vee b_2 \text{ are maximal)}$$

and hence  $(a_1 \wedge a_2) \vee (b_1 \vee b_2)$  is maximal. Therefore  $b_1 \vee b_2$  is a complement of  $a_1 \wedge a_2$  and hence  $a_1 \wedge a_2 \in B(L)$ . From this, it follows that  $b_1 \wedge b_2$  is a

complement of  $a_1 \vee a_2$  and hence  $a_1 \vee a_2 \in B(L)$ . Therefore B(L) is an ADL under the operations induced by those of L. Let  $a, b \in B(L)$ . Then there exist  $c, d \in L$  such that  $a \wedge c = 0 = b \wedge d$  and  $a \vee c$  and  $b \vee d$  are maximal. Put  $x = c \wedge b$  and  $y = a \vee d$ . Then

$$x \wedge y = c \wedge b \wedge (a \vee d)$$

$$= (c \wedge b \wedge a) \vee (c \wedge b \wedge d)$$

$$= 0 \qquad \text{(since } a \wedge c = 0 = b \wedge d\text{)}$$

and, for any  $t \in L$ ,

$$(x \lor y) \land t = ((c \land b) \lor (a \lor d)) \land t$$

$$= (c \lor a \lor d) \land (b \lor a \lor d) \land t$$

$$= (a \lor c) \land (b \lor d) \land t$$

$$= t \qquad \text{(since } a \lor c \text{ and } b \lor d \text{ are maximal)}.$$

Therefore  $x \in B(L)$ . Now,  $a \wedge x = a \wedge c \wedge b = 0$  and  $a \vee x = a \vee (c \wedge (a \vee b)) = (a \vee c) \wedge (a \vee b) = a \vee b$  (since  $a \vee c$  is maximal). Therefore B(L) is a relatively complemented ADL.

In the following we observe that the Birkhoff centre of a relatively complemented ADL with maximal elements is equal to itself.

**Theorem 3.4.** L is relatively complemented if and only if B(L) = L.

*Proof.* Suppose L is relatively complemented. Let  $x \in L$  such that x is not maximal. Then there exists a maximal element m of L such that  $x \leq m$ . (for example, if n is maximal in L, then  $x \vee n$  is also maximal and  $x \leq x \vee n$ ). Since L is relatively complemented, there exists  $y \in L$  such that  $x \wedge y = 0$  and  $x \vee y = m$ . Therefore  $x \in B(L)$  and hence B(L) = L. The converse follows from theorem 3.3.

The following is a straightforward verification.

**Theorem 3.5.** If 
$$L_1$$
 and  $L_2$  are ADLs, then  $B(L_1 \times L_1) = B(L_1) \times B(L_2)$ .

Let L be an ADL. The relation  $\eta := \{(a, b) \in L \times L \mid a \wedge b = b \text{ and } b \wedge a = a\}$  is a congruence relation on L and is the smallest such that  $L/\eta$  is a lattice. We have the following;

**Theorem 3.6.**  $B(L/\eta)$  is isomorphic to  $B(L)/\eta_{|B(L)\times B(L)}$ .

Proof. Let  $a/\eta \in B(L/\eta)$ . Then there exists  $b \in L$  such that  $a/\eta \wedge b/\eta = 0/\eta$  and  $a/\eta \vee b/\eta$  is maximal in  $L/\eta$ . Therefore  $a \wedge b = 0$  and  $(a \vee b)/\eta$  is maximal in  $L/\eta$ . Now, for any  $x \in L$ , we have  $((a \vee b) \wedge x)/\eta = (a \vee b)/\eta \wedge x/\eta = x/\eta$ . Then  $((a \vee b) \wedge x, x) \in \eta$  and hence  $(a \vee b) \wedge x = x$ . Therefore  $a \vee b$  is maximal in L. Hence  $a \in B(L)$ . Consider the map  $f : B(L) \to B(L/\eta)$  defined by  $f(a) = a/\eta$  for any  $a \in B(L)$ . Then f is an epimorphism and  $Kerf = \eta \cap (B(L) \times B(L))$ . Hence by the fundamental theorem of homomorphisms,  $B(L)/\eta_{|B(L) \times B(L)} \cong B(L/\eta)$ .

It is known that an ideal I of an ADL L is complemented if and only if I = (a) for some  $a \in L$  [2]. Infact, we have the following.

**Theorem 3.7.** An ideal I of L is complemented if and only if I = (a) for some  $a \in B(L)$ .

*Proof.* Let I be an ideal of L. Suppose that I is complemented. Then there exists an ideal I' of L such that  $I \cap I' = (0)$  and  $I \vee I' = L$ . Choose a maximal element m of L. Then  $m = a \vee b$  for some  $a \in I$  and  $b \in I'$ . Since  $I \cap I' = (0)$ ,  $a \wedge b = 0$  and we have that  $a \vee b$  is maximal. Therefore  $a \in B(L)$ . Now, since  $a \in L$ , we have that  $(a) \subseteq I$ . Also,

$$x \in I \implies b \land x \in I \cap I' = (0)$$

$$\Rightarrow b \land x = 0$$

$$\Rightarrow x = m \land x = (a \lor b) \land x = a \land x$$

$$\Rightarrow x \in (a).$$

Therefore (a) = I. Similarly (b) = I'. Conversely, suppose that I = (a) for some  $a \in B(L)$ . Then there exists  $b \in L$  such that  $a \wedge b = 0$  and  $a \vee b$  is maximal. Now,  $(a) \cap (b) = (0)$  and  $(a) \vee (b) = (a \vee b) = L$ . Therefore I is complemented.

Given any filter F of an ADL L, define

```
\phi_F := \{(a, b) \in L \times L \mid x \wedge a = x \wedge b \text{ for some } x \in F\}.
```

Then  $\phi_F$  is a congruence on L. We write  $\phi_x := \{(a,b) \in L \times L \mid x \wedge a = x \wedge b\}$ , for any  $x \in L$ .

The following is a routine verification.

**Theorem 3.8.** We have the following;

- (i) For any filters  $F,~G~of~L,~\phi_{\scriptscriptstyle F}\cap\phi_{\scriptscriptstyle G}=\phi_{\scriptscriptstyle F\cap G}~and~\phi_{\scriptscriptstyle F}~o~\phi_{\scriptscriptstyle G}=\phi_{\scriptscriptstyle F\vee G}$
- (ii) For any  $x \in L$ ,  $\phi_{[x)} = \phi_x$ , where  $[x] := \{y \lor x \mid y \in L\}$
- (iii) For any  $x \in L$ ,  $\dot{\phi}_x = \Delta$  if and only if x is maximal
- (iv) For any  $x \in L$ ,  $\phi_x = L \times L$  if and only if x = 0.

A congruence  $\theta$  on an ADL L is said to be a factor-congruence on L if there exists a congruence  $\phi$  on L such that  $\theta \cap \phi = \Delta$  and  $\theta$  o  $\phi = L \times L$ ; or, equivalently,  $x \mapsto (\theta(x), \phi(x))$  is an isomorphism of L onto  $L/\theta \times L/\phi$ . In other words, factor congruences correspond to direct decompositions of L. The following gives a correspondence between factor congruences on L and elements of B(L) (see Theorem 3.2).

**Theorem 3.9.** A congruence  $\theta$  on L is a factor-congruence if and only if  $\theta = \phi_a$  for some  $a \in B(L)$ .

*Proof.* Suppose that  $\theta$  is a factor-congruence on L. Then there exists a congruence  $\phi$  on L such that  $\theta \cap \phi = \Delta$  and  $\theta$  o  $\phi = L \times L$ . Choose a maximal element m of L. Then  $(m, 0) \in \theta$  o  $\phi$  and hence there exists  $b \in L$  such that  $(m, b) \in \phi$ 

and  $(b,0) \in \theta$ . Also,  $(0,m) \in \theta$  o  $\phi$  and hence there exists  $a \in L$  such that  $(0,a) \in \phi$  and  $(a,m) \in \theta$ . Now,  $(0,b \wedge a) \in \theta \cap \phi = \Delta$ . Therefore  $a \wedge b = 0$ . Since  $(m,b) \in \phi$ ,  $(m,b \vee a) \in \phi$ . Since  $(b \vee a,a), (a,m) \in \theta$ ,  $(m,b \vee a) \in \theta$ . Therefore  $(m,b \vee a) \in \theta \cap \phi$  and hence  $b \vee a = m$ , which is maximal. Thus  $a \in B(L)$ . Now, we will show that  $\phi_a = \theta$ . Let  $x,y \in L$ . If  $(x,y) \in \phi_a$ , then  $a \wedge x = a \wedge y$ . Since  $(a,m) \in \theta$ , we get that  $(a \wedge x,x), (a \wedge y,y) \in \theta$ . Since  $a \wedge x = a \wedge y, (x,y) \in \theta$ . Therefore  $\phi_a \subseteq \theta$ . If  $(x,y) \in \theta$ , then  $(a \wedge x, a \wedge y) \in \theta$ . Since  $(0,a) \in \phi$ ,  $(0,a \wedge x), (0,a \wedge y) \in \phi$ . Therefore  $(a \wedge x, a \wedge y) \in \phi \cap \theta = \Delta$  and hence  $a \wedge x = a \wedge y$ . Hence  $(x,y) \in \phi_a$ . Thus  $\phi_a = \theta$  and  $a \in B(L)$ . Conversely, suppose that  $\theta = \phi_a$  for some  $a \in B(L)$ . Then there exists  $b \in L$  such that  $a \wedge b = 0$  and  $a \vee b$  is maximal. Now,

$$\phi_a \cap \phi_b = \phi_{[a)} \cap \phi_{[b)} = \phi_{[a) \cap [b)} = \phi_{[a \vee b)} = \phi_{a \vee b} = \Delta \text{ (since } a \vee b \text{ is maximal)}$$

$$\phi_a \circ \phi_b = \phi_{[a)} \circ \phi_{[b)} = \phi_{[a) \vee [b)} = \phi_{[a \wedge b)} = \phi_{a \wedge b} = \phi_0 = L \times L.$$
Therefore  $\theta$  is a factor-congruence on  $L$ .

Corollary 3.10. L is relatively complemented if and only if  $\phi_a$  is a factor congruence for every  $a \in L$ .

**ACKNOWLEDGEMENTS.** The second author is thankful to Council of Scientific and Industrial Research for their financial support in the form of CSIR-SRF(NET).

### References

- [1] G. Birkhoff, *Lattice theory*, American Mathematical Society, Colloquium Publications, 1967.
- [2] G.C. Rao, Almost distributive lattices Doctoral thesis, Department of Mathematics, Andhra University, Visakhapatnam, 1980.
- [3] Stanely Burris, and H.P. Sankappanavar, A course in universal algebra, Springer -Verlag, New York, 1980.
- [4] U.M. Swamy and G.C. Rao, Almost distributive latices, *J. Austral Math. Soc. (Series A)*, **31** (1981), 77-91.
- [5] U.M. Swamy, G.C. Rao, R.V.G. Ravi Kumar and Ch. Pragathi, Birkhoff centre of a poset, Southeast Asian Bulletin of Mathematics, 26 (2002), 509-516.
- [6] U.M. Swamy and G.S.N. Murthy, Boolean centre of a Universal Algebra, *Algebra Universalis*, **13** (1981), 202-205.

Received: December, 2008