Anti–Homomorphisms in Fuzzy Ideals of Rings

A. Sheikabdullah
Department of Mathematic
Syed Hameedha Arts and Science College
Kilakarai-623 806, India
asheik_07@yahoo.co.in

K. Jeyaraman
Department of Mathematics
Alagappa Govt Arts College
Karaikudi-630 003, India
jeyam_janaki@yahoo.com

Abstract

In this paper, a new concept of anti-homomorphism between two fuzzy rings R and R' is defined and many results analogous to homomorphism of rings are established.

Mathematics Subject Classification: 08A72

Keywords: Fuzzy set, fuzzy ring, fuzzy ideal, fuzzy maximal ideal, fuzzy prime ideal, fuzzy primary, anti-homomorphism in fuzzy rings.

1. INTRODUCTION

2. PRELIMINARIES

2.1 Definition:
Let X be a non-empty universal set. A fuzzy subset A of X is a function $A : X \rightarrow [0,1]$.

2.2 Definition:
A fuzzy set μ of a ring R is called a fuzzy sub ring of R if for all $x, y \in R$,

\[
\mu(x - y) \geq \min \{ \mu(x), \mu(y) \}
\]
\[
\mu(xy) \geq \min \{ \mu(x), \mu(y) \}
\]

2.3 Definition:
A fuzzy set μ of a ring R is called a fuzzy ideal of R if for all $x, y \in R$,

\[
\mu(x - y) \geq \min \{ \mu(x), \mu(y) \}
\]
\[
\mu(xy) \geq \max \{ \mu(x), \mu(y) \}
\]

2.4 Definition:
A fuzzy ideal μ of a ring R is called a fuzzy maximal if $\text{Im}(\mu) = \{1, \alpha\}$ where $\alpha \in [0,1)$ and the ideal $\{ x \in R / \mu(x) = 1 \}$ is maximal.

2.5 Definition:
A fuzzy ideal μ of a ring R is called a fuzzy prime if for any two fuzzy ideals σ and θ of R the condition $\sigma \theta \subseteq \mu$ implies that $\sigma \subseteq \mu$ or $\theta \subseteq \mu$.

2.6 Definition:
A fuzzy ideal μ of a ring R is called a fuzzy primary if for any two fuzzy ideals σ and θ of R the conditions $\sigma \theta \subseteq \sqrt{\mu}$ and $\sigma \nsubseteq \mu$ together imply that $\theta \subseteq \sqrt{\mu}$.

2.7 Definition:
Let $f : R \rightarrow R'$ be any function, a fuzzy set μ of R is called f-invariant if $f(x) = f(y)$ implies $\mu(x) = \mu(y)$, $x, y \in R$.

2.8 Definition:
Let R and R' be two rings, a mapping $f : R \rightarrow R'$ is called a fuzzy anti-homomorphism if $f(\mu + \sigma) = f(\mu) + f(\sigma)$ and $f(\mu \sigma) = f(\sigma)f(\mu)$.

2.9 Remarks:
For a fuzzy maximal ideal μ of a ring R, we have (i) μ is fuzzy prime and (ii) $\sqrt{\mu} = \mu$.
3. SOME PROPOSITION

3.1 Proposition:
The anti-homomorphic image of a fuzzy ideal of R is a fuzzy ideal of R^l.

3.2 Proposition:
The anti-homomorphic pre-image of a fuzzy ideal of R^l is a fuzzy ideal of R.

3.3 Proposition:
Let $f : R \rightarrow R^l$ be a surjective anti-homomorphism, Let μ^l be a fuzzy prime ideal of R^l, then $f^{-1}(\mu^l)$ is a fuzzy prime ideal of G.

Proof. Let μ and σ be any two fuzzy ideals of R, such that $\mu \sigma \subset f^{-1}(\mu^l)$
This implies that
\[f(\mu \sigma) \subset ff^{-1}(\mu^l) = \mu^l \]
\[\Rightarrow f(\sigma)f(\mu) \subset = \mu^l \text{ because } f \text{ is an anti-homomorphism} \]
\[\Rightarrow f(\sigma) \subset \mu^l \text{ or } f(\mu) \subset \mu^l \text{ because } \mu^l \text{ is a fuzzy prime ideal of } R^l \]
\[\Rightarrow f^{-1}(f(\sigma)) \subset f^{-1}(\mu^l) \text{ or } f^{-1}(f(\mu)) \subset f^{-1}(\mu^l) \]
\[\Rightarrow \sigma \subset f^{-1}(\mu^l) \text{ or } \mu \subset f^{-1}(\mu^l) \]
\[\Rightarrow f^{-1}(\mu^l) \text{ is a fuzzy prime ideal of } R^l \]

3.4 Proposition:
Let $f : R \rightarrow R^l$ be an anti-homomorphism. Let μ be any f-invariant fuzzy prime ideal of R, then $f(\mu)$ is a fuzzy prime ideal of R^l.

Proof. Let σ^l and θ^l be any two fuzzy ideals of R, such that $\sigma^l \theta^l \subset f(\mu)$
\[\Rightarrow f^{-1}(\sigma^l \theta^l) \subset f^{-1}(f(\mu)) = \mu \]
\[\Rightarrow f^{-1}(\theta^l) f^{-1}(\sigma^l) \subset \mu \]
\[\Rightarrow \text{either } f^{-1}(\theta^l) \subset \mu \text{ or } f^{-1}(\sigma^l) \subset \mu \text{ since } \mu \text{ is fuzzy prime ideal} \]
\[\Rightarrow ff^{-1}(\theta^l) \subset f(\mu) \text{ or } ff^{-1}(\sigma^l) \subset f(\mu) \]
\[\Rightarrow \theta^l \subset f(\mu) \text{ or } \sigma^l \subset f(\mu) \]
\[\Rightarrow f(\mu) \text{ is a fuzzy prime ideal of } R^l \]
3.5 Proposition:
Let \(f : R \rightarrow R' \) be a surjective anti-homomorphism. If \(\mu \) is an \(f \)-invariant ideal of \(R \) and \(\mu \) fuzzy primary ideal of \(R \), then \(f(\mu) \) is a fuzzy primary ideal of \(R' \).

Proof:
Let \(\sigma' \) and \(\theta' \) be any two fuzzy ideals of \(R' \) such that \(\theta' \subset \sqrt{f(\mu)} \) with \(\sigma' \not\subset f(\mu) \)
\[
\Rightarrow \theta' \subset \sqrt{f(\mu)}
\]
\[
f^{-1}(\sigma') \subset f^{-1} \sqrt{f(\mu)} = \sqrt{\mu}
\]
This implies that \(f^{-1}(\sigma') \) not subset of \(\mu \) because \(f \) is anti-homomorphism
\[
\Rightarrow f^{-1}(\theta') \subset \sqrt{\mu}
\]
\[
\Rightarrow \theta' \subset f f^{-1}(\theta') \subset f(\sqrt{\mu}) = \sqrt{f(\mu)}
\]
Therefore \(f(\mu) \) is a fuzzy primary ideal of \(R' \).

References

[7] Rajesh kumar, Fuzzy Algebra, Delhi University Publication

Received: July, 2010