Notes on the Graded Radical of Graded Submodules

Peyman Ghiasvand
Department of mathematics
University of Payame Noor
P. O. Box 1161, Manjil, Iran
p_ghiasvand@pmu.ac.ir

Farkhonde Farzalipour
Department of mathematics
University of Payame Noor
Langroud, Iran
f.farzalipour@guilan.ac.ir

Abstract

Let G be a group with identity e, and let R be a G-graded commutative ring, and let M be a graded R-module. In general, the graded radical of a graded primary submodule is not graded prime. We study sufficient conditions for which this property holds in the modules setting.

Mathematics Subject Classification: 13A02, 16W50

Keywords: graded, graded primary, graded prime, graded radical

1 Introduction

Let G be a group with identity e. A ring (R, G) is called a G-graded ring if there exists a family $\{R_g : g \in G\}$ of additive subgroups of R such that $R = \bigoplus_{g \in G} R_g$ such that $1 \in R_e$ and $R_g R_h \subseteq R_{gh}$ for each g and h in G. For simplicity, we will denote the graded ring (R, G) by R. If R is G-graded, then an R-module M is said to be G-graded if it has a direct sum decomposition $M = \bigoplus_{g \in G} M_g$ such that for all $g, h \in G$; $R_g M_h \subseteq M_{gh}$. An element of some R_g or M_g is said to be homogeneous element. A submodule $N \subseteq M$, where M is G-graded, is called G-graded if $N = \bigoplus_{g \in G} (N \cap M_g)$ or if, equivalently, N
is generated by homogeneous elements. Moreover, M/N becomes a G-graded module with g-component $(M/N)_{g} = (M_{g} + N)/N$ for $g \in G$. We write $h(R) = \bigcup_{g \in G} R_{g}$ and $h(M) = \bigcup_{g \in G} M_{g}$. A graded ideal I of R is said to be graded prime ideal if $I \neq R$; and whenever $ab \in I$, we have $a \in I$ or $b \in I$, where $a, b \in h(R)$. A graded ideal I of R is said to be graded maximal if $I \neq R$ and if there is a graded ideal J of R such that $I \subseteq J \subseteq R$, then $I = J$ or $J = R$. A graded ring R is called graded local if it has a unique graded maximal ideal. By a chain of graded prime ideals of a graded ring R we mean a finite strictly increasing sequence $P_{1} \subseteq \ldots \subseteq P_{n}$; the graded dimension of this chain is n. We define the graded dimension of R to be the supremum of the lengths of all chains of graded prime ideals in R, we denote by $Gdim(R)$. A proper graded submodule N of a graded R-module M is called graded prime submodule if $rm \in N$, then $m \in N$ or $r \in (N : M)$, where $r \in h(R), m \in h(M)$. A graded submodule N of R-module M is called graded maximal if $N \neq M$ and if there is a graded submodule K of M such that $N \subseteq K \subseteq M$, then $N = K$ or $K = M$.

2 The graded radical of graded submodules

Let N be a graded submodule of a graded R-module M. The graded radical of N, denoted by $Grad(N)$, is defined to be the intersection of the graded prime submodules of M containing N if such exist, and M otherwise. We say that a graded submodule N is a graded radical submodule if $Grad(N) = N$.

Example 2.1 If q is a graded primary ideal of graded ring R then by [4, Lemma 1.8], $Grad(q)$ is a graded prime ideal of R. However, in the module case, Q is a graded primary submodule does not necessarily imply that $Grad(Q)$ is a graded prime submodule. If $R = \mathbb{Z}[x]$ and M is the graded R-module $R \oplus R$ with N the graded submodule $R(2, x) + R(x, 0)$, then N is a graded primary submodule of M whose graded radical is not graded prime.

The following Lemma is known, but we write it here for the sake of references.

Lemma 2.2 Let M be a graded module over a graded ring R. Then the following hold:
(i) If I and J are graded ideals of R, then $I + J$ and $I \cap J$ are graded ideals.
(ii) If N is a graded submodule, $r \in h(R)$ and $x \in h(M)$, then Rx, IN and rN are graded submodules of M.
(iii) If N and K are graded submodules of M, then $N + K$ and $N \cap K$ are...
also graded submodules of M and $(N : M)$ is a graded ideal of R.

(iv) Let N_{λ} be a collection of graded submodules of M. Then $\sum_{\lambda} N_{\lambda}$ and $\bigcap_{\lambda} N_{\lambda}$ are graded submodues of M.

Lemma 2.3 Let Q be a graded primary submodule of a graded R-module M such that $(Q : M)$ is a graded radical ideal of R, then Q is a graded prime submodule.

Proof. Suppose that $r_g m_h \in Q$ with $m_h \not\in Q$ where $r_g \in h(R)$ and $m_h \in h(M)$. Then since Q is graded primary, $r_g \in \text{Grad}(Q : M) = (Q : M)$. Therefore $r_g M \subseteq Q$, implying Q is graded prime. □

Theorem 2.4 Let R be a graded domain with $\text{Gdim}(R) = 1$ and M a graded R-module. Then for any graded primary submodule Q of M, $\text{Grad}(Q)$ is a graded prime submodule.

Proof. Consider the graded ideal $(P : M)$ for any graded prime submodule P containing Q. These ideals are graded prime by [1, Proposition 2.5], and $Q \subseteq P$ implies that $(Q : M) \subseteq (P : M)$. So we have $\text{Grad}(Q : M) \subseteq (P : M)$. For any one of these graded prime submodules P, we generate the chain of graded ideals $0 \subset \text{Grad}(Q : M) \subseteq (P : M)$. Since $\text{Gdim}(R) = 1$, we must have $\text{Grad}(Q : M) = (P : M)$ for any graded prime submodule P containing Q. So $\bigcap_{Q \subseteq P} P = \text{Grad}(Q)$ is a graded prime submodule of M, because if $r_g m_h \in \text{Grad}(Q)$ with $m_h \not\in \text{Grad}(Q)$ where $r_g \in h(R)$ and $m_h \in h(M)$. Then there exists a graded prime submodule $Q \subseteq P$ such that $m_h \not\in P$ and $r_g m_h \in P$. Hence $r_g \in (P : M)$, thus $r_g \in \bigcap_{Q \subseteq P} (P : M) = (\bigcap_{Q \subseteq P} P : M)$ since $\text{Grad}(Q : M) = (P : M)$ for any $Q \subseteq P$. □

Theorem 2.5 Let (R, m) be a graded local ring and M a graded R-module. Then any intersection of graded maximal submodules of M is graded prime.

Proof. Let $\{M_i\}$ be a collection of graded maximal submodules of M. By [1], each $(M_i : M)$ is a graded maximal ideal of R and so must be equal to m. Hence the intersection $\bigcap_{i \in I} M_i$ is a graded prime submodule by the proof of above Theorem. □

Corollary 2.6 Let (R, m) be a graded local ring, M a graded R-module and N a graded submodule of M such that every graded prime submodule containing of N is graded maximal. Then $\text{Grad}(N)$ is graded prime.

Corollary 2.7 If (R, m) is a graded local ring and M a graded R-module, then every graded prime submodule of M is graded maximal if and only if every graded radical submodule of M is graded maximal.
Proof. Suppose that every graded prime submodule of M is graded maximal and let $\text{Grad}(N)$ be a graded radical submodule of M. Then $\text{Grad}(N) = \bigcap_{Q \subseteq P} P$ is graded prime by Theorem 2.5, since each P is graded maximal. By the hypothesis, $\text{Grad}(N)$ is graded maximal. The converse follows from the fact that if P is a graded prime submodule, then $P = \text{Grad}(P)$. \qed

Definition 2.8 A graded prime submodule P is said to be a minimal graded prime of a graded submodule N if $N \subseteq P$ and if P' is another graded prime submodule with $N \subseteq P' \subseteq P$, then $P = P'$.

A minimal graded prime of the 0 graded submodule is called a minimal graded prime of the graded module M.

Theorem 2.9 If N is a graded submodule of graded R-module M, then $\text{Grad}(N)$ is the intersection of the minimal graded primes of N.

Proof. Let P be a graded submodule of M with $N \subseteq P$. Then P/N is a graded prime submodule of M/N. Clearly every graded prime submodule has a minimal graded prime submodule, so there exists a graded prime submodule P' of M such that P'/N is a minimal graded prime of P/N. So $P'/N \subseteq P/N$. Thus $N \subseteq P' \subseteq P$. If P'' is another graded prime submodule with $N \subseteq P'' \subseteq P'$, then we have $P'/N = P''/N$ so that $P' = P''$. Therefore P' is a minimal graded prime of N. Thus $\text{Grad}(N) = \bigcap_{N \subseteq P} P = \bigcap_{N \subseteq P'} P'$ (P' is minimal graded prime submodule of N). Hence the proof is complete. \qed

Definition 2.10 A graded submodule N of a graded R-module M has a reduced graded primary decomposition if there are finitely many graded primary submodules Q_i such that $N = Q_1 \cap ... \cap Q_n$ and Q_i does not contain $\nexists \bigcap_{j \neq i} Q_j$ for each i and the graded prime ideals $\text{Grad}(Q_i : M)$ are distinct.

If $N = Q_1 \cap ... \cap Q_n$ is a reduced graded primary decomposition of graded submodule N, we will say that $\text{Grad}(Q_i)$ is an isolated graded prime submodule of N if $\text{Grad}(Q_i)$ is minimal in the set $\{\text{Grad}(Q_1), ..., \text{Grad}(Q_n)\}$.

Theorem 2.11 Let M be a graded R-module and N a proper graded submodule of M. If N has a reduced graded primary decomposition $N = Q_1 \cap ... \cap Q_n$ such that all the graded prime ideals associated with N are isolated , then $(N : M) = (Q_1 : M) \cap ... \cap (Q_n : M)$ is a reduced graded primary decomposition of the graded ideal $(N : M)$.

Proof. Suppose not. Then since we are assuming the graded ideals $\text{Grad}(Q_i : M)$ are distinct, we must have $(Q_i : M) \nexists \bigcap_{j \neq i} (Q_j : M)$ for some i. Then $\text{Grad}(Q_i : M) \nexists \bigcap_{j \neq i} \text{Grad}(Q_j : M)$. So since $\text{Grad}(Q_i : M)$ is graded prime ideal, hence $\text{Grad}(Q_i : M) \supset \text{Grad}(Q_j : M)$ for some $j \neq i$ by [4, Proposition 1.4]. However, this final inclusion contradicts the assumption that $\text{Grad}(Q_i : M)$ is an isolated graded prime ideal of N. \qed
Corollary 2.12 Let M be a graded R-module and N a proper graded submodule of M. If N has a reduced graded primary decomposition $N = Q_1 \cap \ldots \cap Q_n$ such that all the graded prime ideals associated with N are isolated, then

(i) N is graded primary if and only if $(N : M)$ is graded primary

(ii) N is graded prime if and only if $(N : M)$ is graded prime.

Proof. The necessarily of each part is hold by [1, Proposition 1.5]. To show sufficiently, let $N = Q_1 \cap \ldots \cap Q_n$ be a reduced graded primary decomposition of N. By above Theorem $(N : M) = (Q_1 : M) \cap \ldots \cap (Q_n : M)$ is a reduced graded primary decomposition of the graded ideal $(N : M)$. If $(N : M)$ is graded primary, we must have $n = 1$ and so $N = Q_1$ is graded primary. If $(N : M)$ is a graded prime, then $N = Q_1$ is graded prime by Lemma 2.3.

ACKNOWLEDGEMENTS. The authors thanks the referee for valuable comments.

References

Received: July, 2010