Extention of Topological Inner Invariant Means

Reza Memarbashi

Department of Mathematics, Faculty of Sciences Semnan University, P.O. Box 35195-363, Semnan, Iran

Abstract

For a locally compact group G, we prove that a topological inner invariant mean on LUC(G) has an extension to a topological inner invariant mean on $L^{\infty}(G)$.

Mathematics Subject Classification: 43A07, 43A10

Keywords: Inner amenability, Topological inner invariant means

1 Introduction

Let G be a locally compact group with identity e and left Haar measure dx. Let $L^{\infty}(G)$ and $L^{1}(G)$ denote the spaces of essentially bounded functions and integrable functions respectively.

For a function $f: G \to \mathbb{C}$ we put $_xf(y) = f(xy)$ and $f_x(y) = f(yx)$ for all $x,y \in G$. Recall that a mean m on a linear subspace X of $L^{\infty}(G)$ containing the constants is a linear functional such that ||m|| = m(1) = 1. If $_xf, f_x \in X$ for all $f \in X$ and $x \in G$, we say that m is inner invariant if $m(_xf) = m(f_x)$ for all $x \in G$ and $x \in G$.

We denote by P(G) the set of all $\varphi \in L^1(G)$ with $\varphi \geq 0$ and $||\varphi||_1 = 1$. If X is a linear subspace of $L^{\infty}(G)$ containing the constants, X is said to be topological left (resp. right) invariant if $P(G)*X \subset X$ (resp. $X*P(G)\subset X$). Here $\tilde{\varphi}$ is the function defined by $\tilde{\varphi}(x) = \varphi(x^{-1})$ for all $x \in G$ and * denotes the convolution product of functions on G. Let X be topological invariant (i.e. topological left and right invariant). A mean defined on X is said to be topological inner invariant if

$$m(\frac{1}{\Lambda}\tilde{\varphi}*f) = m(f*\tilde{\varphi}) \text{ for all } f \in X \text{ and } \varphi \in P(G)$$

276 Reza Memarbashi

where Δ is the modular function of G. The concept of topological inner invariant means (TIIM) was introduced and studied by Nasr-Isfahani [8] for a large class of Banach algebras containing $L^1(G)$ known as Lau algebras. In [7] authors study locally compact groups for which $L^{\infty}(G)$ has a TIIM whose restriction to $C_b(G)$ is not δ_e . In this paper we show that a TIIM on LUC(G) (space of left uniformly continuous functions on G) has a topological inner invariant extension to $L^{\infty}(G)$. Also based on the technic used in [7, Th.3.2] we give a simpler proof of the well known fact that amenability implies topological amenability (see [9]).

2 Topological inner invariant means

It is well known [7] that any extension E of δ_e from $C_b(G)$ to a mean on $L^{\infty}(G)$ is a mixed identity of $L^{\infty}(G)^*$; that is

$$E(\frac{1}{\Delta}\tilde{\varphi}*f) = E(f*\tilde{\varphi}) = \varphi(f) \text{ for all } f \in L^{\infty}(G) \text{ and } \varphi \in P(G).$$

In particular, E is a TIIM on $L^{\infty}(G)$; here we give another proof of this fact.

Lemma 1. Let (e_i) be a bounded approximate identity of $L^1(G)$ and $e_i \to E$ (wk^*) , then $E \in L^{\infty}(G)^*$ is a TIIM and E(f) = f(e) for $f \in CB(G)$.

Proof. Let $\varphi \in P(G)$, $f \in L^{\infty}(G)$, with the aid of the relations $f \cdot \varphi = (\frac{1}{\Delta}\tilde{\varphi}) * f$ and $\varphi \cdot f = f * \tilde{\varphi}$ we have

$$E((\frac{1}{\Delta}\tilde{\varphi})*f) = E(f.\varphi) = \lim_{i} e_i(f.\varphi) = \lim_{i} f.\varphi(e_i) = \lim_{i} f(\varphi*e_i) = f(\varphi)$$

and

$$E(f * \tilde{\varphi}) = E(\varphi.f) = \lim_{i} e_i(\varphi.f) = \lim_{i} \varphi.f(e_i) = \lim_{i} f(e_i * \varphi) = f(\varphi)$$

And hence
$$E((\frac{1}{\Delta}\tilde{\varphi}*f)=E(f*\tilde{\varphi})$$
. By [6,Th.2] $E(f)=f(e)$ for $f\in CB(G)$.

For each locally compact group G, $L^1(G)$ has a bounded approximate identity, therefore by the above lemma and theorem of Banach Alaoghlu, $L^{\infty}(G)$ always has a topological inner invariant mean.

Theorem 2. Let G be a locally compact group. Then each TIIM on LUC(G) has a topological inner invariant extention to $L^{\infty}(G)$.

Proof. Let (e_{γ}) be the bounded approximate identity of $L^{1}(G)$ in P(G), and m be a TIIM on LUC(G). We choose an ultrafilter Γ on the index set of (e_{γ}) that dominates the order filter and define $M: L^{\infty}(G) \to \mathbb{C}$ by M(f) =

 $\lim_{\Gamma} m(\frac{1}{\Delta}\tilde{e_{\gamma}}*f*\tilde{e_{\gamma}})$. M is a mean on $L^{\infty}(G)$. Now for fix $f \in L^{\infty}(G)$, $\varphi \in P(G)$ and an arbitrary $\epsilon > 0$ there exists γ_0 such that if $\gamma \geq \gamma_0$ then

$$|M(\frac{1}{\Delta}\tilde{\varphi}*f) - m(\frac{1}{\Delta}\tilde{e_{\gamma}}*\frac{1}{\Delta}\tilde{\varphi}*f*\tilde{e_{\gamma}})| < \epsilon \qquad (1)$$

and

$$|M(f * \tilde{\varphi}) - m(\frac{1}{\Delta}\tilde{e_{\gamma}} * f * \tilde{\varphi} * \tilde{e_{\gamma}})| < \epsilon \qquad (2)$$

also we have

$$\lim m(\frac{1}{\Delta}\tilde{e_{\gamma}} * f * \tilde{\varphi}) = \lim m(\frac{1}{\Delta}\tilde{e_{\gamma}} * f * \tilde{e_{\gamma}} * \tilde{\varphi}) = \lim m(\frac{1}{\Delta}\tilde{\varphi} * \frac{1}{\Delta}\tilde{e_{\gamma}} * f * \tilde{e_{\gamma}})$$

$$= \lim m(\frac{1}{\Delta}\tilde{\varphi} * f * \tilde{e_{\gamma}}) \quad (3)$$

Now with (1), (2), (3) and some calculations we have

$$\mid M(\frac{1}{\Delta}\tilde{\varphi}*f) - M(f*\tilde{\varphi}) \mid < \epsilon$$

Hence $M(\frac{1}{\Delta}\tilde{\varphi}*f)=M(f*\tilde{\varphi})$ and so M is a TIIM. Also for $f\in LUC(G)$ we have $\frac{1}{\Delta}\tilde{e_{\gamma}}*f*\tilde{e_{\gamma}}\to f(in\parallel.\parallel_u)$, Therefore M is an extention of m.

Now we give a simpler proof based on the technic used in [7,Th.3.2] for the following well known theorem , see [9].

Theorem 3. Let G be a locally compact group. If G is amenable, then G is topological amenable.

Proof. By amenability of G there exists a net $\{\psi_{\alpha}\}\subset P(G)$ such that $\lim_{\alpha}||_{y}(\psi_{\alpha})-\psi_{\alpha}||_{1}=0$ uniformly on compacta; see [9]. Let $\varphi\in P(G)$ with $K=Supp(\varphi)$ compact. For every $\epsilon>0$ we can find α_{0} such that if $\alpha\geq\alpha_{0}$, then $||_{y}(\psi_{\alpha})-\psi_{\alpha}||_{1}<\epsilon$ for all $y\in K^{-1}$. Hence we have

$$||\varphi * \psi_{\alpha} - \psi_{\alpha}||_{1} = \int_{G} |\int_{G} \Delta(y^{-1})\varphi(y^{-1})\psi_{\alpha}(yx)dy - \int_{G} \Delta(y^{-1})\varphi(y^{-1})\psi_{\alpha}(x)dy|dx$$

$$\leq \int_{G} ||_{y}(\psi_{\alpha}) - \psi_{\alpha}||_{1}\Delta(y^{-1})\varphi(y^{-1})dy$$

$$= \int_{K^{-1}} ||_{y}(\psi_{\alpha}) - \psi_{\alpha}||_{1}\Delta(y^{-1})\varphi(y^{-1})dy < \epsilon$$

Therefore $\lim_{\alpha} ||\varphi * \psi_{\alpha} - \psi_{\alpha}||_{1} = 0$ and hence we have $\lim_{\alpha} ||\varphi * \psi_{\alpha} - \psi_{\alpha}||_{1} = 0$ for all $\varphi \in P(G)$, that is G is topological amenable.

278 Reza Memarbashi

References

[1] C. A. Akemann, Operator Algebras Associated with fuchian Groups, Houston J. Math. 7(1981), 295-301.

- [2] E. Bedos et P. Dela Harpe, Moyennabilitie Interieure Des Groups: Definitions et Examples, L Enseig Math. 32(1986), 139-157.
- [3] E. Effros, Property Γ And Inner Amenability, Proc. Amer. Math. Soc, Vol 47, No 2, 483-486 (1975).
- [4] E. Hewitt and K.A. Ross. Abstract Harmonic Analysis (I), Springer-Verlag, New York, (1979).
- [5] J.M. Ling, *Inner Amenable Semigroups I*, J. Math. Soc. Japan, Vol 49, No . 3, 603-616 (1997).
- [6] V. Losert and H. Rindler, Asymptotically Central Functions and Invariant Extensions of Dirac Measures, Probability Measures on Groups, Proc. Conf. Oberwolfach (1983).
- [7] R. Memarbashi and A. Riazi, *Topological Inner Invariant Means*, Studia. Sci. Math. Hungarica, 40 (2003), 293-299.
- [8] R. Nasr-Isfahani, *Inner Amenabilty of Lau Algebras*, Arch. Math. (Brno) 37 (2001), 45-55.
- [9] A. L. T. Paterson, *Amenability*, Mathematical Surveys and Monographs, Amer. Math. Soc. Providence 29 (1998).

Received: July 12, 2006