Extention of Topological Inner Invariant Means

Reza Memarbashi

Department of Mathematics, Faculty of Sciences Semnan University, P.O. Box 35195-363, Semnan, Iran

Abstract

For a locally compact group G, we prove that a topological inner invariant mean on $LUC(G)$ has an extension to a topological inner invariant mean on $L^\infty(G)$.

Mathematics Subject Classification: 43A07, 43A10

Keywords: Inner amenability, Topological inner invariant means

1 Introduction

Let G be a locally compact group with identity e and left Haar measure dx. Let $L^\infty(G)$ and $L^1(G)$ denote the spaces of essentially bounded functions and integrable functions respectively.

For a function $f : G \to \mathbb{C}$ we put $x f(y) = f(xy)$ and $f_x(y) = f(yx)$ for all $x,y \in G$. Recall that a mean m on a linear subspace X of $L^\infty(G)$ containing the constants is a linear functional such that $||m|| = m(1) = 1$. If $x f, f_x \in X$ for all $f \in X$ and $x \in G$, we say that m is inner invariant if $m(x f) = m(f x)$ for all $x \in G$ and $f \in X$.

We denote by $P(G)$ the set of all $\varphi \in L^1(G)$ with $\varphi \geq 0$ and $||\varphi||_1 = 1$. If X is a linear subspace of $L^\infty(G)$ containing the constants, X is said to be topological left (resp. right) invariant if $P(G) * X \subset X$ (resp. $X * P(G) \subset X$). Here $\tilde{\varphi}$ is the function defined by $\tilde{\varphi}(x) = \varphi(x^{-1})$ for all $x \in G$ and $*$ denotes the convolution product of functions on G. Let X be topological invariant (i.e. topological left and right invariant). A mean defined on X is said to be topological inner invariant if

$$m(\frac{1}{\Delta} \tilde{\varphi} * f) = m(f * \tilde{\varphi}) \text{ for all } f \in X \text{ and } \varphi \in P(G)$$
where Δ is the modular function of G. The concept of topological inner invariant means (TIIM) was introduced and studied by Nasr-Isfahani [8] for a large class of Banach algebras containing $L^1(G)$ known as Lau algebras.

In [7] authors study locally compact groups for which $L^\infty(G)$ has a TIIM whose restriction to $C_b(G)$ is not δ_e. In this paper we show that a TIIM on $LUC(G)$ (space of left uniformly continuous functions on G) has a topological inner invariant extension to $L^\infty(G)$. Also based on the technic used in [7, Th.3.2] we give a simpler proof of the well known fact that amenability implies topological amenability (see [9]).

2 Topological inner invariant means

It is well known [7] that any extension E of δ_e from $C_b(G)$ to a mean on $L^\infty(G)$ is a mixed identity of $L^\infty(G)^*$; that is

$$E(\frac{1}{\Delta} \tilde{\varphi} \ast f) = E(f \ast \tilde{\varphi}) = \varphi(f) \text{ for all } f \in L^\infty(G) \text{ and } \varphi \in P(G).$$

In particular, E is a TIIM on $L^\infty(G)$; here we give another proof of this fact.

Lemma 1. Let (e_i) be a bounded approximate identity of $L^1(G)$ and $e_i \to E (wk^*)$, then $E \in L^\infty(G)^*$ is a TIIM and $E(f) = f(e)$ for $f \in CB(G)$.

Proof. Let $\varphi \in P(G)$, $f \in L^\infty(G)$, with the aid of the relations $f.\varphi = (\frac{1}{\Delta} \tilde{\varphi}) \ast f$ and $\varphi.f = f \ast \varphi$ we have

$$E((\frac{1}{\Delta} \tilde{\varphi}) \ast f) = E(f.\varphi) = \lim_i e_i(f.\varphi) = \lim_i f.\varphi(e_i) = \lim_i f(\varphi \ast e_i) = f(\varphi)$$

and

$$E(f \ast \varphi) = E(\varphi.f) = \lim_i e_i(\varphi.f) = \lim_i \varphi.f(e_i) = \lim_i f(e_i \ast \varphi) = f(\varphi)$$

And hence $E((\frac{1}{\Delta} \tilde{\varphi} \ast f) = E(f \ast \varphi)$. By [6, Th.2] $E(f) = f(e)$ for $f \in CB(G)$.

For each locally compact group G, $L^1(G)$ has a bounded approximate identity, therefore by the above lemma and theorem of Banach Alaoglu, $L^\infty(G)$ always has a topological inner invariant mean.

Theorem 2. Let G be a locally compact group. Then each TIIM on $LUC(G)$ has a topological inner invariant extension to $L^\infty(G)$.

Proof. Let (e_i) be the bounded approximate identity of $L^1(G)$ in $P(G)$, and m be a TIIM on $LUC(G)$. We choose an ultrafilter Γ on the index set of (e_i) that dominates the order filter and define $M : L^\infty(G) \to \mathbb{C}$ by $M(f) =$
\[\lim_{\Gamma} m(\frac{1}{\Delta} \tilde{e}_\gamma \ast f \ast \tilde{e}_\gamma). \]

\(M \) is a mean on \(L^\infty(G) \). Now for \(f \in L^\infty(G), \varphi \in P(G) \) and an arbitrary \(\epsilon > 0 \) there exists \(\gamma_0 \) such that if \(\gamma \geq \gamma_0 \) then

\[| M(\frac{1}{\Delta} \tilde{\varphi} \ast f) - m(\frac{1}{\Delta} \tilde{e}_\gamma \ast \frac{1}{\Delta} \tilde{\varphi} \ast f \ast \tilde{e}_\gamma) | < \epsilon \] \hspace{1cm} (1)

and

\[| M(f \ast \tilde{\varphi}) - m(\frac{1}{\Delta} \tilde{e}_\gamma \ast f \ast \tilde{\varphi} \ast \tilde{e}_\gamma) | < \epsilon \] \hspace{1cm} (2)

also we have

\[\lim m(\frac{1}{\Delta} \tilde{e}_\gamma \ast f \ast \tilde{\varphi}) = \lim m(\frac{1}{\Delta} \tilde{e}_\gamma \ast f \ast \tilde{e}_\gamma \ast \tilde{\varphi}) = \lim m(\frac{1}{\Delta} \tilde{\varphi} \ast \frac{1}{\Delta} \tilde{e}_\gamma \ast f \ast \tilde{e}_\gamma) \]

\[= \lim m(\frac{1}{\Delta} \tilde{\varphi} \ast f \ast \tilde{e}_\gamma) \] \hspace{1cm} (3)

Now with (1), (2), (3) and some calculations we have

\[| M(\frac{1}{\Delta} \tilde{\varphi} \ast f) - M(f \ast \tilde{\varphi}) | < \epsilon \]

Hence \(M(\frac{1}{\Delta} \tilde{\varphi} \ast f) = M(f \ast \tilde{\varphi}) \) and so \(M \) is a TIIM. Also for \(f \in LUC(G) \) we have \(\frac{1}{\Delta} \tilde{e}_\gamma \ast f \ast \tilde{e}_\gamma \rightarrow f \) in \(\| \cdot \|_u \), Therefore \(M \) is an extention of \(m \). \hspace{1cm} \(\blacksquare \)

Now we give a simpler proof based on the technic used in [7, Th.3.2] for the following well known theorem, see [9].

Theorem 3. Let \(G \) be a locally compact group. If \(G \) is amenable, then \(G \) is topological amenable.

Proof. By amenability of \(G \) there exists a net \(\{ \psi_\alpha \} \subset P(G) \) such that

\[\lim_\alpha ||y(\psi_\alpha) - \psi_\alpha||_1 = 0 \] uniformly on compacta; see [9]. Let \(\varphi \in P(G) \) with \(K = Supp(\varphi) \) compact. For every \(\epsilon > 0 \) we can find \(\alpha_0 \) such that if \(\alpha \geq \alpha_0 \), then \(||y(\psi_\alpha) - \psi_\alpha||_1 < \epsilon \) for all \(\gamma \in K^{-1} \). Hence we have

\[||\varphi \ast \psi_\alpha - \psi_\alpha||_1 = \int_G || \int_G \Delta(y^{-1}) \varphi(y^{-1}) \psi_\alpha(yx)dy - \int_G \Delta(y^{-1}) \varphi(y^{-1}) \psi_\alpha(x)dy || dx \]

\[\leq \int_G ||y(\psi_\alpha) - \psi_\alpha||_1 \Delta(y^{-1}) \varphi(y^{-1})dy \]

\[= \int_{K^{-1}} ||y(\psi_\alpha) - \psi_\alpha||_1 \Delta(y^{-1}) \varphi(y^{-1})dy < \epsilon \]

Therefore \(\lim_\alpha ||\varphi \ast \psi_\alpha - \psi_\alpha||_1 = 0 \) and hence we have \(\lim_\alpha ||\varphi \ast \psi_\alpha - \psi_\alpha||_1 = 0 \) for all \(\varphi \in P(G) \), that is \(G \) is topological amenable. \hspace{1cm} \(\blacksquare \)
References

Received: July 12, 2006