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Abstract

Let H denote the class of functions f which are harmonic, orienta-
tion preserving and univalent in the open unit disc D = {z : |z| < 1}.
This paper defines and investigates a family of complex-valued har-
monic functions that are orientation preserving and univalent in D and
are related to the functions starlike of complex order with respect to
symmetric points. The authors obtain extreme points, convolution and
convex combination properties.

Mathematics Subject Classification: 30C45

Keywords: harmonic functions, starlike of complex order, extreme points

1 Introduction

Let f = u+iv be a continuous complex-valued harmonic function in a complex
domain E if both u and v are real harmonic in the domain E. There is a close
inter-relation between analytic functions and harmonic functions. For example,
for real harmonic functions u and v there exist analytic functions U and V so
that u = Re (U) and v = Im (V ). Then, we can write

f(z) = h(z) + g(z)
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where h and g are analytic in E. The mapping z �→ f(z) is orientation
preserving and locally univalent in E if and only if the Jacobian of f given
by Jf(z) = |h′(z)|2 − |g′(z)|2 is positive in E. The function f = h + g is
said to be harmonic univalent in E if the mapping z �→ f(z) is orientation
preserving, harmonic and one-to-one in E. We call h the analytic part and g
the co-analytic part of f = h + g.

Let H denote the family of functions f = h + g that are harmonic, orientation
preserving and univalent in the open unit disc D = {z : |z| < 1} with the
normalisation

h(z) = z +
∞∑

n=2

anzn, g(z) =
∞∑

n=1

bnzn, |b1| < 1. (1)

In [3], Clunie and Sheil-Small investigated the class H plus some of it geometric
subclasses and obtained some coefficient bounds. Since then, there have been
many authors which looked at related subclasses. See [8] and [9] to name
a few. In particular, Jahangiri [4] discussed a subclass of H consisting of
functions which are starlike of α, for 0 ≤ α < 1. We denote such class as
HS�(α). Specifically, a function f of the form (1) is harmonic starlike of order
α, 0 ≤ α < 1, for z ∈ D if (see Sheil-Small [6])

∂

∂θ
(arg f(reiθ)) ≥ α, |z| = r < 1.

Next, we denote further the class H, a subclass of H such that the functions
h and g in f = h + g are of the form

h(z) = z −
∞∑

n=2

|an|zn, g(z) =
∞∑

n=1

|bn|zn, |b1| < 1. (2)

Also let HS�
(α) = HS�(α) ∩ H.

In [5], Nasr and Aouf introduced the class of starlike functions of complex
order b. Denote S∗(b) to be the class consisting of functions which are analytic
and starlike of complex order b(b is a non-zero complex number) and satisfying
the following condition

Re

{
1 +

1

b

(
zf ′(z)

f(z)
− 1

)}
> 0, z ∈ D.

In [1], Janteng and Abdul Halim were motivated to form a new subclass of H
based on Nasr and Aouf’s class as follows.
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Definition 1.1 Let f ∈ H. Then f ∈ HS�
s(b, α) is said to be harmonic

starlike of complex order, with respect to symmetric points, if and only if, for
0 ≤ α < 1, b non-zero complex number with |b| ≤ 1, z′ = ∂

∂θ
(z = reiθ), f ′(z) =

∂
∂θ

(f(z) = f(reiθ)), 0 ≤ r < 1 and 0 ≤ θ < 2π,

Re

{
1 +

1

b

(
2zf ′(z)

z′(f(z) − f(−z))
− 1

)}
≥ α, |z| = r < 1.

Also, we let HS�
s(b, α) = HS�

s(b, α) ∩ H . The constraint |b| ≤ 1 is to ensure
Jf (z) > 0 so that f is univalent.

2 Main Results

Avci and Zlotkiewicz [2] proved that the coefficient condition
∑∞

n=2 n (|an| + |bn|) ≤
1 is a sufficient condition for functions f = h+g to be in HS�(1, 0) with b1 = 0.
Silverman [7] also proved that this condition is also a necessary when an and
bn are negative, as well as b1 = 0. In the following theorem, Jahangiri in
1999 [4], obtained analogue sufficient condition for f ∈ HS�(1, α) where b1 is
not necessarily 0.

Theorem 2.1 ([4]) Let f = h + g be given by (1). Furthermore, let

∞∑
n=1

(
n − α

1 − α
|an| + n + α

1 − α
|bn|

)
≤ 1.

where a1 = 1 and 0 ≤ α < 1. Then f is harmonic univalent in D, and
f ∈ HS�(1, α).

Jahangiri also proved that the condition in Theorem 2.1 is a necessary condi-
tion for f = h + g given by (2) and belongs to HS�

(1, α).

The following theorem proved by Janteng and Abdul Halim in [1] will be used
throughout in this paper.

Theorem 2.2 Let f = h + g be given by (1). If

∞∑
n=2

(
2n + (|b| − α|b| − 1)(1 − (−1)n)

2(1 − α)|b|
)
|an|+

∞∑
n=1

(
2n − (|b| − α|b| − 1)(1 − (−1)n)

2(1 − α)|b|
)
|bn| ≤ 1,

(3)
where 0 ≤ α < 1 and b a non-zero complex number with |b| ≤ 1 then f is

harmonic univalent in D, and f ∈ HS�
s(b, α). Condition (3) is also necessary

if f ∈ HS�
s(b, α).

Next, extreme points of the closed convex hulls of HS�
s(b, α) are determined,

and denoted by clcoHS�
s(b, α).
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Theorem 2.3 f ∈ clcoHS�
s(b, α) if and only if

f(z) =
∞∑

n=1

(Xnhn + Yngn) (4)

where

h1(z) = z, hn(z) = z −
(

2(1 − α)|b|
2n + (|b| − α|b| − 1)(1 − (−1)n)

)
zn (n = 2, 3, ...),

gn(z) = z +

(
2(1 − α)|b|

2n − (|b| − α|b| − 1)(1 − (−1)n)

)
(z̄) n (n = 1, 2, 3, ...),

∑∞
n=1(Xn + Yn) = 1, Xn ≥ 0 and Yn ≥ 0. In particular, the extreme points of

HS�
s(b, α) are {hn} and {gn}.

Proof. For functions f having the form (4), we have

f(z) =
∞∑

n=1

(Xnhn + Yngn)

=
∞∑

n=1

(Xn + Yn)z −
∞∑

n=2

2(1 − α)|b|
2n + (|b| − α|b| − 1)(1 − (−1)n)

Xnzn

+
∞∑

n=1

2(1 − α)|b|
2n − (|b| − α|b| − 1)(1 − (−1)n)

Ynz̄
n

Thus

∞∑
n=2

2n + (|b| − α|b| − 1)(1 − (−1)n)

2(1 − α)|b|
(

2(1 − α)|b|
2n + (|b| − α|b| − 1)(1 − (−1)n)

)
Xn

+
∞∑

n=1

2n − (|b| − α|b| − 1)(1 − (−1)n)

2(1 − α)|b|
(

2(1 − α)|b|
2n − (|b| − α|b| − 1)(1 − (−1)n)

)
Yn

=
∞∑

n=2

Xn +
∞∑

n=1

Yn

= 1 − X1

≤ 1.

Therefore f ∈ clcoHS�
s(b, α).

On the converse, we suppose f ∈ clcoHS�
s(b, α). Set

Xn =
2n + (|b| − α|b| − 1)(1 − (−1)n)

2(1 − α)|b| |an| , (n = 2, 3, 4, ...),
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and

Yn =
2n − (|b| − α|b| − 1)(1 − (−1)n)

2(1 − α)|b| |bn| , (n = 1, 2, 3, ...),

From Theorem 2.2, we can deduce that 0 ≤ Xn ≤ 1 , (n = 2, 3, 4, ...) and
0 ≤ Yn ≤ 1 , (n = 1, 2, 3, ...). We define X1 = 1 −∑∞

n=2 Xn −∑∞
n=1 Yn. Again

from Theorem 2.2, X1 ≥ 0. Therefore, f(z) =
∑∞

n=1(Xnhn +Yngn) as required.

For harmonic functions f(z) = z − ∑∞
n=2 |an|zn +

∑∞
n=1 |bn|z̄ n and F (z) =

z −∑∞
n=2 |An|zn +

∑∞
n=1 |Bn|z̄ n, we define the convolution of f and F as

(f � F )(z) = z −
∞∑

n=2

|anAn|zn +
∞∑

n=1

|bnBn|z̄ n. (5)

In the next theorem, we examine the convolution properties of the class HS�
s(b, α).

Theorem 2.4 For 0 ≤ β ≤ α < 1, let f ∈ HS�
s(b, α) and F ∈ HS�

s(b, β).
Then (f � F ) ∈ HS�

s(b, α) ⊂ HS�
s(b, β).

Proof. Write f(z) = z−∑∞
n=2 |an|zn+

∑∞
n=1 |bn|z̄ n and F (z) = z−∑∞

n=2 |An|zn+∑∞
n=1 |Bn|z̄ n. Then the convolution of f and F is given by (5).

Note that |An| ≤ 1 and |Bn| ≤ 1 since F ∈ HS�
s(b, β). Then we have

∞∑
n=2

[2n+(|b|−α|b|−1)(1−(−1)n)]|an||An|+
∞∑

n=1

[2n−(|b|−α|b|−1)(1−(−1)n)]|bn||Bn|

≤
∞∑

n=2

[2n+(|b|−α|b|−1)(1−(−1)n)]|an|+
∞∑

n=1

[2n−(|b|−α|b|−1)(1−(−1)n)]|bn|.

Therefore, (f � F ) ∈ HS�
s(b, α) ⊂ HS�

s(b, β) since the right hand side of the
above inequality is bounded by 2(1 − α) while 2(1 − α) ≤ 2(1 − β).

Now, we determine the convex combination properties of the members of
HS�

s(b, α).

Theorem 2.5 The class HS�
s(b, α) is closed under convex combination.

Proof. For i = 1, 2, 3, ..., suppose that fi ∈ HS�
s(b, α) where fi is given by

fi(z) = z −
∞∑

n=2

|an,i|zn +
∞∑

n=1

|bn,i|z̄ n.

For
∑∞

i=1 ci = 1, 0 ≤ ci ≤ 1, the convex combinations of fi may be written as

∞∑
i=1

cifi(z) = c1z −
∞∑

n=2

c1|an,1|zn +
∞∑

n=1

c1|bn,1|z̄ n + c2z −
∞∑

n=2

c2|an,2|zn +
∞∑

n=1

c2|bn,2|z̄ n...
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= z

∞∑
i=1

ci −
∞∑

n=2

( ∞∑
i=1

ci|an,i|
)

zn +
∞∑

n=1

( ∞∑
i=1

ci|bn,i|
)

z̄ n

= z −
∞∑

n=2

( ∞∑
i=1

ci|an,i|
)

zn +
∞∑

n=1

( ∞∑
i=1

ci|bn,i|
)

z̄ n.

Next, consider

∞∑
n=2

(
[2n + (|b| − α|b| − 1)(1 − (−1)n)]

∣∣∣∣∣
∞∑
i=1

ci|an,i|
∣∣∣∣∣
)

+
∞∑

n=1

(
[2n − (|b| − α|b| − 1)(1 − (−1)n)]

∣∣∣∣∣
∞∑
i=1

ci|bn,i|
∣∣∣∣∣
)

= c1

∞∑
n=2

[2n + (|b| − α|b| − 1)(1 − (−1)n)]|an,1| + ...

+ cm

∞∑
n=2

[2n + (|b| − α|b| − 1)(1 − (−1)n)]|an,m| + ...

+ c1

∞∑
n=1

[2n − (|b| − α|b| − 1)(1 − (−1)n)]|bn,1| + ...

+ cm

∞∑
n=1

[2n − (|b| − α|b| − 1)(1 − (−1)n)]|bn,m| + ...

=
∞∑
i=1

ci

{ ∞∑
n=2

[2n + (|b| − α|b| − 1)(1 − (−1)n)]|an,i|

+
∞∑

n=1

[2n − (|b| − α|b| − 1)(1 − (−1)n)]|bn,i|
}
.

Now, fi ∈ HS�
s(b, α), therefore from Theorem 2.2, we have

∞∑
n=2

[2n+(|b|−α|b|−1)(1−(−1)n)]|an,i|+
∞∑

n=1

[2n−(|b|−α|b|−1)(1−(−1)n)]|bn,i| ≤ 2(1−α) .

Hence

∑∞
n=2 ([2n + (|b| − α|b| − 1)(1 − (−1)n)] |∑∞

i=1 ci|an,i||)

+
∑∞

n=1 ([2n − (|b| − α|b| − 1)(1 − (−1)n)] |∑∞
i=1 ci|bn,i||)

≤ 2(1 − α)
∑∞

i=1 ci

= 2(1 − α).

By using Theorem 2.2 again, we have
∑∞

i=1 cifi ∈ HS�
s(b, α).
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