Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 6, 275 - 281

Properties of Harmonic Functions which are Starlike of Complex Order with Repect to Symmetric Points

Aini Janteng
School of Science and Technology, Universiti Malaysia Sabah
Locked Bag No. 2073, 88999 Kota Kinabalu, Sabah, Malaysia aini_jg@ums.edu.my
Suzeini Abdul Halim
Institute of Mathematical Sciences, Universiti Malaya
50603 Kuala Lumpur, Malaysia
suzeini@um.edu.my

Abstract

Let \mathcal{H} denote the class of functions f which are harmonic, orientation preserving and univalent in the open unit disc $D=\{z:|z|<1\}$. This paper defines and investigates a family of complex-valued harmonic functions that are orientation preserving and univalent in \mathcal{D} and are related to the functions starlike of complex order with respect to symmetric points. The authors obtain extreme points, convolution and convex combination properties.

Mathematics Subject Classification: 30C45

Keywords: harmonic functions, starlike of complex order, extreme points

1 Introduction

Let $f=u+i v$ be a continuous complex-valued harmonic function in a complex domain E if both u and v are real harmonic in the domain E. There is a close inter-relation between analytic functions and harmonic functions. For example, for real harmonic functions u and v there exist analytic functions U and V so that $u=\operatorname{Re}(U)$ and $v=\operatorname{Im}(V)$. Then, we can write

$$
f(z)=h(z)+\overline{g(z)}
$$

where h and g are analytic in E. The mapping $z \mapsto f(z)$ is orientation preserving and locally univalent in E if and only if the Jacobian of f given by $J_{f}(z)=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}$ is positive in E. The function $f=h+\bar{g}$ is said to be harmonic univalent in E if the mapping $z \mapsto f(z)$ is orientation preserving, harmonic and one-to-one in E. We call h the analytic part and g the co-analytic part of $f=h+\bar{g}$.

Let \mathcal{H} denote the family of functions $f=h+\bar{g}$ that are harmonic, orientation preserving and univalent in the open unit disc $\mathcal{D}=\{z:|z|<1\}$ with the normalisation

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}, \quad\left|b_{1}\right|<1 . \tag{1}
\end{equation*}
$$

In [3], Clunie and Sheil-Small investigated the class \mathcal{H} plus some of it geometric subclasses and obtained some coefficient bounds. Since then, there have been many authors which looked at related subclasses. See [8] and [9] to name a few. In particular, Jahangiri [4] discussed a subclass of \mathcal{H} consisting of functions which are starlike of α, for $0 \leq \alpha<1$. We denote such class as $\mathcal{H S}^{\star}(\alpha)$. Specifically, a function f of the form (1) is harmonic starlike of order $\alpha, 0 \leq \alpha<1$, for $z \in \mathcal{D}$ if (see Sheil-Small [6])

$$
\frac{\partial}{\partial \theta}\left(\arg f\left(r e^{i \theta}\right)\right) \geq \alpha, \quad|z|=r<1
$$

Next, we denote further the class $\overline{\mathcal{H}}$, a subclass of \mathcal{H} such that the functions h and g in $f=h+\bar{g}$ are of the form

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}, \quad g(z)=\sum_{n=1}^{\infty}\left|b_{n}\right| z^{n}, \quad\left|b_{1}\right|<1 . \tag{2}
\end{equation*}
$$

Also let $\overline{\mathcal{H}} \mathcal{S}^{\star}(\alpha)=\mathcal{H S}^{\star}(\alpha) \cap \bar{H}$.
In [5], Nasr and Aouf introduced the class of starlike functions of complex order b. Denote $\mathcal{S}^{*}(b)$ to be the class consisting of functions which are analytic and starlike of complex order b (b is a non-zero complex number) and satisfying the following condition

$$
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>0, z \in \mathcal{D}
$$

In [1], Janteng and Abdul Halim were motivated to form a new subclass of \mathcal{H} based on Nasr and Aouf's class as follows.

Definition 1.1 Let $f \in \mathcal{H}$. Then $f \in \mathcal{H}_{s}^{\star}(b, \alpha)$ is said to be harmonic starlike of complex order, with respect to symmetric points, if and only if, for $0 \leq \alpha<1$, b non-zero complex number with $|b| \leq 1, z^{\prime}=\frac{\partial}{\partial \theta}\left(z=r e^{i \theta}\right), f^{\prime}(z)=$ $\frac{\partial}{\partial \theta}\left(f(z)=f\left(r e^{i \theta}\right)\right), 0 \leq r<1$ and $0 \leq \theta<2 \pi$,

$$
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{2 z f^{\prime}(z)}{z^{\prime}(f(z)-f(-z))}-1\right)\right\} \geq \alpha,|z|=r<1 .
$$

Also, we let $\overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)=\mathcal{H}_{s}^{\star}(b, \alpha) \cap \bar{H}$. The constraint $|b| \leq 1$ is to ensure $J_{f}(z)>0$ so that f is univalent.

2 Main Results

Avci and Zlotkiewicz [2] proved that the coefficient condition $\sum_{n=2}^{\infty} n\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq$ 1 is a sufficient condition for functions $f=h+\bar{g}$ to be in $\mathcal{H} \mathcal{S}^{\star}(1,0)$ with $b_{1}=0$. Silverman [7] also proved that this condition is also a necessary when a_{n} and b_{n} are negative, as well as $b_{1}=0$. In the following theorem, Jahangiri in 1999 [4], obtained analogue sufficient condition for $f \in \mathcal{H S}^{\star}(1, \alpha)$ where b_{1} is not necessarily 0 .

Theorem 2.1 ([4]) Let $f=h+\bar{g}$ be given by (1). Furthermore, let

$$
\sum_{n=1}^{\infty}\left(\frac{n-\alpha}{1-\alpha}\left|a_{n}\right|+\frac{n+\alpha}{1-\alpha}\left|b_{n}\right|\right) \leq 1 .
$$

where $a_{1}=1$ and $0 \leq \alpha<1$. Then f is harmonic univalent in \mathcal{D}, and $f \in \mathcal{H S}^{\star}(1, \alpha)$.

Jahangiri also proved that the condition in Theorem 2.1 is a necessary condition for $f=h+\bar{g}$ given by (2) and belongs to $\overline{\mathcal{H}} \mathcal{S}^{\star}(1, \alpha)$.

The following theorem proved by Janteng and Abdul Halim in [1] will be used throughout in this paper.
Theorem 2.2 Let $f=h+\bar{g}$ be given by (1). If
$\sum_{n=2}^{\infty}\left(\frac{2 n+(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)}{2(1-\alpha)|b|}\right)\left|a_{n}\right|+\sum_{n=1}^{\infty}\left(\frac{2 n-(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)}{2(1-\alpha)|b|}\right)\left|b_{n}\right| \leq 1$,
where $0 \leq \alpha<1$ and b a non-zero complex number with $|b| \leq 1$ then f is harmonic univalent in \mathcal{D}, and $f \in \mathcal{H}_{s}^{\star}(b, \alpha)$. Condition (3) is also necessary if $f \in \overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)$.

Next, extreme points of the closed convex hulls of $\overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)$ are determined, and denoted by clco $\overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)$.

Theorem $2.3 f \in \operatorname{clco} \overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)$ if and only if

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{gathered}
h_{1}(z)=z, h_{n}(z)=z-\left(\frac{2(1-\alpha)|b|}{2 n+(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)}\right) z^{n}(n=2,3, \ldots), \\
g_{n}(z)=z+\left(\frac{2(1-\alpha)|b|}{2 n-(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)}\right)(\bar{z})^{n}(n=1,2,3, \ldots),
\end{gathered}
$$

$\sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right)=1, X_{n} \geq 0$ and $Y_{n} \geq 0$. In particular, the extreme points of $\overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)$ are $\left\{h_{n}\right\}$ and $\left\{g_{n}\right\}$.

Proof. For functions f having the form (4), we have

$$
\begin{aligned}
f(z)= & \sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right) \\
= & \sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right) z-\sum_{n=2}^{\infty} \frac{2(1-\alpha)|b|}{2 n+(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)} X_{n} z^{n} \\
& +\sum_{n=1}^{\infty} \frac{2(1-\alpha)|b|}{2 n-(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)} Y_{n} \bar{z}^{n}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{2 n+(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)}{2(1-\alpha)|b|}\left(\frac{2(1-\alpha)|b|}{2 n+(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)}\right) X_{n} \\
&+\sum_{n=1}^{\infty} \frac{2 n-(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)}{2(1-\alpha)|b|}\left(\frac{2(1-\alpha)|b|}{2 n-(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)}\right) Y_{n} \\
&=\sum_{n=2}^{\infty} X_{n}+\sum_{n=1}^{\infty} Y_{n} \\
&=1-X_{1} \\
& \leq 1 .
\end{aligned}
$$

Therefore $f \in \operatorname{clco} \overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)$.
On the converse, we suppose $f \in \operatorname{clco} \overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)$. Set

$$
X_{n}=\frac{2 n+(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)}{2(1-\alpha)|b|}\left|a_{n}\right|,(n=2,3,4, \ldots),
$$

and

$$
Y_{n}=\frac{2 n-(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)}{2(1-\alpha)|b|}\left|b_{n}\right|,(n=1,2,3, \ldots),
$$

From Theorem 2.2, we can deduce that $0 \leq X_{n} \leq 1,(n=2,3,4, \ldots)$ and $0 \leq Y_{n} \leq 1,(n=1,2,3, \ldots)$. We define $X_{1}=1-\sum_{n=2}^{\infty} X_{n}-\sum_{n=1}^{\infty} Y_{n}$. Again from Theorem 2.2, $X_{1} \geq 0$. Therefore, $f(z)=\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right)$ as required.

For harmonic functions $f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}+\sum_{n=1}^{\infty}\left|b_{n}\right| \bar{z}^{n}$ and $F(z)=$ $z-\sum_{n=2}^{\infty}\left|A_{n}\right| z^{n}+\sum_{n=1}^{\infty}\left|B_{n}\right| \bar{z}^{n}$, we define the convolution of f and F as

$$
\begin{equation*}
(f \star F)(z)=z-\sum_{n=2}^{\infty}\left|a_{n} A_{n}\right| z^{n}+\sum_{n=1}^{\infty}\left|b_{n} B_{n}\right| \bar{z}^{n} . \tag{5}
\end{equation*}
$$

In the next theorem, we examine the convolution properties of the class $\overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)$.
Theorem 2.4 For $0 \leq \beta \leq \alpha<1$, let $f \in \overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)$ and $F \in \overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \beta)$. Then $(f \star F) \in \overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha) \subset \overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \beta)$.

Proof. Write $f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}+\sum_{n=1}^{\infty}\left|b_{n}\right| \bar{z}^{n}$ and $F(z)=z-\sum_{n=2}^{\infty}\left|A_{n}\right| z^{n}+$ $\sum_{n=1}^{\infty}\left|B_{n}\right| \bar{z}^{n}$. Then the convolution of f and F is given by (5).

Note that $\left|A_{n}\right| \leq 1$ and $\left|B_{n}\right| \leq 1$ since $F \in \overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \beta)$. Then we have

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left[2 n+(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|a_{n}\right|\left|A_{n}\right|+\sum_{n=1}^{\infty}\left[2 n-(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|b_{n}\right|\left|B_{n}\right| \\
\leq & \sum_{n=2}^{\infty}\left[2 n+(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|a_{n}\right|+\sum_{n=1}^{\infty}\left[2 n-(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|b_{n}\right| .
\end{aligned}
$$

Therefore, $(f \star F) \in \overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha) \subset \overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \beta)$ since the right hand side of the above inequality is bounded by $2(1-\alpha)$ while $2(1-\alpha) \leq 2(1-\beta)$.

Now, we determine the convex combination properties of the members of $\overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)$.

Theorem 2.5 The class $\overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)$ is closed under convex combination.
Proof. For $i=1,2,3, \ldots$, suppose that $f_{i} \in \overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)$ where f_{i} is given by

$$
f_{i}(z)=z-\sum_{n=2}^{\infty}\left|a_{n, i}\right| z^{n}+\sum_{n=1}^{\infty}\left|b_{n, i}\right| \bar{z}^{n} .
$$

For $\sum_{i=1}^{\infty} c_{i}=1,0 \leq c_{i} \leq 1$, the convex combinations of f_{i} may be written as

$$
\sum_{i=1}^{\infty} c_{i} f_{i}(z)=c_{1} z-\sum_{n=2}^{\infty} c_{1}\left|a_{n, 1}\right| z^{n}+\sum_{n=1}^{\infty} c_{1}\left|b_{n, 1}\right| \bar{z}^{n}+c_{2} z-\sum_{n=2}^{\infty} c_{2}\left|a_{n, 2}\right| z^{n}+\sum_{n=1}^{\infty} c_{2}\left|b_{n, 2}\right| \bar{z}^{n} \ldots
$$

$$
\begin{aligned}
& =z \sum_{i=1}^{\infty} c_{i}-\sum_{n=2}^{\infty}\left(\sum_{i=1}^{\infty} c_{i}\left|a_{n, i}\right|\right) z^{n}+\sum_{n=1}^{\infty}\left(\sum_{i=1}^{\infty} c_{i}\left|b_{n, i}\right|\right) \bar{z}^{n} \\
& =z-\sum_{n=2}^{\infty}\left(\sum_{i=1}^{\infty} c_{i}\left|a_{n, i}\right|\right) z^{n}+\sum_{n=1}^{\infty}\left(\sum_{i=1}^{\infty} c_{i}\left|b_{n, i}\right|\right) \bar{z}^{n} .
\end{aligned}
$$

Next, consider

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left(\left[2 n+(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|\sum_{i=1}^{\infty} c_{i}\right| a_{n, i}| |\right) \\
+ & \sum_{n=1}^{\infty}\left(\left[2 n-(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|\sum_{i=1}^{\infty} c_{i}\right| b_{n, i}| |\right) \\
= & c_{1} \sum_{n=2}^{\infty}\left[2 n+(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|a_{n, 1}\right|+\ldots \\
& +c_{m} \sum_{n=2}^{\infty}\left[2 n+(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|a_{n, m}\right|+\ldots \\
& +c_{1} \sum_{n=1}^{\infty}\left[2 n-(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|b_{n, 1}\right|+\ldots \\
& +c_{m} \sum_{n=1}^{\infty}\left[2 n-(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|b_{n, m}\right|+\ldots \\
= & \sum_{i=1}^{\infty} c_{i}\left\{\sum_{n=2}^{\infty}\left[2 n+(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|a_{n, i}\right|\right. \\
& \left.+\sum_{n=1}^{\infty}\left[2 n-(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|b_{n, i}\right|\right\} .
\end{aligned}
$$

Now, $f_{i} \in \overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)$, therefore from Theorem 2.2, we have

$$
\sum_{n=2}^{\infty}\left[2 n+(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|a_{n, i}\right|+\sum_{n=1}^{\infty}\left[2 n-(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|b_{n, i}\right| \leq 2(1-\alpha)
$$

Hence

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left(\left[2 n+(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|\sum_{i=1}^{\infty} c_{i}\right| a_{n, i}| |\right) \\
& +\sum_{n=1}^{\infty}\left(\left[2 n-(|b|-\alpha|b|-1)\left(1-(-1)^{n}\right)\right]\left|\sum_{i=1}^{\infty} c_{i}\right| b_{n, i}| |\right) \\
& \leq 2(1-\alpha) \sum_{i=1}^{\infty} c_{i} \\
& =2(1-\alpha)
\end{aligned}
$$

By using Theorem 2.2 again, we have $\sum_{i=1}^{\infty} c_{i} f_{i} \in \overline{\mathcal{H}} \mathcal{S}_{s}^{\star}(b, \alpha)$.

Acknowledgement

The authors is partially supported by FRG0118-ST-1/2007 Grant, Malaysia.

References

[1] Janteng, A. and Abdul Halim, S. (2008). Harmonic functions which are starlike of complex order with respect to symmetric points. submitted.
[2] Avci, Y. and Zlotkiewicz, E. (1990). On harmonic univalent mappings. Ann. Univ. Mariae Curie-Sklodowska Sect A., 44. 1-7
[3] Clunie, J. and Sheil Small, T. (1984). Harmonic univalent functions. Ann. Acad. Aci. Fenn. Ser. A. I. Math., 9. 3-25
[4] Jahangiri, J.M. (1999). Harmonic functions starlike in the unit disk. J. Math. Anal. Appl., 235. 470-477
[5] Nasr, M.A. and Aouf, M.K. (1985). Starlike functions of complex order. J. Natural Sci. Math., 25. 1-12
[6] Sheil-Small, T. (1990). Constants for planar harmonic mappings. J. London Math. Soc., 2(42). 237-248
[7] Silverman, H. (1998). Harmonic univalent functions with negative coefficients. J. Math. Anal. Appl., 220. 283-289
[8] Silverman, H. and Silvia, E.M. (1999). Subclasses of harmonic univalent functions. New Zeal. J. Math., 28. 275-284
[9] Thomas, R.B., Adolph, S. and Subramaniam, K.G. (2004). Goodman-Rønning-Type Harmonic Univalent Functions. Kyungpook Math. J., 41. 45-54

Received: August, 2008

