Some Classes of Composition Operators

on the Fock Space

S. Panayappan

Department of Mathematics
Government Arts College, Coimbatore – 641018
Tamilnadu, India
panayappan@gmail.com

N. Sivamani

Department of Mathematics
Tamilnadu College of Engineering, Coimbatore- 641659
Tamilnadu, India
sivamanitee@gmail.com

Abstract

In this paper normal, quasinormal, hyponormal, quasi hyponormal, class A and paranormal composition operators on Fock space are characterized.

Mathematics Subject Classification 47B33, 47B38, 30D15

Keywords: Fock space, composition operator, normal, quasinormal, hyponormal, quasi hyponormal, class A and paranormal operators.
1. Introduction

Composition operators on spaces of analytic functions have been studied in many settings. Much has been written about the properties of these operators on the Hardy, Bergman, and Bloch spaces on the unit disk in the complex plane or on the unit ball in C^n (see [2], [5] and [6]). Already in the paper [1] bounded and compact composition operator on Fock space is discussed. We will determine which composition operators are normal, quasinormal, hyponormal, quasi hyponormal, class A and paranormal.

The Fock space F is the Hilbert space of all holomorphic functions on C^n with inner product

$$\langle f, g \rangle = \frac{1}{(2\pi)^n} \int_{C^n} f(z) \overline{g(z)} e^{-\frac{|z|^2}} \, dv(z)$$

where v denotes Lebesgue measure on C^n. (refer [1] and [4]).

Let $e_n(z) = \frac{1}{n!} z^n$ for a positive integer n. Then $\{e_n\}$ forms an orthonormal basis for F. Since each point evaluation is a bounded linear functional on F, for $w \in C^n$ there exists a unique function $k_w \in F$ such that $\langle f, k_w \rangle = f(w)$ which holds for all $f \in F$. The reproducing kernel functions for the Fock space are given by

$$k_w(z) = e^{|z|^2/2}$$

where $\langle z, w \rangle = \sum_{j=1}^{n} z_j w_j$. Note that the substitution $f = k_w$ into the reproducing formula $\langle f, k_w \rangle = f(w)$ which holds for all $f \in F$ and $w \in C^n$ leads to the identity $\|k_w\| = \exp(|w|^2/4)$. Throughout this paper we use $f = k_w$ for the reproducing kernel function for the Fock space F and let $k_0 = 1$ be the point evaluation on F ([3] and [4]).

For a given holomorphic mapping $\varphi : C^n \to C^n$, the composition operator $C_\varphi : F \to F$ is given by $C_\varphi(f) = f \circ \varphi$. In the paper [4] it is proved that if the operator C_φ is bounded, then φ must be of the form $\varphi(z) = Az + B$ where A is an $n \times n$ matrix and B is an $n \times 1$ vector. Further more it
Composition operators on Fock space

will follow that \(\|A\| \leq 1 \) for bounded \(C_\varphi \) and that \(B \) will be restricted by the condition that \(\langle A\zeta, B\zeta \rangle = 0 \) for any \(\zeta \) in \(\mathbb{C}^n \) with \(|A\zeta| = |\zeta| \). In paper [1] Theorem 1 shows that if \(C_\varphi \) is compact, then \(\|A\| < 1 \) with no restriction on \(B \). In section 3 we characterize normal and other classes of composition operators \(C_\varphi \) where \(C_\varphi \) is bounded.

2. PRILIMINARIES

\(C_\varphi \) be a composition operator on the Fock space \(F \). Then \(C_\varphi \) is normal iff \(C_\varphi^* C_\varphi = C_\varphi C_\varphi^* \). In paper [1] it is shows that \(C_\varphi^* = M_{k_\varphi} C_\tau \) where \(\tau(z) = A^* z \) and \(M_{k_\varphi} \) is multiplication by the kernel function \(k_\varphi \). We say \(C_\varphi \) is quasinormal iff \(C_\varphi (C_\varphi^* C_\varphi) = (C_\varphi^* C_\varphi) C_\varphi \), hyponormal iff \(C_\varphi^* C_\varphi \geq C_\varphi C_\varphi^* \), quasi hyponormal iff \((C_\varphi^* C_\varphi)^2 \geq (C_\varphi^* C_\varphi)^2 \), ‘Class A’ operator iff \((C_\varphi^* C_\varphi) \geq C_\varphi^* C_\varphi \) and paranormal iff \(C_\varphi^* C_\varphi + 2kC_\varphi^* C_\varphi + k^2 I > 0 \), \(k > 0 \).

3. MAIN RESULTS :

Theorem 3.1

Let \(C_\varphi \) be a composition operator on \(F \). Then \(C_\varphi \) is normal if and only if \(M_{k_\varphi} C_\varphi = M_{k_\varphi} C_\varphi \).

Proof :

\(C_\varphi \) is normal if and only if \(C_\varphi^* C_\varphi = C_\varphi C_\varphi^* \) where \(\phi(z) = Az + B \) so that \(C_\varphi \) is bounded. Then \(C_\varphi^* = M_{k_\varphi} C_\tau \) where \(\tau(z) = A^* z \) and \(M_{k_\varphi} \) is multiplication by the kernel function \(k_\varphi \).

Since \(C_\varphi^* = M_{k_\varphi} C_\tau \) [1] it follows that

\[
M_{k_\varphi} C_\varphi C_\varphi = C_\varphi M_{k_\varphi} C_\tau
\]

Since \(C_\varphi M_\varphi = M_{\varphi} C_\varphi \) we have

\[
M_{k_\varphi} C_{\varphi^*} = M_{k_{\varphi^*}} C_{\varphi^*}
\]

as desired.
Corollary 3.2
Let C_ϕ be a composition operator on F. If C_ϕ is normal then $M_{k_\phi} = M_{k_\phi \circ \phi}$.

Proof: By the above theorem, C_ϕ is normal if and only if

$$M_{k_\phi} C_{\phi \circ \tau} = M_{k_\phi \circ \phi} C_{\tau \circ \phi}$$

$$M_{k_\phi} C_{\phi \circ \tau} (f) = M_{k_\phi \circ \phi} C_{\tau \circ \phi} (f) \quad \text{for all } f \in F.$$

Let $f = k_\phi = 1$ be the point evaluation on F.

We have

$$M_{k_\phi} (k_\phi \circ \tau \circ \phi) = M_{k_\phi \circ \phi} (k_\phi \circ \tau \circ \phi)$$

$$M_{k_\phi} = M_{k_\phi \circ \phi}$$

Corollary 3.3
Let C_ϕ be a composition operator on F where $\phi(z) = Az$, A is $n \times n$ matrix.

Then C_ϕ is normal if and only if $A^* A = AA^*$.

Proof: $\phi \circ \tau (z) = \tau \circ \phi (z)$ is equivalent to $A^* A z = A A^* z$. Since $k_\phi = 1$, the result follows.

Theorem 3.4 Let C_ϕ be a composition operator on F. Then C_ϕ is hyponormal if and only if $M_{k_\phi} C_{\phi \circ \tau} \geq M_{k_\phi \circ \phi} C_{\tau \circ \phi}$.

Proof:

C_ϕ is hyponormal if and only if

$$C_\phi^* C_\phi \geq C_\phi C_\phi^*$$

Since $C_\phi^* = M_{k_\phi} C_{\tau}^*$ it follows that

$$M_{k_\phi} C_{\phi \circ \tau} \geq M_{k_\phi \circ \phi} C_{\tau \circ \phi}$$

Corollary 3.5
C_ϕ be a composition operator on F and let $f = k_\phi$ be the reproducing kernel function for the Fock space and put $f = k_\phi = 1$ be the point evaluation on F.

If C_ϕ is hyponormal then $M_{k_\phi} \geq M_{k_\phi \circ \phi}$.

Theorem 3.6 Let C_{ϕ} be a composition operator on C_{ϕ}. Then C_{ϕ} is quasi normal if and only if $(M_{k_\phi}) C_{\phi \circ \phi} = M_{k_\phi} C_{\phi \circ \phi}$.

Proof: C_{ϕ} is quasi normal if and only if

$$C_{\phi} (C_{\phi}^* C_{\phi}) = (C_{\phi}^* C_{\phi}) C_{\phi}$$

But $C_{\phi} (C_{\phi}^* C_{\phi}) = C_{\phi} (M_{k_\phi}) C_{\phi \circ \phi} = M_{k_\phi} C_{\phi \circ \phi}$

and $(C_{\phi}^* C_{\phi}) C_{\phi} = C_{\phi}^* C_{\phi \circ \phi} = M_{k_\phi} C_{\phi \circ \phi} = M_{k_\phi} C_{\phi \circ \phi}$

so C_{ϕ} is quasi normal if and only if

$$(M_{k_\phi}) C_{\phi \circ \phi} = M_{k_\phi} C_{\phi \circ \phi}$$.

Corollary 3.7

Let C_{ϕ} be a composition operator on F where $\phi(z) = Az$ and A is $n \times n$ matrix. Then C_{ϕ} is quasinormal if and only if A commutes with $A^* A$.

Proof: By the above theorem, C_{ϕ} is quasinormal if and only if

$$C_{\phi \circ \phi} = C_{\phi \circ \phi}$$

which is equivalent to $AA^* A = A A^* A$.

Theorem 3.8 Let C_{ϕ} be a composition operator on F. Then C_{ϕ} is quasihyponormal if and only if $M_{k_\phi C_{\phi \circ \phi}} \leq M_{k_\phi C_{\phi \circ \phi}}$ where $\phi^{(2)} = \phi \circ \phi$.

Proof:

C_{ϕ} is quasihyponormal if and only if

$$C_{\phi} C_{\phi} \geq (C_{\phi}^* C_{\phi})^2$$

Now

$$(C_{\phi}^* C_{\phi})^2 = (M_{k_\phi})^2 = M_{k_\phi} C_{\phi \circ \phi} M_{k_\phi} C_{\phi \circ \phi}$$
\[
M_{k_z} M_{k_z \phi \sigma \tau} C_{\phi \sigma \tau \phi \sigma \tau} = M_{k_z} M_{k_z} C_{(\phi \sigma \tau)^2}
\]

and
\[
C_\phi^{*2} C_\phi^2 = C_\phi^* (M_{k_z} C_{\phi \sigma \tau}) C_\phi
= C_\phi^* M_{k_z} C_{\phi \sigma \tau}
= M_{k_z} C_\tau^* M_{k_z} C_{\phi \sigma \tau}
= M_{k_z} M_{k_{\phi \sigma \tau}} C_{(\phi \sigma \tau)^2(\phi \sigma \tau)^2}
\]

and so the composition operator on \(C_\phi \) on \(F \) is quasihyponormal if and only if
\[
M_{k_z \phi \sigma \tau} C_{(\phi \sigma \tau)^2} \leq M_{k_{\phi \sigma \tau}} C_{(\phi \sigma \tau)^2(\phi \sigma \tau)^2}.
\]

Corollary 3.9

Let \(C_\phi \) on \(F \) be a composition operator where \(\phi(z) = A z + B \). Then \(C_\phi \) is quasihyponormal if and only if \((AA^*)^2 \leq A^2 A^* \) and \(AB \geq 0 \).

Proof:

Observe that \((\phi \sigma \tau)^2(z) = (AA^*)^2 z + B \)
\[
\phi^2 \sigma \tau^2(z) = A^2 A^* z + AB + B \quad \text{and hence the result.}
\]

Theorem 3.10

Let \(C_\phi \) be a composition operator on \(F \). Then \(C_\phi \) belongs to class A operator if and only if \(C_\phi \) is quasihyponormal.

Proof:

\(C_\phi \) is of class A operator if and only if
\[
(C_\phi^* C_\phi)^2 \leq C_\phi^* |C_\phi|^2 C_\phi \quad \text{and so}
\]
\[
(C_\phi^* C_\phi)^2 \leq C_\phi^{*2} C_\phi^2
\]

Now \((C_\phi^* C_\phi)^2 = M_{k_z} M_{k_z \phi \sigma \tau} C_{(\phi \sigma \tau)^2} \)

and \((C_\phi^{*2} C_\phi^2) = M_{k_z} M_{k_{\phi \sigma \tau}} C_{(\phi \sigma \tau)^2(\phi \sigma \tau)^2} \)

which reduces to \(M_{k_z \phi \sigma \tau} C_{(\phi \sigma \tau)^2} \leq M_{k_{\phi \sigma \tau}} C_{(\phi \sigma \tau)^2(\phi \sigma \tau)^2} \).
hence it is quasihyponormal.

Theorem 3.11 \(C_\phi \), a composition operator on \(F \) is paranormal if and only if \(C_\phi \) is quasihyponormal.

Proof: \(C_\phi \) is paranormal if and only if \(\phi^2 \phi^2 + 2k\phi^* \phi + k^2 \geq 0 \), for all real \(k \) which is equivalent to

\[
M_{k\phi} M_{k\phi^*} C_{\phi^2} + 2kM_{k\phi} C_{\phi^*} + k^2 \geq 0
\]

which shows that

\[
(M_{k\phi} C_{\phi^*})^2 \leq M_{k\phi} M_{k\phi^*} C_{\phi^2}
\]

which reduces to

\[
M_{k\phi^*} C_{\phi^2} \leq M_{k\phi^*} C_{\phi^2}
\]

Using the previous theorem, the result follows.

References

Received: October, 2011