Fuzzy b-Generalized Homeomorphism in Fuzzy Topological Spaces

S. S. Benchalli

Department of Mathematics, Karnatak University, Dharwad-580 003
Karnataka State, India
benchalliss@gmail.com

Jenifer J. Karnel

Department of Mathematics
S.D.M. College of Engineering and Technology, Dharwad-580 003
Karnataka State, India
jenifer.k@rediffmail.com

G. P. Siddapur

Department of Mathematics, Karnatak University, Dharwad-580 003
Karnataka State, India
siddapur.math@gmail.com

Abstract

In this paper, some results on fbg-closed sets and fbg-continuous mappings are obtained. Fbg-neighbourhood, fbgq-neighbourhood are introduced and their basic properties are studied. New spaces namely $fbgT^*_1/2$ are introduced and characterized. The concept of fbg-closed, fbg*-closed, fuzzy bg-homeomorphism, fuzzy bg*-homeomorphism, contra fb-continuous and contra fb-closed mappings are introduced and studied.

Mathematics Subject Classification: 94D05

Keywords: Fbg-closed sets, fbg-neighbourhood, fbgq-neighbourhood, $fbgT^*_1/2$ space, fbg-homeomorphism, fbg*-homeomorphism and fuzzy topological spaces
1 Introduction

With the introduction of fuzzy sets by Zadeh [7] and fuzzy topology by Chang [6], the theory of fuzzy topological spaces was subsequently developed by several authors by considering the basic concepts of general topology. Fb-open sets, fbg-closed sets were introduced by Benchalli et al [2,4].

The aim of this paper is to introduce and study the notion of fbg-neighbourhood, fbgq-neighbourhood and new spaces namely $f_{bg}T^{*}_{1/2}$ fuzzy topological spaces. Further, the concept of fbg-closed, fbg*-closed, fuzzy bg-homeomorphism, fuzzy bg*-homeomorphism, contra fb-continuous and contra fb-closed mappings are introduced and studied.

2 Preliminary Notes

Throughout this paper, (X,τ), (Y,σ) and (Z,ρ) (or simply X, Y and Z) always mean fuzzy topological spaces. For a fuzzy set A of (X,τ), $Cl(A)$ and $Int(A)$ denote the closure and interior of A respectively. A fuzzy subset A of X is said to be fb-open (fb-closed) if $A \leq ClInt(A) \lor IntCl(A)$ ($A \leq (IntCl(A) \land ClInt(A))$). The family of fb-open sets is denoted by $bO(X)$.

The intersection of all fb-closed sets containing A is called fb-closure of A and is denoted by $bCl(A)$ and the union of all fb-open sets contained in A is called fb-interior of A and is denoted by $bInt(A)$.

Definition 2.1 A mapping $f: (X,\tau) \rightarrow (Y,\sigma)$ is said to be

(a) f-continuous [6] if $f^{-1}(A)$ is f-open in X, for each f-open set A in Y.
(b) fb-continuous [3] if $f^{-1}(A)$ is fb-open in X, for each fb-open set A in Y.
(c) fb*-continuous [3] if $f^{-1}(A)$ is fb-open in X, for each fb-open set A in Y.
(d) fb-open [3] if for every fb-open A in X, $f(A)$ is fb-open set in Y.
(e) fab-closed [5] if $f(B) \leq bInt(A)$, whenever A is fb-open of Y, B is fb-closed set in X and $f(B) \leq A$. (f) fbg-continuous [4] if $f^{-1}(A)$ is fbg-open (fbg-closed) in X, for each f-open (f-closed) set A in Y.

Definition 2.2 [4] A fuzzy set A in a fts (X,τ) is called

(a) fbg-closed iff $bCl(A) \leq B$, whenever $A \leq B$ and B is fb-open in X.
(b) fbg-open iff $B \leq bInt(A)$, whenever $B \leq A$ and B is fb-closed in X.

Definition 2.3 [1] A fts (X,τ) is called is called a fuzzy $gT^{*}_{1/2}$ space (briefly $fgT^{*}_{1/2}$ space) if every fg-closed set in X is f-closed.

3 Fuzzy b-generalized closed sets

Some of the results on fbg-closed sets are in proved in [3]. In this section few more results on fbg-closed sets are proved.
Theorem 3.1 A fuzzy set A of a fts (X, τ) is called fb-open iff $B \leq b\text{Int}(A)$, whenever B is fb-closed and $B \leq A$.

Proof. Suppose A is fb-open in X. Then $1 - A$ is fb-closed in X. Let B be a fb-closed set in X such that $B \leq A$. Then $1 - A \leq 1 - B$, $1 - B$ is fb-open set in X. Since $1 - A$ is fb-closed, $b\text{Cl}(1 - A) \leq 1 - B$, which implies $1 - b\text{Int}(A) \leq 1 - B$. Thus $B \leq b\text{Int}(A)$.

Conversely, assume that $B \leq b\text{Int}(A)$, whenever $B \leq A$ and B is fb-closed set in X. Then $1 - b\text{Int}(A) \leq 1 - B = C$, where C is fb-open set in X. Hence $b\text{Cl}(1 - A) \leq C$, which implies $1 - A$ is fb-closed. Therefore A is fb-open.

Theorem 3.2 A finite union of fb-open sets is a fb-open set.

However, intersection of any two fb-open sets need not be fb-open, as shown in the following example.

Example 3.3 Let $X = \{a, b, c\}$ and $\tau = \{0, 1, A\}$, where $A = \{(a, 1), (b, 0.5), (c, 0.3)\}$. Let $C = \{(a, 1), (b, 0.6), (c, 0)\}$ and $B = \{(a, 0), (b, 0.6), (c, 0)\}$ be fuzzy sets in X. Then C and B are fb-open in X and hence C and B are fb-open in X. But $C \land B = \{(a, 0), (b, 0.4), (c, 0)\}$ is not fb-open in X, since $b\text{Cl}(C \lor B) = 1 \leq C \lor B$.

Theorem 3.4 Finite intersection of fb-closed sets is a fb-closed set.

However, union of two fb-closed sets need not be a fb-closed set as shown in the following example.

Example 3.5 Let $X = \{a, b, c\}$ and $\tau = \{0, 1, A\}$, where $A = \{(a, 1), (b, 0.5), (c, 0)\}$. Let $C = \{(a, 0), (b, 0.4), (c, 1)\}$ and $B = \{(a, 1), (b, 0.4), (c, 1)\}$ be fuzzy sets in X. Then C and B are fb-closed set in X and hence C and B are fb-closed in X. But $C \lor B = \{(a, 1), (b, 0.4), (c, 1)\}$ is not fb-closed set in X, since $b\text{Cl}(C \lor B) = 1 \leq C \lor B$.

Theorem 3.6 Every f-continuous map is fb-continuous.

However, converse need not be true as shown in the following example.

Example 3.7 Let $X = \{a, b, c\}$ and $Y = \{l, m\}$. Let the fuzzy sets A and B be defined as follows: $A = \{(a, 1), (b, 0), (c, 0)\}$, $B = \{(l, 0), (m, 1)\}$. Consider $\tau = \{0, 1, A\}$ and $\rho = \{0, 1, B\}$. Define $f : X \rightarrow Y$ as $f(a) = f(c) = m$ and $f(b) = l$. Then f is fb-continuous, but not f-continuous, since for the open fuzzy set $B \in \rho$, $f^{-1}(B) \notin \tau$.

Theorem 3.8 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be fb-continuous and $g : (Y, \sigma) \rightarrow (Z, \rho)$ be fg-continuous. Then gof is fb-continuous if Y is $fT_{1/2}$ space.
Definition 3.9 Let A be a fuzzy set in fts X and x_p be a fuzzy point of X, then A is called fuzzy b-generalized neighbourhood (briefly fbg-neighbourhood) of x_p if and only if there exists a fbg-open set B of X such that $x_p \in B \leq A$.

Definition 3.10 Let A be a fuzzy set in fts X and x_p be a fuzzy point of X, then A is called fuzzy b-generalized q-neighbourhood (briefly fbgq-neighbourhood) of x_p if and only if there exist a fbg-open set B such that $x_p q B \leq A$.

The proof of the following three theorems are straight forward.

Theorem 3.11 A is fbg-open set in X if and only if for each fuzzy point $x_p \in A$, A is a fbg-neighbourhood of x_p.

Theorem 3.12 If A and B are fbg-neighbourhood of x_p then $A \land B$ is also a fbg-neighbourhood of x_p.

Theorem 3.13 Let A be a fuzzy set of a fts X. Then a fuzzy point $x_p \in bCl(A)$ if and only if every fbgq-neighbourhood of x_p is quasi-coincident with A.

Definition 3.14 A fts (X, τ) is called a fuzzy $bT_{1/2}^*$ space (in short $fbT_{1/2}^*$ space) if every fbg-closed set in X is fuzzy closed.

Theorem 3.15 A fts (X, τ) is $fbT_{1/2}^*$ space if and only if every fuzzy set in (X, τ) is both fuzzy open and fbg-open.

Remark 3.16 A fts (X, τ) is called a fuzzy $bT_{1/2}^*$ space (in short $fbT_{1/2}^*$ space) if every fbg-open set in X is fuzzy open.

Definition 3.17 A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be fuzzy bg-open (briefly fbg-open) if the image of every f-open set in X, is fbg-open in Y.

Definition 3.18 A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be fuzzy bg-closed (briefly fbg-closed) if the image of every f-closed set in X is fbg-closed in Y.

Definition 3.19 A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be fuzzy bg*-open (briefly fbg*-open) if the image of every fbg-open set in X is fbg-open in Y.

Definition 3.20 A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be fuzzy bg*-closed (briefly fbg*-closed) if the image of every fbg-closed set in X is fbg-closed in Y.

Remark 3.21 (i) Every fbg*-closed mapping is fbg-closed.
(ii) Every fbg*-closed mapping is fgb*-closed.
The proof of the following theorems on composition of mappings are straight forward.

Theorem 3.22 If \(f : (X, \tau) \to (Y, \sigma) \) is f-closed and \(g : (Y, \sigma) \to (Z, \rho) \) is fb-g-closed, then \(\text{gof} \) is fb-g-closed.

Theorem 3.23 If \(f : (X, \tau) \to (Y, \sigma) \) is a fb-open map and \(Y \) is fbT\(_{1/2}\) space, then \(f \) is a f-closed map.

Theorem 3.24 If \(f : (X, \tau) \to (Y, \sigma) \) be a fb-open map and \(X \) is fbgT\(_{1/2}\) space, then \(f \) is a fbg-closed map.

Theorem 3.25 A mapping \(f : (X, \tau) \to (Y, \sigma) \) is fb-closed iff for each fuzzy set \(A \) in \(Y \) and f-open set \(B \) such that \(f^{-1}(A) \subseteq B \), there is a fb-open set \(C \) of \(Y \) such that \(A \subseteq C \) and \(f^{-1}(C) \subseteq B \).

Proof. Suppose \(f \) is fb-closed map. Let \(A \) be a fuzzy set of \(Y \), and \(B \) be an f-open set of \(X \), such that \(f^{-1}(A) \subseteq B \). Then \(C = 1 - f(1-B) \) is a fb-open set in \(Y \) such that \(A \subseteq C \) and \(f^{-1}(C) \subseteq B \).

Conversely, suppose that \(F \) is a f-closed set of \(X \). Then \(f^{-1}(1 - f(F)) \subseteq 1 - F \), and \(1 - F \) is f-open set. By hypothesis, there is a fb-open set \(C \) of \(Y \) such that \(1 - f(1-F) \subseteq C \) and \(f^{-1}(C) \subseteq 1 - F \). Therefore \(F \subseteq 1 - f^{-1}(C) \). Hence \(1-C \subseteq f(C) \subseteq f(1-f^{-1}(C)) \subseteq 1-C \), which implies \(f(F) = 1-C \). Since \(1-C \) is fb-closed set, \(f(F) \) is fb-closed set and thus \(f \) is a fb-closed map.

Theorem 3.26 If \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \rho) \) are fb-closed maps and \(Y \) is fbT\(_{1/2}\) space, then \(\text{gof} : X \to Z \) is fb-closed.

Theorem 3.27 If \(A \) is fb-closed in \(X \) and \(f : X \to Y \) is bijective, fb-irresolute and fb-closed, then \(f(A) \) is fb-closed in \(Y \).

Proof. Let \(f(A) \subseteq B \) where \(B \) is fb-open in \(Y \). Since \(f \) is fb-irresolute, \(f^{-1}(B) \) is fb-open containing \(A \). Hence \(bCl(A) \subseteq f^{-1}(B) \) as \(A \) is fb-closed. Since \(f \) is fb-closed, \(f(bCl(A)) \) is fb-closed set contained in the fb-open set \(B \), which implies \(bCl(f(bCl(A))) \subseteq B \) and hence \(bCl(f(A)) \subseteq B \). So \(f(A) \) is fb-closed in \(Y \).

Theorem 3.28 If \(f : (X, \tau) \to (Y, \sigma) \) is fb-closed and \(g : (Y, \sigma) \to (Z, \rho) \) is fb*-closed, then \(\text{gof} \) is fb*-closed.

Theorem 3.29 If \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \rho) \) are fb*-closed maps, then \(\text{gof} : X \to Z \) is fb*-closed.
Theorem 3.30 Let \(f : (X, \tau) \to (Y, \sigma), g : (Y, \sigma) \to (Z, \rho) \) be two maps such that \(g \circ f : X \to Z \) is fbg-closed.

(a) If \(f \) is f-continuous and surjective, then \(g \) is fbg-closed.
(b) If \(g \) is fbg-irresolute and injective, then \(f \) is fbg-closed.

Proof. (a) Let \(F \) be f-closed in \(Y \). Then \(f^{-1}(F) \) is f-closed in \(X \), as \(f \) is f-continuous. Since \(g \circ f \) is fbg-closed map and \(f \) is surjective, \((g \circ f)(f^{-1}(F)) = g(F) \) is fbg-closed in \(Z \). Hence \(g : Y \to Z \) is fbg-closed.

(b) Let \(F \) be a f-closed in \(X \). Then \((g \circ f)(F) \) is fbg-closed in \(Z \). Since \(g \) is fbg-irresolute and injective \(g^{-1}(g \circ f)(F) = f(F) \) is fbg-closed in \(Y \). Hence \(f \) is a fbg-closed.

Theorem 3.31 Let \(f : (X, \tau) \to (Y, \sigma), g : (Y, \sigma) \to (Z, \rho) \) be two maps such that \(g \circ f : X \to Z \) is fbg*-closed map.

(a) If \(f \) is fbg-continuous and surjective, then \(g \) is fbg-closed.
(b) If \(g \) is fbg-irresolute and injective, then \(f \) is fbg*-closed.

Theorem 3.32 Let \(f : (X, \tau) \to (Y, \sigma) \). Then the following statements are equivalent.

(a) \(f \) is fbg-irresolute.
(b) for every fbg-closed set \(A \) in \(Y \), \(f^{-1}(A) \) is fbg-closed in \(X \).
(c) for every fuzzy point \(x_p \) of \(X \) and every fbg-open \(A \) of \(Y \) such that \(f(x_p) \in A \), there exist a fbg-open set such that \(x_p \in B \) and \(f(B) \leq A \).
(d) for every fuzzy point \(x_p \) of \(X \) and every fbg-neighbourhood \(A \) of \(f(x) \), \(f^{-1}(A) \) is a fbg-neighbourhood of \(x_p \).
(e) for every fuzzy point \(x_p \) of \(X \) and every fbg-neighbourhood \(A \) of \(f(x_p) \), there is a fbg-neighbourhood \(B \) of \(x_p \) such that \(f(B) \leq A \).
(f) for every fuzzy point \(x_p \) of \(X \) and every fbg-open set \(A \) of \(Y \) such that \(f(x_p) \cap A \), there exists a fbg-open set \(B \) of \(X \) such that \(x_p \in B \) and \(f(B) \leq A \).
(g) for every fuzzy point \(x_p \) of \(X \) and every fbgq-neighbourhood \(A \) of \(f(x_p) \), \(f^{-1}(A) \) is a fbgq-neighbourhood of \(x_p \).
(h) for every fuzzy point \(x_p \) of \(X \) and every fbgq-neighbourhood \(B \) of \(x_p \), there exists a fbgq-neighbourhood \(A \) of \(x_p \), such that \(f(B) \leq A \).

Proof. (a)\(\Rightarrow \) (b) Obvious.

(b)\(\Rightarrow \) (a) Let \(A \) be a fbg-closed set in \(Y \) which implies \(1 - A \) is fbg-open in \(Y \). \(f^{-1}(1 - A) \) is fbg-open in \(X \) implies \(f^{-1}(A) \) is fbg-closed in \(X \). Hence \(f \) is fbg-irresolute.

(c)\(\Rightarrow \) (a) Let \(A \) be a fbg-open set in \(Y \) and \(x_p \in f^{-1}(A) \) which implies \(f(x_p) \in A \). Then there exist a fbg-open set \(B \) in \(X \) such that \(x_p \in B \) and \(f(B) \leq A \). Hence \(x_p \in B \leq f^{-1}(A) \). Hence \(f^{-1}(A) \) is fbg-open in \(X \). Hence \(f \) is fbg-irresolute.

(a)\(\Rightarrow \) (d) Obvious.
(d)⇒(a) Obvious.
(d)⇒(e) Let \(x_p \) be a fuzzy point of \(X \) and \(A \) be a fbg-neighbourhood of \(f(x_p) \). Then \(B = f^{-1}(A) \) is a fbg-neighbourhood of \(x_p \) and \(f(B) = f(f^{-1}(A)) \leq A \).
(e)⇒(c) Let \(x_p \) be a fuzzy point of \(X \) and \(A \) be a fbg-open set such that \(f(x_p) \leq A \). Then \(A \) is a fbg-neighbourhood of \(f(x_p) \). Hence there is fbg-neighbourhood \(B \) of \(x_p \) in \(X \) such that \(x_p \in B \) and \(f(B) \in A \). Hence there is fbg-open set \(C \) in \(X \) such that \(x_p \in C \leq B \) and \(f(C) \leq f(B) \leq A \).
(a)⇒(f) Let \(x_p \) be a fuzzy point of \(X \) and \(A \) be a fbg-open set in \(Y \) such that \(f(x_p)qA \). Let \(B = f^{-1}(A) \). \(B \) is a fbg-open set in \(X \), such that \(x_pqB \) and \(f(B) = f(f^{-1}(A)) \leq A \).
(f)⇒(a) Let \(A \) be a fuzzy open set in \(Y \) and \(x_p \in f^{-1}(A) \). Clearly \(f(x_p) \in A \).
\((x_p)^C = 1 - x_p(x)\). Then \(f(1 - x_p)qA \). Hence there exists a fbg-open set \(B \) of \(X \) such that \((1 - x_p)qB \) and \(f(B) \leq A \). Now \((1 - x_p)qB \Rightarrow (1 - x_p)B(x) = 1 - p + B(x) > 1 \Rightarrow B(x) > p \Rightarrow x_p \in B \). Thus \(x_p \in B \leq f^{-1}(A) \). Hence \(f^{-1}(A) \) is fbg-open in \(X \).
(f)⇒(g) Let \(x_p \) be a fuzzy point of \(X \) and \(A \) be fbgq-neighbourhood of \(f(x_p) \). Then there is fbg-open set \(C \) in \(Y \) such that \(x_pqC \leq A \). By hypothesis there is a fbg-open set \(B \) of \(X \) such that \(x_pqB \) and \(f(B) \leq C \). Thus \(x_pqB \leq f^{-1}(C) \leq f^{-1}(A) \). Hence \(f^{-1}(A) \) is a fbgq-neighbourhood of \(x_p \).
(h)⇒(f) Let \(x_p \) be a fuzzy point of \(X \) and \(A \) be fbg-open in \(Y \) such that \(f(x_p)qA \). Then \(A \) is fbgq-neighbourhood of \(f(x_p) \). So there is a fbgq-neighbourhood \(C \) of \(x_p \) such that \(f(C) \leq A \). Since \(C \) is a fbgq-neighbourhood of \(x_p \) there exists a fbg-open set \(B \) of \(X \) such that \(x_pqB \leq C \). Hence \(x_pqB \) and \(f(B) \leq A \).

4 Fbg-homeomorphism and fbg*-homeomorphism

Definition 4.1 A mapping \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called fuzzy bg-homeomorphism (briefly fb-homeomorphism) if \(f \) and \(f^{-1} \) are fbg-continuous.

Definition 4.2 A mapping \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called fuzzy bg*-homeomorphism (briefly fbg*-homeomorphism) if \(f \) and \(f^{-1} \) are fbg- irresolute.

Theorem 4.3 Every f-homeomorphism is fbg-homeomorphism.

The converse of the above theorem need not be true as seen from the following example.

Example 4.4 Let \(X = Y = \{a, b, c\} \) and the fuzzy sets \(A, B \) and \(C \) be defined as follows. \(A = \{(a, 1), (b, 0.8)\} \), \(B = \{(a, 0.3), (b, 0.6)\} \), \(C = \{(a, 0.4), (b, 0.6)\} \). Consider \(\tau = \{0, 1, A\} \) and \(\rho = \{0, 1, B\} \). Then \((X, \tau) \) and \((Y, \rho) \) are fts. Define \(f : X \rightarrow Y \) by \(f(a) = a \) and \(f(b) = b \). Then \(f \) is fb-homeomorphism but not f-homeomorphism as \(A \) is open in \(X \). \(f(A) \) is not open in \(Y \). Hence \(f^{-1} : Y \rightarrow X \) is not f-continuous.
Theorem 4.5 Every fbg*-homeomorphism is fbg- homeomorphism.

Theorem 4.6 Let \(f : (X, \tau) \to (Y, \sigma) \) be a bijective mapping. Then the following are equivalent:

(a) \(f \) is fbg-homeomorphism
(b) \(f \) is fbg-continuous and fbg-open map
(c) \(f \) is fbg-continuous and fbg-closed map

Proof. (a)\(\Rightarrow \) (b) Let \(f \) be fbg-homeomorphism. Then \(f \) and \(f^{-1} \) are fbg-continuous. To prove that \(f \) is fbg-open map, let \(A \) be a fuzzy open set in \(X \). Since \(f^{-1} : Y \to X \) is fbg-continuous, \((f^{-1})^{-1}(A) = f(A) \) is fbg-open in \(Y \). Therefore \(f(A) \) is fbg-open in \(Y \). Hence \(f \) is fbg-open.

(b)\(\Rightarrow \) (a) Let \(f \) be fbg-open and fbg-continuous map. To prove that \(f^{-1} : Y \to X \) is fbg-continuous. Let \(A \) be a fuzzy open set in \(X \). Then \(f(A) \) is fbg-open set in \(Y \) since \(f \) is fbg-open map. Now \((f^{-1})^{-1}(A) = f(A) \) is fbg-open set in \(Y \). Therefore \(f^{-1} : Y \to X \) is fbg-continuous. Hence \(f \) is fbg-homeomorphism.

(b)\(\Rightarrow \) (c) Let \(f \) be fbg-continuous and fbg-open map. To prove that \(f \) is fbg-closed map. Let \(B \) be a fuzzy closed set in \(X \). Then \(1-B \) is fuzzy open set in \(X \). Since \(f \) is fbg-open map, \(f(1-B) \) is fbg-open set in \(Y \). Now \(f(1-B) = 1 - f(B) \). Therefore \(f(B) \) is fbg-closed in \(Y \). Hence \(f \) is a fbg-closed.

(c)\(\Rightarrow \) (b) Let \(f \) be fbg-continuous and fbg-closed map. To prove that \(f \) is fbg-open map. Let \(A \) be a fuzzy open set in \(X \). Then \(1-A \) is a fuzzy closed set in \(X \). Since \(f \) is fbg-closed map, \(f(1-A) \) is fbg-closed in \(Y \). Now \(f(1-A) = 1 - f(A) \). Therefore \(f(A) \) is fbg-open in \(Y \). Hence \(f \) is fbg-open.

Theorem 4.7 Let \(f : (X, \tau) \to (Y, \sigma) \) be a bijective function. Then the following are equivalent:

(a) \(f \) is fbg*-homeomorphism
(b) \(f \) is fbg-irresolute and fbg*-open
(c) \(f \) is fbg-irresolute and fbg*-closed

Theorem 4.8 If \(f : (X, \tau) \to (Y, \sigma) \) is fbg-homeomorphism and \(g : (Y, \sigma) \to (Z, \rho) \) is fbg-homeomorphism and \(Y \) is \(f b T_{1/2} \) space, then \(g f : X \to Z \) is fbg-homeomorphism.

Theorem 4.9 If \(f : (X, \tau) \to (Y, \sigma) \), \(g : (Y, \sigma) \to (Z, \rho) \) are fbg* homeomorphism then \(g f : X \to Z \) is fbg* homeomorphism.

Definition 4.10 A map \(f : (X, \tau) \to (Y, \sigma) \) is called contra fbg-closed (respectively contra fbg-open) if \(f(A) \) is fbg-open (respectively fbg-closed) set in \(Y \) for each f-closed (respectively open) set A in \(X \).
Theorem 4.11 Let $f : (X, \tau) \to (Y, \sigma)$ be a map.
(a) If f is contra fb-closed, then f is fab-closed.
(b) If f is contra fb-open, then f is fab-open.

Proof. (a) Let $f(A) \leq B$, where A is f-closed in X and B is fbg-open in Y. Since f is contra fb-closed $f(A)$ is fb-open in Y. Therefore $f(A) = fbInt(f(A)) \leq fbInt(B)$. Thus f is fab-closed.
(b) Let $A \leq f(B)$, where B is f-open in X and A is fb-closed in Y. Since f is contra fb-open $f(B)$ is fb-closed in Y. Therefore $bCl(A) \leq bCl(f(B)) = f(B)$. Thus f is fab-closed.

The converse of the above theorem need not be true, as shown in the following example.

Example 4.12 Let $X = \{a, b, c\} = Y, \tau = \{0, 1, A\}$ and $\rho = \{0, 1, A, B\}$ where $A = \{(a, 1), (b, 0), (c, 0)\}, B = \{(a, 1), (b, 1), (c, 0)\}, f : (X, \tau) \to (Y, \rho)$ be the identity map. For $V \in X$, $f(V) \leq 1$. The image of every f-closed set of X is contained in the only fbg-closed set 1 in Y. Then f is fab-closed but not contra fb-closed.

Acknowledgements The authors are grateful to the University Grants Commission, New Delhi, India for its financial support under UGC-SAP-II DRS to the Department of Mathematics, Karnatak University, Dharwad, India and also for the UGC-Research Fellowship under RFSMS Scheme, to the third author.

References

Received: December, 2011