Q-Fuzzy Interior Ideals in Semigroups

S. Lekkoksung

Rajamangala University of Technology Isan
Khon Kaen Campus, Thailand
Lekkoksung_somsak@hotmail.com

Abstract

In this paper we investigate some properties of a Q-fuzzy interior ideal of a semigroup. We also consider Q-fuzzy characteristic interior ideals.

Mathematics Subject Classification: 08A72, 18B40, 20M12

Keywords: Q-fuzzy subsemigroup, Q-fuzzy interior ideal of semigroup

1 Introduction

Let S be a nonempty set. A fuzzy subset of S is, by definition, an arbitrary mapping $f : S \rightarrow [0, 1]$, where $[0, 1]$ is the usual interval of real numbers. The important concept of fuzzy set put forth by Zadeh in 1965 [12] has opened up keep insights and applications in a wide rang of scientific fields. A theory of fuzzy sets on ordered semigroups has been recently developed [1-5]. In this paper we investigate some properties of Q-fuzzy interior ideals, and discuss Q-fuzzy characteristic interior ideals in semigroups.

2 Preliminary Notes

Let Q be nonempty set. A function f from $S \times Q$ to real closed interval $[0, 1]$ is called a Q-fuzzy subset of S. Let A be anonempty subset of S. We denote by f_A the characteristic mapping of A, that is, the mapping of $S \times Q$ into $[0, 1]$ define by

$$f_A(x, q) := \begin{cases}
1 & \text{if } x \in A, \\
0 & \text{if } x \notin A.
\end{cases}$$
Then f_A is a Q-fuzzy subset of S.
For a Q-fuzzy set f in a semigroup S and $t \in [0,1]$, the set
\[f_t = \{ x \in S \mid f_t(x, q) \geq t, \forall q \in Q \} \]
is called a level subset of f.

A Q-fuzzy set f in a semigroup S is called a Q-fuzzy subsemigroup of S if $f(xy, q) \geq \min\{f(x, q), f(y, q)\}$ for all $x, y \in S, q \in Q$.

A subsemigroup A of a semigroup S is called an interior ideal of S if $SAS \subseteq S$. A Q-fuzzy subsemigroup f of a semigroup S is called a Q-fuzzy interior ideal of S if $f(xy, q) \geq f(a, q)$ for all $x, a, y \in S, q \in Q$.

3 Main Results

Theorem 3.1 If f is a Q-fuzzy interior ideal of a semigroup S, then the level subset f_t of f is an interior ideal of S for every $t \in [0,1]$, when $f_t \neq \emptyset$.

Proof. Assume that $f_t \neq \emptyset$. Let $a, b \in f_t, q \in Q$ for every $t \in [0,1]$. Then $f(a, q) \geq t$ and $f(b, q) \geq t$, which imply that $f(ab, q) \geq \min\{f(a, q), f(b, q)\} \geq t$, so that $ab \in f_t$. Hence f_t is a subsemigroup of S. Now let $x, y \in S, q \in Q$ and $a \in f_t$ for every $t \in [0,1]$. Then $f_t(xy, q) \geq f_t(a, q) \geq t$, which implies that $xay \in f_t$. Consequently f_t is an interior ideal of S. \hfill \blacksquare

Definition 3.2 Let f be a Q-fuzzy interior ideal of a semigroup S. The interior ideals $f_t, t \in [0,1]$, are called level interior ideals of f.

Theorem 3.3 Let A be an interior ideal of a semigroup S. Then for every $t \in (0,1)$, there exists a Q-fuzzy interior ideal f of S such that $f_t = A$.

Proof. Let A be an interior ideal of S and let f be a Q-fuzzy set in S define by
\[f(x, q) := \begin{cases} t & \text{if } x \in A, \\ 0 & \text{if } x \notin A, \end{cases} \]
where t is a fixed number in $(0,1)$. Let $x, y \in S, q \in Q$. If $x, y \in A$, then $xy \in A$. Hence $f(xy, q) = t = \min\{f(x, q), f(y, q)\}$. If $x, y \notin A$, then $f(x, q) = 0 = f(y, q)$, and so $f(xy, q) \geq \min\{f(x, q), f(y, q)\}$. If exactly one of x and y belongs to A then exactly one of $f(x, q)$ and $f(y, q)$ is equal to 0. So $f(xy, q) \geq \min\{f(x, q), f(y, q)\}$. Hence f is a Q-fuzzy subsemigroup of S. Now let x, a, y be any elements of S. If $a \in A$ then $xay \in A$. Thus $f(xy, q) = t = f(a, q)$. If $a \notin A$ then $f(a, q) = 0$, and so $f(xy, q) \geq 0 = f(a, q)$. Therefore f is a Q-fuzzy interior ideal of S, and clearly $f_t = A$. \hfill \blacksquare
Theorem 3.4 Suppose \(f \) is a \(Q \)-fuzzy interior ideal of \(S \). Then two level interior ideals \(f_{t_1}, f_{t_2} \) (with \(t_1 < t_2 \)) of \(f \) are equal if and only if there is no \(x \in S \) such that \(t_1 \leq f(x, q) < t_2 \).

Proof. Assume that \(f_{t_1} = f_{t_2} \) for \(t_1 < t_2 \) and that there exists \(x \in S \) such that \(t_1 \leq f(x, q) < t_2 \) for all \(q \in Q \). Then \(f_{t_2} \) is a proper subset of \(f_{t_1} \). This is a contradiction.

Conversely suppose there is no \(x \in S \) and \(q \in Q \) such that \(t_1 < t_2 \) implies \(f_{t_2} \subseteq f_{t_1} \). If \(x \in f_{t_1} \), then \(f(x, q) \geq t_1 \). Since \(f(x, q) \not< t_2 \), we get \(f(x, q) \geq t_2 \) or \(x \in f_{t_2} \). Thus \(f_{t_1} = f_{t_2} \), completing the proof.

Theorem 3.5 Let \(f \) be a \(Q \)-fuzzy interior ideal of semigroup \(S \). If \(Im(f) \) is finite, then the family of interior ideals \(f_t, t \in Im(f) \), constitutes all the level interior ideals of \(f \).

Proof. Suppose that \(Im(f) \) is finite. Since \(Im(f) \subseteq [0, 1] \), without loss of generality we may assume that \(Im(f) = \{t_1, t_2, \ldots, t_n\} \) where \(t_1 < t_2 < \cdots < t_n \). Let \(t \in [0, 1] \) and \(t \notin Im(f) \). If \(t < t_1 \) then \(f_t \subseteq f_{t_1} \). Since \(f_{t_1} = S \), we have that \(f_t = S \) and \(f_t = f_{t_1} \). If \(t_i < t < t_{i+1} \), \(1 \leq i \leq n - 1 \), then there is no \(x \in S \) and \(q \in Q \) such that \(t \leq f(x, q) < t_{i+1} \). It follows from Theorem 3.4 that \(f_t = f_{t_{i+1}} \). Hence the level interior ideal \(f_t \) is in \(\{f_{t_i} \mid i = 1, 2, \ldots, n\} \). The proof is complete.

Lemma 3.6 Let \(f \) be a \(Q \)-fuzzy interior ideal of a semigroup \(S \). If \(s \) and \(t \) belong to \(Im(f) \) such that \(f_s = f_t \) then \(s = t \).

Proof. Assume that \(s \neq t \), say \(s < t \). Then there is \(x \in S \) and \(q \in Q \) such that \(f(x, q) = s < t \), and so \(x \in f_s \) and \(x \notin f_t \). Thus \(f_s \neq f_t \), a contradiction. This completes the proof.

Theorem 3.7 Let \(S \) be a semigroup and let \(g \) and \(f \) be two \(Q \)-fuzzy interior ideals of \(S \) with identical family of level interior ideals. If \(Im(g) = \{s_1, s_2, \ldots, s_n\} \) and \(Im(f) = \{t_1, t_2, \ldots, t_m\} \), where \(s_1 > s_2 > \cdots > s_n \) and \(t_1 > t_2 > \cdots > t_m \), then

(i) \(m = n \);
(ii) \(g_{s_k} = f_{t_k}, k = 1, 2, \ldots, n \);
(iii) if \(x \in S, q \in Q \) such that \(g(x, q) = s_k \) then \(f(x, q) = t_k \) for \(k = 1, 2, \ldots, n \).

Proof. Using Theorem 3.5 we have that the only level interior ideals of \(g \) and \(f \) are \(g_{s_k} \) and \(f_{t_k} \), respectively. Since \(g \) and \(f \) have the identical family of level interior ideals, it follows that \(n = m \), so that (i) holds.

To prove (ii), using Theorem 3.5 again we get \(\{g_{s_1}, g_{s_2}, \ldots, g_{s_n}\} = \{f_{t_1}, f_{t_2}, \ldots, f_{t_n}\} \), and by Theorem 3.4 we have \(g_{s_1} \subset g_{s_2} \subset \cdots \subset g_{s_n} = S \) and \(f_{t_1} \subset \).
Let \(f_{t_2} \subseteq \ldots \subseteq f_{t_n} = S \). Hence \(g_{s_k} = f_{t_k} \) for \(k = 1, 2, \ldots, n \) and (ii) holds. Now let \(x \in S, q \in Q \) be such that \(g(x, q) = s_k \) and let \(f(x, q) = t_j \). Noticing that \(x \in f_{t_k} \), i.e., \(f(x, q) \geq t_k \), we get \(t_j \geq t_k \). Thus \(f_{t_j} \subseteq f_{t_k} \). Since \(x \in f_{t_j} = g_{s_j} \), we obtain \(s_k = g(x, q) \geq s_j \). It follows that \(g_{s_k} \subseteq g_{s_j} \). By (ii), \(f_{t_k} = g_{s_k} \subseteq g_{s_j} = f_{t_j} \). Therefore \(f_{t_k} = f_{t_j} \), and by Lemma 3.6 we have \(t_k = t_j \). Hence \(f(x, q) = t_k \). The proof is complete.

Theorem 3.8 Let \(g \) and \(f \) be two \(Q \)-fuzzy interior ideals of a finite semigroup \(S \) such that the families of level interior ideals of \(g \) and \(f \) are identical. Then \(g = f \) if and only if \(\text{Im}(g) = \text{Im}(f) \).

Proof. Necessity is obvious. Assume that \(\text{Im}(g) = \text{Im}(f) = \{t_1, \ldots, t_n\} \) where \(t_1 > t_2 > \cdots > t_n \). Let \(x_1, \ldots, x_n \) be distinct elements of \(S \) and \(q \in Q \) such that \(g(x_k, q) = t_k \) for \(1 \leq k \leq n \). By Theorem 3.7(iii), \(f(x_k, q) = t_k \) for \(1 \leq k \leq n \). Since for any \(x \in S \) there exists some \(t_k \) such that \(g(x, q) = t_k \), and so \(x \in g_{t_k} = f_{t_k} \). Hence \(f(x, q) \geq t_k \), it follows that \(f(x, q) \geq g(x, q) \). By the same argument, we get \(g(x, q) \geq f(x, q) \). Therefore \(g(x, q) = f(x, q) \), which shows that \(g = f \). This completes the proof.

Let \(S \) and \(T \) be semigroups. By a homomorphism we mean a mapping \(f : S \to T \) satisfying the identity \(f(xy) = f(x)f(y) \) for all \(x, y \in S \). Throughout, \(\text{Aut}(S) \) will denote the set of all automorphisms of \(S \).

Definition 3.9 An interior ideal \(A \) of a semigroup \(S \) is called a characteristic interior ideal of \(S \) if \(f(A) = A \) for all \(f \in \text{Aut}(S) \).

Definition 3.10 A \(Q \)-fuzzy interior ideal \(\mu \) of a semigroup \(S \) is called a \(Q \)-fuzzy characteristic interior ideal of \(S \) if \(\mu(f(x), q) = \mu(x, q) \) for all \(x \in S, q \in Q \) and all \(f \in \text{Aut}(S) \).

Theorem 3.11 If \(\mu \) is a \(Q \)-fuzzy characteristic interior ideal of a semigroup \(S \), then each level interior ideal of \(S \) is a characteristic interior ideal of \(S \).

Proof. Let \(t \in \text{Im}(\mu), f \in \text{Aut}(S) \) and \(x \in \mu_{t}, q \in Q \). Since \(\mu \) is a \(Q \)-fuzzy characteristic interior ideal, we obtain \(\mu(f(x), q) = \mu(x, q) \geq t \). It follows that \(f(x) \in \mu_{t} \) and hence \(f(\mu_{t}) \subseteq \mu_{t} \). Now let \(x \in \mu_{t} \) and \(y \in S \) be such that \(f(y) = x \). Then \(\mu(y, q) = \mu(f(y), q) = \mu(x, q) \geq t \), whence \(y \in \mu_{t} \). It follows that \(x = f(y) \in f(\mu_{t}) \), so that \(\mu_{t} \subseteq f(\mu_{t}) \). Thus \(\mu_{t}, t \in \text{Im}(\mu), \) is a characteristic interior ideal of \(S \).

The following lemma is obvious and we omit the proof.
Lemma 3.12 Let S be a semigroup and let $x \in S, q \in Q$. If μ is a Q-fuzzy interior ideal of S, then $\mu(x, q) = t$ if and only if $x \in \mu_t$ and $x \notin \mu_s$ for all $s > t$.

Theorem 3.13 Let μ be a Q-fuzzy interior ideal of a semigroup S. If each level interior ideal of μ is a characteristic interior ideal of S, then μ is a Q-fuzzy characteristic interior ideal of S.

Proof. Let $f \in \text{Aut}(S)$ and let $x \in S, q \in Q$ be such that $\mu(x, q) = t$. Then $x \in \mu_t$ and $x \notin \mu_s$ for all $s > t$, by Lemma 3.12. Since $f(\mu_t) = \mu_t$ by hypothesis, we get $f(x) \in \mu_t$ and hence $\mu(f(x), q) \geq t$. Let $s = \mu(f(x), q)$. If possible, let $s > t$. Then $f(x) \in \mu_s = f(\mu_s)$. Since f is one-one, it follows that $x \in \mu_s$, which is contradiction. Hence $\mu(f(x), q) = t = \mu(x, q)$, showing that μ is a Q-fuzzy characteristic interior ideal of S.

Lemma 3.14 If μ is a Q-fuzzy interior ideal of a semigroup S, then so is μ^α for every real number $\alpha \geq 0$, where μ^α is defined by $\mu^\alpha(x, q) = (\mu(x, q))^\alpha$ for all $x \in S, q \in Q$.

Proof. Let $x, a, y \in S, q \in Q$ and let $\alpha \geq 0$ be any real number. If $\mu(x, q) \leq \mu(y, q)$, then $\mu(xy, q) \geq \mu(x, q)$ and $\mu(y, q) \geq \mu(x, q)$. This implies that $\mu^\alpha(xy, q) \geq \min\{\mu^\alpha(x, q), \mu^\alpha(y, q)\}$. The argument is similar if $\mu(x, q) \geq \mu(y, q)$. Therefore μ^α is a Q-fuzzy subsemigroup of S. Since $\mu(xay, q) \geq \mu(a, q)$, clearly $\mu^\alpha(xay, q) = (\mu(xay, q))^\alpha \geq (\mu(a))^\alpha = \mu^\alpha(a)$. This completes the proof.

References

Received: August, 2011