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Abstract

In this paper, a multi-objective particle swarm optimization based on extremal
optimization with hybrid mutation and time-varied inertia (HM-TVWF-MOEPSO)
method has been proposed in order to solve some of problems in the
multi-objective particle swarm optimization and improve the performance of the
algorithm.
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1. Introduction

Multi-objective Particle Swarm optimization (MOPSO) has been very
popular tool in the multi-objective (MO) optimization field because its nature of
the quick convergence and good diversity of optimal solutions in the Pareto front.
Since PSO was proposed there have been numerous versions of MOPSO for
solving the MO problems in the real life, e.g. MOPSO [11], Sigma-MPSO[12],
Cluster-MPSO[39], Crowding-MOPSO[20], solving off-line two-dimensional
flight path optimization [1], the flexible job shop scheduling problem [2],
molecular docking problem [3], electrochemical machining process [4], a fuzzed
MOPSO in electrical engineer [5], a combination of neural network modeling
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with MOPSO [6], MO pixel level image fusion [7], etc. Although PSO-based MO
optimization technique has been extensive application, it has some drawbacks as
follows; (1) the algorithm is easy to fall into the local optimal and lead to the
premature convergence, and (2) the diversity of optimal solutions is lost. In order
to overcome the above problems and improve the efficiency of the algorithm, a
number of modified algorithms were increasingly produced, for example,
avoiding premature convergence [8, 9, 10], guaranteeing the diversity [11, 12, 13],
etc.

In the present article, a MOPSO, based on extremal optimization seen rarely,
which is improved using hybrid mutation, time-varied inertia and crowding factor,
is called Hybrid Mutation and Time-Varied inertia Multi-Objective Extremal
Particle Swarm Optimization (HM-TVWF-MOEPSO), where extremal
optimization, which has been connected with PSO for MO, is called a
general-purpose local-search heuristic algorithm[34,35] . Additionally, similar to
the ones suggested in [14, 15], in HM-TVWF-MOEPSO hybrid mutation operator
is applied at the different search stage to increase the search efficiency. And the
important parameter of PSO, i.e., the inertia weight @ , is also modified and
applied. Its value will adaptively change with iterations. In the previous
optimization methods genetic algorithm [16] has used the concept of time-varied
inertia weight as well as PSO [17, 18, 19] etc, but most of them handled
Single-Objective Optimizations. In the present paper this concept has been
incorporated into MOPSO to achieve the trade-off between the global search and
the local search in the problem space. Lastly, in order to improve the diversity in
the Pareto-optimal solutions, a crowding-distance method [20] has also been
adopted in HM-TV-MPEPSO.

In the next section the basic concepts of MO optimization are briefly
presented. In Section 3 the PSO method and Extremal Optimization are described
and briefly analyzed. In Section 4 the proposed method has been analyzed in
detail. The obtained results and comparison to the other two state-of-the-art
algorithms are presented in Section 5. In Section 6 the conclusions and future

works of the paper are presented.
2. Multi-objective optimization

In general, a MO optimization problem can be mathematically stated by
Eq.(1)":

! Without loss of generality, only minimization problems will be assumed in this paper.
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where x=[x,x, x ] eX is an » -dimensional decision variable vectors and

x is the decision variable space. f:R" —> R, i=12,.,m are the objective

functions.
A few definitions about the concept of optimality will be described.

Definition 1 (Pareto Dominance): Give two vectors ?c:[xl,xz,...,xn]T and
}:[yl,yz,...,yn]T.Then, x dominates y iff x;<y;, i=l..,n,and x; <y for

at least one component (denoted by X< ; ).

Definition 2 (Pareto Optimal): A decision vector xe y < R" is said to be Pareto

Optimal iff there does not exist another decision vector ;e z  such

that /() < /(x) ,

and it is denoted by; .
And the set of p is called Pareto Optimal Set, the mathematic form of which is

* -
P ={x e y|xis Pareto Optimal A y is the feasible region } .

Definition 3 (Pareto Front): The Pareto Front is defined by:
PE" = ((i@eefm@ep”)

by:
PF™ = (A )ep”)

3. Extremal particle swarm optimization

3.1 Particle Swarm Optimization (PSO)

Kennedy firstly proposed PSO algorithm in 1995 [21], which is inspired by
the “birds flock” and is also a population based heuristic search algorithm. The
population of the potential solutions is called a swarm, where every individual is
called a particle [22]. Originally PSO was applied to balance the neural networks,
but it was soon proven to be very effective tool for solving MO optimization
problems because of its quick speed convergence [23]. When PSO is used to a
specific optimization problem, a population of random particles representing
feasible solutions in the search space is initialized and the algorithm searches for

optimal solutions by updating iterations.
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Considering that there is a optimization problem with a D-dimensional
search space, the i -th particle can be represented by the D-dimensional vector

(1) (0 @& (@ yO _ O 0 ()
Xl =(xi,1’xi,2’ D) 9 l _(ll 12,..‘, ZD) at t -th

iteration; the best previous position of the i -th particle is recorded and denoted as
Py =Py PigssPip) > the global best position of the swarm found so far is

and its velocity is

represented by prg - (Pg1:PgassPg.p) s The fitness value of each particle, which is

usually evaluated according to putting its position into the given objective
functions, is generally used to measure its performance. At the t iteration each
particle can update its velocity and position by Eq.(2) and Eq.(3):

O e () sy 0D ). @
xl(f}rD_ (’t]) V(’tj+1)’ 3)

where i=12,..,~_, N_is the size of the population (which is set to 100 in this
paper); j=1,2,..,D, D is the dimensions of the search space; ¢=1..T ,T 1is
maximum number of iterations( which is set to 200 in this paper). o0, ¢,y 20,

) is the inertia weight with time-varied. ¢, and ¢, are the cognitive and social
factors respectively, which is set to ¢, =c¢, =2.0 in this paper. 5 and , are two
random numbers generated uniformly within the range [0, 1].

3.2 Extremal Optimization

PSO is effective for most of optimization problems, especial MO, but it is
very sensitive to its parameters, i.e. .5 and r, , which affect its convergence
behavior [24, 25] such that it usually suffers from being trapped into local
optimum [41, 42], reducing its performance. However, extremal optimization
method, which was proposed by Boettcher [34, 35], is inspired by equilibrium
statistical physics [36].

EO was indicated to have strong local search ability [37]. Because it can
update extremely undesirable variables of a single sub-optimal solution in the
search space, replaced by new and random values. Additionally, the change of the
fitness value of a variable can change the fitness values of its neighbors. Big and
dynamic scale turbulence efficiently exploits many local optima [40]. The basic

procedure of EO algorithm is seen as follows (in Fig.1)
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Step 1. Set the index of the current particle =1,
Step2.for i=1 to i=N_,for j=ltoD

-perform mutation for the position X = (xl.’1 $X g p)-

-store the ; -th new positions obtained, oy (j=1..,D).

ecvaluate the fitness wvalues of the D new position according to

L, =OBJ(x; )=O0BJ(p,).
efind out the worst fitness value according to their fitness value, and the new position is set
by the worst fitness value corresponding to position, X

olf OBJ(xl.j)<OBJ(xl.) , set X=X and OBJ(xl.):OBJ(xij) ,otherwise, x;
unchanged.

Step 3. update p; and Py

Step 4. return the results.

Fig.1. the basic procedure of EO

4. The proposed approach

4.1 hybrid HM-TVWF-MOEPSO algorithm

It’s well known that PSO has great global search capability and CLS has
strong local search ability. In this paper, a novel hybrid HM-TVWF-MOEPSO
algorithm is proposed, which combines the merits of PSO, CLS, hybrid mutation
method and time-varied inertia weight factor method. It makes full uses of the
exploration capability of PSO and the exploitation ability of CLS. At the same
time, similar to other MOPSO algorithms, it also employs Pareto-dominance for
MO problems, crowding-distance mechanism for the selection of global best
particles, and external archive storing the previous non-dominated solutions found
for the convergence toward globally non-dominated solutions. So this hybrid
algorithm can overcome the shortcoming of PSO and maintain the diversity of
optimal solutions in the Pareto Front, enhancing the algorithm performance. The
basic structure of HM-TVWF-MOEPSO is described in Fig.2.

4.2 Hybrid Mutation Strategy

PSO has good convergence properties in solving the single objective
optimization problems, while its situation is contrary to MO cases; the
convergence is often implemented at the cost of the diversity [11]. To let the
MOPSO extensively explore the search space, while receiving better diversity, a
hybrid mutation operator has been employed in HM-TVWF-MOEPSO derived
from [34,39]. It combines Gaussian mutation with Cauchy mutation. X. Yao had

been studied the mechanisms of Gaussian and Cauchy mutation operations [15].
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And Cauchy mutation is better at coarse-grained search, while at fine-grained
search Gaussian mutation can obtain good performance. Consequently, in the
present algorithm Cauchy mutation is fist performed at the global search, and
Gaussian mutation used at the local search. In this paper, the Gaussian mutation

employs Eq. (4).
x =x +N,(0.]) (4)
1 1 1

where X the position coordinate of i -th particle after Gaussian mutation; X

the position coordinate of the i -th particle before mutation; Nl. (0,1) represents

the Gaussian random number with means 0 and standard deviation 1, generated
again for i -thparticle, i=12,..,N,.
The Cauchy mutation performs according to Eq. (5).

'

X =x_+0. &)
i i1

where 5l_ represents the Cauchy random variable with the scale parameter equal

to one, generated again for the i -th particle.

Algorithm HM-TVWF-MOEPSO: O = HM -TVWF -MOEPSO(N_,N_,T, D)
/* Of : the final output of the algorithm, N : size of the swarm, N, :size of the

external archive */

1.t=0, initialize a swarm s, of N, particles with random positions ¥ and

i,j
.. 0
velocities v\

i, on D dimensions.

/* 8,: swarm at iteration 0; x,.(’(;.) :the j -th coordinate of the 7 -th particle at the =0

iteration; V,-(,(;) : the velocity of the 7 -th particle in the j -th dimension at the ¢ = 0 iteration
*/

*Update P,-(,(}) using pf’(}) (—x,.(’(})

and AS© = \A“”\.

and A” using A < non dominated(S,)

/* pl.(g.) : the j -th coordinate of the best individual of the i -th particle; A . external

archive at the iteration 0.*/
2.for t=1to t=T

« for i=1to i=N,

P, <« get _gbest() /* return the global best*/
P < get pbest() /*return the personal best*/

. adjust parameter( w, ) /*adjust the inertia weight w, */

. update the velocities and positions of each particle /* according to Eq.(2) and(3) */
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. Gaussian mutate( S p ).

. perform EO /’perform extreme local search”/

A, < non_dominated(S, v 4,) /* update the external archive*/

t+1
. Cauchy mutate (s, ) /* perform hybrid mutation*/

3. O, < 4, and stop. /*return final optimal solutions*/

Fig. 2.The basic structure of HM-TVWF-MOEPSO

4.3 Time-varied Inertia Factor
Y. Shi [26] studied the importance of integration inertia weight w into
traditional PSO in improving the convergence of PSO, it is indicated that w can
balance between the global search and the local search, i.e. the higher values of
w ensure in the global search at the initial iterations while the lower values
provide in the local search around the current search zone at the later iterations.
PSO with w may obtain good performance for optimization problems. Because
of the complexity of search space of MO optimization problems, the parameter
w can play the very vital effect in MOPSO algorithm.
In this paper, time-varied inertia weight factor [27] is introduced in

HM-TVWF-MOEPSO, the value of ) will decrease linearly with the iteration

from w__ to w,_. .It changes according to Eq. (6).

® T—t
woo= (Wmax - Wmin)T * Yin (6)

where w_ and w_. are the maximum value and the minimum one of inertia

weight, respectively (in this paper w_ =07,w

a min

=04 as suggested [33]). T is
the maximum iteration number. The function of adjust parameter ( w ) in Fig.2
accomplishes the process.
4.4 Update external archive
The external archive is used to store the non-dominated solutions, and the

selection of the p, solution is performed from it in HM-TVWF-MOEPSO, so it
has very important role. In every iteration, a candidate solution may be added to
the archive only if one of the following conditions is satisfied [28].

(a) If the archive is full, the candidate solution is non-dominated and it is in a
less crowed region than at least one solution.

(b) If he archive is not full, the candidate solution is not dominated by any

solution in the archive.
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(c) The archive is empty.

4.5 Global best selection

It is difficult for MO optimization problems with the conflicting character
among multiple objectives to select a single optimum solution as the global
best p, , because the selection need consider the two aspects of the convergence
ability of algorithm and the diversity of solutions. To solve this problem, the idea
of non-dominance is applied and the above archive is maintained, from which a
candidate solution is selected as p, , and the selection must satisfy some diversity
measure. In this paper the diversity measure is similar to the crowding-distance
[20].

5. Experimental results and discussion

5.1 Benchmark Functions and Metrics

To evaluate the performance of HM-TVWF-MOEPSO algorithm, its results
are compared with the state-of-the-art algorithms in the area: NSGA-II [38] and
MOPSO [11].The benchmark functions employed in this study are ZDT1, ZDT2
and ZDT4 [32]. They are two dimensional objective functions, which take the
form:

And the following metrics are employed for the purpose of providing a
quantitative comparison of results: success counting (which is a variation of the
metric called “error ratio” [29]), inverted generational distance [29], two set
coverage [30, 31], two set difference Hypervolume [30].

Definition 4 (Success Counting (SCC)): this measure counts the number of

vectors (in the current set of non-dominated vectors available) that are members

of the Pareto optimal set: SC = ZSi , where n is the number of vectors in the
i=1

current set of non-dominated vectors available; s, =1 if vector i is a member
of the Pareto optimal set, otherwise s, =0; it should then be clear that SC=n
indicates an ideal behavior.

Definition 5 (Inverted Generational Distance (IGD)): this measure estimates
how far are each of its elements in the Pareto front produced by an algorithm
with respect to those in the true Pareto front. IGD is defined

Z 7:1 dl'2

n
front and d, is the Euclidean distance ( measured in objective space) between

as: IGD = , where n is the number of elements in the true Pareto
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each of these and the nearest member of the set of non-dominated vectors found
by an algorithm. It should be clear that a value of IGD = 0 indicates that all the
elements generated are in the true Pareto front of the problem.

Definition 6 (Two Set Coverage (SC)): SC is defined as the mapping of the
order pair ( X x ) to the interval [0,
|{a" eX";EIa' eX' :a" <a'}\

; . If all points in X dominate or are
| X

1:scx,x )2

equal to all points in X', SC=1, and SC=0 otherwise. In general, SC(X,X )
and SC(X ",X ‘) both have to be considered due to set intersections not being
empty. If SC(X‘,X") =0 and SC(X",X') =1, X is completely better than X';
if SC(x,x)>SC(X,X), X is relatively than x ; if SC(x,x )>0.9 and
SC(X",X')ZO X is nearly than X .

Definition 7 (Two Set Difference Hypervolume (HV)): this measure defines
the area (for the two dimensional case) of objective value space covered by the

solution of an algorithm( P, ). For example, a vectorin P, for a two-objective
MO problem defines a rectangle bounded by an origin and ( fl(;), fz(;c) ). The
union of all such rectangles’ area defined by each vector in P is then the

. . 3 .
comparative measure and is defined as: HV ={Uai |x, e P}, where x, is a

1

non-dominated vector in P and a, is the hypervolume determined by the
components of x, and the origin. If HV(X',X“)ZO and HV(X",X')<O, X' is

better than X .

5.2 Experimental Results

For each benchmark function in Table 1 they are done 20runs per algorithm
and 2000 function evaluations; and the parameters of each method (NSGA-II?
denoted by A, MOPSO? denoted by B, and HM-TVWF-MOEPSO denoted by C
in the below tables) are set as follows. NSGA-II: popsize=100, T=200
generations, crossover rate P, =1.0, mutation

probability p = 1/codesize MOPSO: N =100, T =200 , mutation rate p =0.05.The

parameters HM-TVWF-MOEPSO have been mentioned in the above contents.
The results compared are indicated in the below tables.

2 The code of NSGA-II is from http:// www.tik.ee.ethz.ch/pisa
3 The code of MOPSO is from http://delta.cs.cinvestav.mx/~ccoello/EMOO
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5.3 Discussion

From Table 1, it° known that the results generated by
HM-TVWF-MOEPSO is the best (on average) with respect to the three
benchmark functions. Obviously, the Pareto front of HM-TVWF-MOEPSO is
the closest to the true Pareto front.

Functions
ZDT1 ZDT2 ZDT4
Metrics A B C A B C A B C
Best 37 0 71 30 0 93 0 0 100
median 20 0 32 0 40 0 0 95
Worst 9 0 5 0 1 0 0 2
SCC

average 21 0 35 0 42 0 0 77
Std.

7.5 0 18.3 10.2 0 35.7 0 0 25.1
dev.

Best 0.0008 0.0238 0.0009 | 0.0009 0.0291 0.0008 | 0.0125 4.6409 0.0013
median | 0.0008 0.0274 0.0009 | 0.0720 0.1087 0.0009 | 0.1306 11.780 0.0009
Worst 0.0010 0.0383 0.0013 | 0.0744 0.3492 0.0316 | 0.3217 14.837 0.0773

IGD
average | 0.0009 0.0279 0.0008 | 0.0507 0.1637 0.0044 | 0.1503 9.8905 0.0032
Std.
d 0.0009 0.0041 0.0008 | 0.0351 0.0931 0.0093 | 0.0958 3.891  0.0081
ev.

Table 1.Comparison of results based on metrics of SCC and IGD for ZDT1,
ZDT?2 and ZDT4. (Where A denotes NSGA-II, B denotes MOPSO, and C
denotes HM-TVWF-MOEPSO)

Functions Metric SC Methods
SC(X) A B C
A 0.00 1.00 0.03
ZDT1 B 0.00 0.00 0.00
C 0.72 0.99 0.00
A 0.00 1.00 0.01
ZDT2 B 0.00 0.00 0.00
C 0.90 1.00 0.00
A 0.00 1.00 0.00
ZDT4 B 0.00 0.00 0.00
C 0.93 0.00 0.00

Table 2.Comparison of results based on metrics of SC for ZDT1, ZDT2 and
7ZDT4 (Where A denotes NSGA-II, B denotes MOPSO, and C denotes
HM-TVWF-MOEPSO)
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The comparison from the Table 2 indicates that HM-TVWF-MOEPSO is relatively better
than NSGA-II on ZDT1 and ZDT2, moreover it is nearly better than NSGA-II on ZDT4;
additionally, on the three benchmark functions NSGA-II is all completely better than
MOPSO.

Functions Metric HV Methods
HV(X) A B C
A 0.000000 -0.321268 0.001038
ZDT1 B 0.000000 0.000000 0.002701
C -0.000834 -0.410913 0.000000
A 0.000000 -0.304775 0.000397
ZDT2 B 0.000000 0.000000 0.000000
C -0.004926 -0.591763 0.000000
A 0.000000 -0.503104 0.000279
ZDT4 B 0.000000 0.000000 0.000000
C -0.100313 -0.577481 0.000000

Table 3.Comparison of results based on metrics of HV for ZDT1, ZDT2 and
7ZDT4 (Where A denotes NSGA-II, B denotes MOPSO, and C denotes
HM-TVWF-MOEPSO)

From the Table 3 we can conclude that the hypervolume corresponding to
the front obtained from the union of HM-TVWF-MOEPSO and MOPSO fronts
is bigger than the one corresponding to the front of HM-TVWF-MOEPSO.

6. Conclusions and discussion

In this paper a modified MOPSO algorithm which employs extremal
optimization, hybrid mutation, time-varied inertia weight and crowding distance
based selection mechanism is presented. Extremal optimization used enhances
effectively the local search ability of the algorithm, hybrid mutation introduced
can realize to search at different stage for the solution space, and time-varied
inertia weight can also adaptively balance between the global search and the
local search, at the same time crowding distance mechanism helps to select the
leaders from the archive storing non-dominated solutions (which is obtained at
each iteration). Through comparison with two other algorithms, it is clearly
found that HM-TVWF-MOEPSO is highly competitive, it good in
approximating Pareto optimal front as well as maintaining the diversity of the
optimal solutions on the front. In future, the algorithm termination conditions



116 Hong-bin Bai

and the system stability of stochastic search algorithm should be studied. In
addition, it is also important to solve MO problems of the specific application
with the improved PSO.
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