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Abstract 

 

In this paper, we consider maximin and minimax nonlinear mixed integer 

programming problems which are not symmetric in the duality sense. Under 

generalized conditions which involve increasing and decreasing functions, we 

compare the supremum infimum of the maximin problem with the infimum 

supremum of the minimax problem. The weak duality theorem for minimax and 

symmetric dual nonlinear mixed integer programming problem is derived as a 

particular case. The earlier results on minimax and symmetric duality in nonlinear 

mixed integer programming are thus generalized for monotonic functions. The 

results equally hold for strong pseudo convex and strong pseudo concave 

functions. 

Keywords: Non linear Programming, Mixed integer Programming, Duality 

Theorems, Reproducing Cone, Monotonic functions, Strong pseudo convex 

functions   
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1 Introduction 
 

Nonlinear dual problems are formulated basing on the conjugate functions[1], 

Lagrangian multipliers[2], minimax type [3], symmetric type [4]. We have 

presented the weak, the strong and the converse duality results for general non 

symmetric and minimax type problems using increasing and decreasing functions 

on a reproducing cone. Strong pseudo convex and strong pseudo concave 

functions equally satisfy the theorems on arbitrary cones. 

Our results generalize the works of [5] and [6] who proved the same 

results under stronger assumptions on the cone and the functions.  Convex and 

concave functions are considered in [5] on the non-negative orthant as the cone. 

The extension of these results to any arbitrary cone is presented in [6]. The results 

were further modified by [7] by assuming the functions to be pseudo-convex and 

pseudo concave. We have generalized the results with additional feasibility 

conditions in this presentation. 

 Classic results in nonlinear programming which cover duality and 

mixed integer programming can be seen in [8-12]. Recent developments in this 

area is vividly presented in[13-16]. Nonlinear mixed integer programming applied 

to different real life models are presented in [17-27].  The motivating results for 

our work are based on the most important analysis of symmetric duality in [28, 

29]. 

1.1 Notations and terminologies 

Let U and V be arbitrary sets of integers belonging to 1n
R  and 1m

R  

respectively. Let C1 and C2 be reproducing cones with vertices at the origin with 

nonempty interiors in 1n n
R

  and 1m m
R

 respectively.  The polar of C is defined as 

 * t t

i iC x z 0 for x C where x is the transpose of x, i 1,2     

Some of the components of x and y which belong to arbitrary sets of 

integers are being constrained. Let the first n1 components of x and the first m1 

components of  1 1y 0 n n, 0 m m      arbitrarily be integers. 

Let    1 2 1 2x, y x , x , y , y ,  
1

1

1 2 nx x ,x ,....x  and  
1

1

1 2 my y , y , ..., y  

Let K(x, y) be a twice differentiable real valued function defined on an 

open set in n mR   containing S T  where 
1S U C   and  

2T V C  .  2x
K x, y  

denotes the gradient vector of K with respect to x2 at the point  x, y . 

 2y
K x, y  is defined similarly.  2 2x x

K x, y  denotes the Hessian matrix of 

second partial derivatives with respect to x2 evaluated at  x, y . 

   2 2 2 2x y y x
K x, y , K x, y   and  2 2y y

K x, y  and defined similarly. We say that 

K is increasing / decreasing on 
1 2C C  iff K is increasing in x2 for each x1, y and 

decreasing in y2 for each x and y1 i.e. 
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   2 1K x , y K x , y  for each x1,  2y C  and  

   2 1K x, y K x, y  for each  1

1y x C  respectively. 

 

2. The Problems 
 

Consider the following pair of nonlinear mixed integer programming 

problems: 

(P0)    
2 2

2 2

x x y
Max Max f K x, y (y )t y k x, y    

 such that    2

2 2 *

1 2y
x U, x , y C T, K x, y C , 1        

(D0)      2
2 2

t
2

xy x.y
MaxMax g K x, y x K x, y    

 such that    2

1 2 *

2 1x
y V, x, y S C , K x, y C 1        

The set of feasible solutions of (P0) and (D0) are  

                  2

1 2 *

1 1 2y
P x, y | x U, x , y C XT, K x, y C , 1        

      2

2 2 *

1 2 2x
D x, y | y V, x , y S X C , K x, y C , 1      

 
respectively. 

When the cone is the nonnegative orthant we see that for 1     the 

problems (P0), (D0) reduce to the pair of problems (D), (P) of [5]. When the cone 

is arbitrary the pair of problems considered by [6] becomes a particular case of 

(P0), (D0). 

 

3 Main Results 
 

Our results have been derived under general assumptions of 

(i) K(x,y) is  increasing /decreasing  on 
1 2C C  

(ii) K(x,y) is  separable with respect to x1 or y1, and  

(iii) the existence of the feasible sets P1 and D1 having the properties: if 

  1x, y P  and   1u, v D  then 2 2

1x u C   and 2 2

2v y C   where C and C are 

reproducing cones.  

 

Theorem. 1 (Weak Duality).  

The sup inf of f(x, y) is greater than or equal to the inf sup of g(x, y) for any 

  1x, y P  and all   1x, y D . 

Proof: Let   
211 1

x yx
z max min f | x, y P ,     

211 1
x.yy

w max min f | x, y P       (3.1) 

Since K(x, y) is separable with respect to x1, we have  

     1 1 2 2K x, y K x K x , y                       (3.2) 
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The same holds if K (x, y) is separable with respect to y1. Then z1 can be 

written as 

           2
21

t
1 1 2 2 2 1 1 2 2

1 yx .yx

z max min K x K x , y y K x K x , y      

      2

2 2 * 2

2 1y
| K x , y C , x , y C T, 1       

or    
21

1 1 1

1 2
x .yx

z max min K x f (y )           (3.3) 

 

where             2 2
2 2

2 2 2 2 2 2 2 *

2y yx .y

1

2 Min K x , y y tf K x , y | K x , y Cy       

               2 2

1 2x , y C C , 1              (3.4) 

Similarly, w1 can be written as      
1 2

1 1 1

1 2
y x.y

w min max K x g y       (3.5) 

 

where       2
2 2

1 2 2 2 2 2

2 xx .y
g (y ) max K x , y x t K x , y    

      2

2 2 * 2 2

1 1 2x
| K x , y C , x , y C C , 1            (3.6) 

 

Let   1x, y P  and   1u,v D .  

It is sufficient to show that   1

2 2 1f y g (v ).    

Since 2 2

1x u C   and     2

2 2 *

1u
K u ,v C ,   

      we have,   2

2 2 2 2

u
K u ,v x u 0     i.e.,   2

2 2 2 2

u
K u ,v x u 0        (3.7) 

    Similarly since 2 2

2v y C   and  2

2 2 *

2y
K x , y C ,   we obtain 

    2

2 2 2 2

y
K x , y v y 0                       (3.8) 

     Since K is increasing/decreasing on 
1 2C C  by using (3.7) and (3.8)  

     we have       2 2 2 2K x , v K u ,v           (3.9)  

and    2 2 2 2K x , v K u ,v        (3.10) 

 

From (3.9) and (3.10) it follows that    2 2 2 2K x , y K u ,v    (3.11) 

Since  2

2 2 2 *

1 1u
u C , K u ,v C    and 1   , we have 

     2

t
2 2 2

u
u K u , v 0          (3.12) 

Similarly, since  2

2 2 2 *

2 2y
y C , K x , y C    and 1   , we obtain 

     2

2 2 2

y
y t K x , y 0                        (3.13) 

Using (3.12) and (3.13) in (3.11) we have 
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            2 2

t t
2 2 2 2 2 2 2 2 2 2

y u
K x , y y K x , y K u ,v v K u ,v      

      1 1

2 2f y g v  

This completes the proof. 

Before proving the forward duality theorem we state a proposition.  

 

4 Proposition 1 
 

 Let X be a convex set with nonempty interior in Rn and C be a reproducing 

cone in Rm, having nonempty interior. Let f and g be real and vector valued 

functions respectively defined on X. Consider the problem: 

 Minimize f(z) 

 subject to  z = x , g(z) C  

If z0 solves the problem then there exists a nonzero (q0, q) such that 

   
t

t

0 0 0 0q f (z ) g(z )q z z 0      

for each z X  and *

0q 0,q C   and t

0q g(z ) 0 . 

q0 need not be positive always. However,
0q 0 under suitable constraint 

qualifications. 

  

Theorem. 2 (Forward Duality) 

If K(x, y) is twice differentiable in x2 and y2,  2 2y y
K x, y  is negative definite 

and    x, y  is a solution of (P0) the following statements hold: 

(1)  x, y  is a solution of (D0) 

(2)      
1 12 21 1

x yx . y x.y
Min Max f | x, y P Min Max g | x, y D    

(3)    2 22 2y x
y K x, y x K x, y 0     

 

Proof: For a given 1y , (3.4) and (3.6) are a pair nonlinear programs of the type of 

[28] when 1    . We follow their approach and use the above proposition with 

 2 2 *

1 2 2z x , y , X C C , C C     and  

  
       2

t
2 2 2 2 2

y
f z K x , y y K x , y  

 

  
   2

2 2

y
g z K x , y

 
Hence is z0 solves the problem, there exists a nonzero (q0, q) such that 

         3 2 2 2

t
t 2 2 2 2 2 2 t 2 2 2 2

0 0x y x y x
q K x , y q y K x , y q K x , y x x        

          2 2 2

t
t 2 2 2 t 2 2 2 2 2

0 0y y y
q 1 K x ,y q y q K x ,y y y 0                    (3.14) 

for each  2 2

1 2,x y C C  and  
*

*

0 2 20,q q C C    
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(Since C2 is a closed convex cone) and  2

t 2 2

y
q K x , y 0        (3.15) 

We claim that 
0q 0.  

To show this let 2 2x x  in (3.14), then we get 

         2 2 2

t 2 2 2 2 2 t t 2 2 2 2

0 0y y y
q 1 K x ,y y y q (y ) q K x ,y y y 0              (3.16) 

 

for each 2

2y C .  If 
0q 0  and 2 2y y q  , we have from (3.16) 

 2 2

t 2 2

y y
q K x , y q 0   which by negative definiteness of  2 2

2 2 2

y y
K x , y  implies 

that q = 0, but this is impossible since  0q ,q 0 , and therefore 
0q 0 . Let 

2

0q q y .  From (3.16) we have 

       2 2

2 2 2 2 2

0

q
1 , 1 , 0t t

y y
q K x y y K x y 


        

or      2

2 2 2

0 1 , 0t

y
q K x y y     

by using (3.15), which is always true as 1   and 
0q 0 . 

If 2

0q q y   it is verified that 
 

2

2

0

q
y C

q
 


 and the relation (3.16) is not valid. 

By putting 2 2y y  in (3.14) we get   2

t 2 2 2 2

x
K x , y x x 0    for each 2

1x C . 

Let 2

1x C  then 2 2

1x x C   so that the last inequality implies that 

   2

t
2 2 2

x
x K x , y 0   i.e.,  2

2 2 2 *

1,
x

K x y C     

By setting  
2x 0  and 2 2x x  
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(1)  x, y  solves (P0) 

(2)      
1 12 21 1

x yx . y x.y
min max f | x, y P min max g | x, y D    

(3)    2 22 2x y
x K x, y y K x, y 0     

The proof of theorem 3 involves arguments similar to that of theorem 2. 

 

5 Conclusion 
 

 In this paper we have presented a pair of non-convex mixed integer 

programming problems which are generally non-symmetric from duality point of 

view but reduce to a pair of symmetric dual nonlinear mixed integer programs 

under particular conditions. For this general formulation, we have established the 

weak, forward and converse duality theorems considering increasing and 

decreasing functions with an additional feasibility conditions. The results are also 

given for strong pseudo convex functions.  
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