Mixed Means Inequalities of Multivariable Geometric Mean and Harmonic Mean

Yupei Lv, Tianchuan Sun and Yuming Chu

Department of Mathematics
Huzhou Teachers College
Huzhou 313000, P.R. China

Abstract

In this paper, we establish several mixed inequalities of multivariable geometric mean and harmonic mean by the theory of Schur convexity and majorization.

Mathematics Subject Classification: 26D15, 26E60

Keywords: Mixed mean, Geometric mean, Harmonic mean, Schur convex, Schur multiplicatively convex, Schur harmonic convex

1 Introduction

Throughout this paper we denote $R^n (n \geq 2)$ the n-dimensional Euclidean space, $R_+^n = \{(x_1, x_2, \cdots, x_n) : x_i > 0, i = 1, 2, \cdots, n\}$ and $R = R^1$.

For $x = (x_1, x_2, \cdots, x_n)$, $y = (y_1, y_2, \cdots, y_n) \in R_+^n$ and $\alpha > 0$, we denote by

\[
\begin{align*}
x + y &= (x_1 + y_1, x_2 + y_2, \cdots, x_n + y_n), \\
x y &= (x_1 y_1, x_2 y_2, \cdots, x_n y_n), \\
\alpha x &= (\alpha x_1, \alpha x_2, \cdots, \alpha x_n), \\
x^\alpha &= (x_1^\alpha, x_2^\alpha, \cdots, x_n^\alpha), \\
\frac{1}{x} &= \left(\frac{1}{x_1}, \frac{1}{x_2}, \cdots, \frac{1}{x_n}\right), \\
\log x &= (\log x_1, \log x_2, \cdots, \log x_n)
\end{align*}
\]

\[1\]The research in partly supported by NSF of China under Grant No. 60850005, NSF of Zhejiang Province under Grant Nos. D7080080 and Y607128, and Foundation of the Educational Committee of Zhejiang Province under Grant No. Y200805602.

\[2\]Corresponding author, e-mail: chuyuming@hutc.zj.cn
and
\[e^x = (e^{x_1}, e^{x_2}, \ldots, e^{x_n}), \]

\[A_n(x) = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad G_n(x) = (\prod_{i=1}^{n} x_i)^{\frac{1}{n}} \quad \text{and} \quad H_n(x) = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} \]

denote the un-weighted arithmetic, geometric and harmonic means of \(x \), respectively.

For \(x = (x_1, x_2, \cdot, x_n) \in R^n_+ \) and \(w \geq 0 \), the mixed means \(H_w(x) \) of arithmetic mean and geometric mean are defined by K.Z. Guan and H.T. Zhu [5] as follows:

\[
H_w(x) = H_w(x_1, x_2, \cdots, x_n) = \begin{cases}
\frac{nA_n(x) + wG_n(x)}{w+n}, & 0 \leq w < +\infty, \\
G_n(x), & w = +\infty.
\end{cases}
\]

In [5], K.Z. Guan and H.T. Zhu proved that \(H_w(x) \) is Schur concave in \(R^n_+ \) for any \(w > 0 \), and established several ratio inequalities and Ky Fan type inequalities involving the mean \(H_w(x) \).

For \(x = (x_1, x_2, \cdot, x_n) \in R^n_+ \) and \(w \geq 0 \), in this paper we define the mixed means of multivariable geometric mean and harmonic mean as follows:

\[
M_w(x) = M_w(x_1, x_2, \cdots, x_n) = \begin{cases}
\frac{H_n(x) + wG_n(x)}{1+w}, & 0 \leq w < +\infty, \\
G_n(x), & w = +\infty.
\end{cases}
\]

The main purpose of this paper is to establish some inequalities for the mean \(M_w(x) \).

2 Preliminary knowledge

For the sake of readability, in this section we introduce some definitions and well-known results as follows.

Definition 2.1. Let \(E \subseteq R^n \) be a set, a real-valued function \(F \) on \(E \) is called a Schur convex function if

\[
F(x_1, x_2, \cdots, x_n) \leq F(y_1, y_2, \cdots, y_n)
\]

for each pair of \(n \)-tuples \(x = (x_1, x_2, \cdots, x_n) \) and \(y = (y_1, y_2, \cdots, y_n) \) in \(E \), such that \(x \prec y \), i.e.

\[
\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, \quad k = 1, 2, \cdots, n-1
\]
Mixed means inequalities

and

\[\sum_{i=1}^{n} x_{[i]} = \sum_{i=1}^{n} y_{[i]}, \]

where \(x_{[i]} \) denotes the \(i \)th largest component of \(x \). A function \(F \) is called Schur concave if \(-F \) is Schur convex.

Definition 2.2. Let \(E \subseteq R_{+}^{n} \) be a set, \(F : E \rightarrow R_{+} \) is called Schur multiplicatively convex on \(E \) if \(F(x_{1}, x_{2}, \cdots, x_{n}) \leq F(y_{1}, y_{2}, \cdots, y_{n}) \) for each pair of \(n \)-tuples \(x = (x_{1}, x_{2}, \cdots, x_{n}) \) and \(y = (y_{1}, y_{2}, \cdots, y_{n}) \) in \(E \), such that \(\log x \prec \log y \). \(F \) is called Schur multiplicatively concave if \(\frac{1}{F} \) is Schur multiplicatively convex.

Definition 2.3. Let \(E \subseteq R_{+}^{n} \) be a set, \(F : E \rightarrow R_{+} \) is called Schur harmonic convex (or Schur harmonic concave, respectively) on \(E \) if

\[F(x_{1}, x_{2}, \cdots, x_{n}) \leq (\text{or} \geq, \text{respectively}) F(y_{1}, y_{2}, \cdots, y_{n}) \]

for each pair of \(n \)-tuples \(x = (x_{1}, x_{2}, \cdots, x_{n}) \) and \(y = (y_{1}, y_{2}, \cdots, y_{n}) \) in \(E \), such that \(\frac{1}{x} \prec \frac{1}{y} \).

Definitions 2.1, 2.2, and 2.3 have the following consequences.

Remark 2.1. Let \(E \subseteq R_{+}^{n} \) be a set, and \(H = \log E = \{ \log x : x \in E \} \). Then \(f : E \rightarrow R_{+} \) is Schur multiplicatively convex (or Schur multiplicatively concave, respectively) on \(E \) if and only if \(\log f(e^{x}) \) is Schur concave (or Schur convex, respectively) on \(H \).

Remark 2.2. Let \(E \subseteq R_{+}^{n} \) be a set, and \(H = \frac{1}{E} = \{ \frac{1}{x} : x \in E \} \). Then \(f : E \rightarrow R_{+} \) is Schur harmonic convex (or Schur harmonic concave, respectively) on \(E \) if and only if \(\frac{1}{f(x)} \) is Schur concave (or Schur convex, respectively) on \(H \).

Schur convexity was introduced by I. Schur [9] in 1923, it has many applications in inequality theory [1, 6, 13]. Recently, the Schur multiplicative convexity was investigated in [2, 3, 7], but no one has ever researched the Schur harmonic convexity.

The following well-known result was proved by A.W. Marshall and I. Olkin [8].

Theorem A. Let \(E \subseteq R_{+}^{n} \) be a symmetric convex set with nonempty interior \(\text{int} E \) and \(f : E \rightarrow R \) be a continuous symmetric function. If \(f \) is differentiable on \(\text{int} E \), then \(f \) is Schur convex on \(E \) if and only if

\[(x_{i} - x_{j})(\frac{\partial f}{\partial x_{i}} - \frac{\partial f}{\partial x_{j}}) \geq 0 \quad (2.1) \]

for all \(i, j = 1, 2, \cdots, n \) and \(x = (x_{1}, x_{2}, \cdots, x_{n}) \in \text{int} E \). Here \(E \) is a symmetric set means that \(x \in E \) implies \(Px \in E \) for any \(n \times n \) permutation matrix \(P \).
Remark 2.3. Since \(f \) is symmetric, the Schur’s condition in Theorem A, i.e. (2.1) can be reduced as
\[
(x_1 - x_2)(\frac{\partial f}{\partial x_1} - \frac{\partial f}{\partial x_2}) \geq 0.
\]

The following Theorems B and C can be derived from Remarks 2.1-2.3 and Theorem A.

Theorem B\([2]\). Let \(E \subseteq R^n_+ \) be a symmetric multiplicatively convex set with nonempty interior \(\text{int} E \) and \(f : E \to R_+ \) be a continuous symmetric function. If \(f \) is differentiable on \(\text{int} E \), then \(f \) is Schur multiplicatively convex on \(E \) if and only if
\[
(\log x_1 - \log x_2)(x_1 \frac{\partial f}{\partial x_1} - x_2 \frac{\partial f}{\partial x_2}) \geq 0
\]
for all \((x_1, x_2, \cdots, x_n) \in \text{int} E\). Here \(E \subseteq R^n_+ \) is a multiplicatively convex set means that \(x_1^\frac{1}{2} y^\frac{1}{2} \in E \) whenever \(x, y \in E \).

Theorem C. Let \(E \subseteq R^n_+ \) be a symmetric harmonic convex set with nonempty interior \(\text{int} E \) and \(f : E \to R_+ \) be a continuous symmetric function. If \(f \) is differentiable on \(\text{int} E \), then \(f \) is Schur harmonic convex on \(E \) if and only if
\[
(x_1 - x_2)(x_1^2 \frac{\partial f}{\partial x_1} - x_2^2 \frac{\partial f}{\partial x_2}) \geq 0
\]
for all \((x_1, x_2, \cdots, x_n) \in \text{int} E\). Here \(E \subseteq R^n_+ \) is a harmonic convex set means that \(\frac{x y}{x + y} \in E \) whenever \(x, y \in E \).

3 Lemmas

In this section, we establish several lemmas which are crucial in the proof of our main results in next section.

Lemma 3.1. If \(w \geq 0 \), then \(M_w(x) \) is
(i) Schur concave in \(R^n_+ \);
(ii) Schur multiplicatively concave in \(R^n_+ \);
(iii) Schur harmonic convex in \(R^n_+ \).

Proof. If \(w = +\infty \), then (1.1) leads to that
\[
\frac{\partial M_w(x)}{\partial x_i} = \frac{G_w(x)}{nx_i}, i = 1, 2, \cdots, n,
\]
(3.1)
Mixed means inequalities

\[(x_1 - x_2) \left(\frac{\partial M_w(x)}{\partial x_1} - \frac{\partial M_w(x)}{\partial x_2} \right) = -\frac{(x_1 - x_2)^2 G_n(x)}{nx_1x_2} \leq 0, \quad (3.2)\]

\[(\log x_1 - \log x_2) \left(x_1 \frac{\partial M_w(x)}{\partial x_1} - x_2 \frac{\partial M_w(x)}{\partial x_2} \right) = 0 \quad (3.3)\]

and

\[(x_1 - x_2) \left(x_1^2 \frac{\partial M_w(x)}{\partial x_1} - x_2^2 \frac{\partial M_w(x)}{\partial x_2} \right) = \frac{(x_1 - x_2)^2 G_n(x)}{n} \geq 0. \quad (3.4)\]

If \(0 \leq w < +\infty\), then (1.1) implies that

\[\frac{\partial M_w(x)}{\partial x_i} = \frac{H^2_n(x)}{n(w + 1)x_i^2} + \frac{wG_n(x)}{n(w + 1)x_i}, \quad (3.5)\]

\[(x_1 - x_2) \left(\frac{\partial M_w(x)}{\partial x_1} - \frac{\partial M_w(x)}{\partial x_2} \right)
= -\frac{(x_1 - x_2)^2}{n(w + 1)x_1x_2} \left[(x_1 + x_2)H^2_n(x) + wx_1x_2G_n(x) \right] \leq 0, \quad (3.6)\]

\[(\log x_1 - \log x_2) \left(x_1 \frac{\partial M_w(x)}{\partial x_1} - x_2 \frac{\partial M_w(x)}{\partial x_2} \right)
= -\frac{(x_1 - x_2)(\log x_1 - \log x_2)}{n(w + 1)x_1x_2} H^2_n(x) \leq 0 \quad (3.7)\]

and

\[(x_1 - x_2) \left(x_1^2 \frac{\partial M_w(x)}{\partial x_1} - x_2^2 \frac{\partial M_w(x)}{\partial x_2} \right)
= \frac{w}{n(w + 1)}(x_1 - x_2)^2 G_n(x) \geq 0. \quad (3.8)\]

Therefore, Lemma 3.1 (i) follows from (3.2), (3.6), Theorem A and Remark 2.1 together with Definition 2.1; Lemma 3.1 (ii) follows from (3.3), (3.7), Theorem B and Definition 2.2; Lemma 3.1 (iii) follows from (3.4), (3.8), Theorem C and Definition 2.3.

Lemma 3.2. If \(w \geq 1\), then the function \(\Phi_w(x) = \frac{M_w(x)}{M_{w-1}(x)}\) is

(i) Schur multiplicatively convex in \(R^n_+\);

(ii) Schur harmonic convex in \(R^n_+\).
Proof. If \(w = +\infty \), then Lemma 3.2 is trivial. If \(1 \leq w < +\infty \), then (1.1) leads to that
\[
\begin{align*}
& (\log x_1 - \log x_2) \left(x_1 \frac{\partial \Phi_w(x)}{\partial x_1} - x_2 \frac{\partial \Phi_w(x)}{\partial x_2} \right) \\
& = \frac{w(x_1 - x_2)(\log x_1 - \log x_2)}{n(w + 1)x_1x_2[H_n(x) + (w - 1)G_n(x)]^2} G_n(x)H_n^2(x) \\
& \geq 0
\end{align*}
\]
and
\[
\begin{align*}
& (x_1 - x_2) \left(x_1 \frac{\partial \Phi_w(x)}{\partial x_1} - x_2 \frac{\partial \Phi_w(x)}{\partial x_2} \right) \\
& = \frac{w(x_1 - x_2)^2}{n(w + 1)[H_n(x) + (w - 1)G_n(x)]^2} H_n(x)G_n(x) \\
& \geq 0.
\end{align*}
\]

Therefore, Lemma 3.2 (i) follows from (3.9) and Theorem B, and Lemma 3.2 (ii) follows from (3.10) and Theorem C.

1.3 Remark 3.1. According to (1.1), Theorem A and Definition 2.1, it is not difficult to verify that \(\frac{M_w(x)}{M_{w-1}(x)} \) is Schur convex in \(R^2_+ \) for all \(w \geq 1 \), and \(\frac{M_w(x)}{M_{w-1}(x)} \) is neither Schur convex nor Schur concave in \(R^n_+ \) for any \(w \geq 1 \) and \(n \geq 3 \).

4 Main results

1.3 Theorem 4.1. If \(w \geq 0 \), then

(i) \(M_{w+1}(x)M_{w+\alpha}(x) \geq M_w(x)M_{w+1+\alpha}(x) \) for all \(x \in R^n_+ \) and \(\alpha \geq 0 \);

(ii) \(\frac{H_n(x)}{H_{n(1-x)}} \leq \frac{M_w(x)}{M_{w-1}(x)} \leq \frac{G_n(x)}{G_{n(1-x)}} \) for \(x \in (0, \frac{1}{2}]^n \).

Proof. (i) By (1.1) we have
\[
\frac{d}{dw} \left(\frac{M_{w+1}(x)}{M_w(x)} \right) = \frac{d}{dw} \left(\frac{w + 1}{w + 2} \frac{H_n(x) + (w + 1)G_n(x)}{H_n(x) + wG_n(x)} \right)
\]
\[
= \frac{[H_n(x) + 2(w + 1)G_n(x)][H_n(x) - G_n(x)]}{(w + 2)^2[H_n(x) + wG_n(x)]} \\
\leq 0.
\]

Inequality (4.1) implies that \(\frac{M_{w+1}(x)}{M_w(x)} \) is decreasing with respect to \(w \) for any fixed \(x \in R^n_+ \), this leads to Theorem 4.1(i).
Mixed means inequalities

(iii) A result due to W.L. Wang and P.F. Wang[10] gives

\[
\frac{H_n(x)}{H_n(1-x)} \leq \frac{G_n(x)}{G_n(1-x)}
\]

(4.2)

for \(x = (x_1, x_2, \cdots, x_n) \in (0, \frac{1}{2}]^n \).

If \(w = +\infty \), then from (1.1) and (4.2) we clearly see that Theorem 4.1(ii) is true.

If \(0 \leq w < +\infty \), then (1.1) leads to that

\[
\frac{M_w(x)}{M_w(1-x)} = \frac{wG_n(x) + H_n(x)}{wG_n(1-x) + H_n(1-x)}
\]

and

\[
\frac{d}{dw} \left(\frac{M_w(x)}{M_w(1-x)} \right) = \frac{G_n(x)H_n(1-x) - H_n(x)G_n(1-x)}{[wG_n(1-x) + H_n(1-x)]^2}.
\]

(4.3)

Inequalities (4.2) and (4.3) imply that \(\frac{M_w(x)}{M_w(1-x)} \) is increasing with respect to \(w \geq 0 \) for any fixed \(x \in (0, \frac{1}{2}]^n \). From this monotonicity and the fact that \(M_0(x) = H_n(x) \) and \(M_{+\infty}(x) = G_n(x) \), we clearly see that Theorem 4.1(ii) is true.

1.5 Theorem 4.2. Suppose that \(x = (x_1, x_2, \cdots, x_n) \in \mathbb{R}_+^n \), and \(\sum_{i=1}^{n} x_i = s \). If \(c \geq s \) and \(w \geq 0 \), then

(i) \(M_w(x) \leq \frac{1}{s-1} M_w(c-x) = \frac{1}{s-1} M_w(c-x_1, c-x_2, \cdots, c-x_n) \);

(ii) \(M_w\left(\frac{1}{c-x}\right) \geq (\frac{w}{s}-1) M_w\left(\frac{1}{c-x_1}, \frac{1}{c-x_2}, \cdots, \frac{1}{c-x_n}\right) \);

(iii) \(\frac{M_{w+1}\left(\frac{1}{c-x}\right)}{M_w\left(\frac{1}{c-x}\right)} \geq \frac{M_{w+1}\left(\frac{1}{c-x_1}, \frac{1}{c-x_2}, \cdots, \frac{1}{c-x_n}\right)}{M_w\left(\frac{1}{c-x_1}, \frac{1}{c-x_2}, \cdots, \frac{1}{c-x_n}\right)} \).

Proof. A result from [4, Lemma 2.3] gives

\[
\frac{c-x}{w} = \left(\frac{c-x_1}{w} \frac{c-x_2}{w} \cdots \frac{c-x_n}{w} \right) < (x_1, x_2, \cdots, x_n) = x.
\]

(4.4)

Therefore, Theorem 4.2(i) follows from Lemma 3.1(i), (4.4) and (1.1); Theorem 4.2(ii) follows from Lemma 3.1(iii), (4.4) and (1.1); Theorem 4.2(iii) follows from Lemma 3.2(ii), (4.4) and (1.1).

1.5 Theorem 4.3. Suppose that \(x = (x_1, x_2, \cdots, x_n) \in \mathbb{R}_+^n \), and \(\sum_{i=1}^{n} x_i = s \). If \(c \geq 0 \) and \(w \geq 0 \), then

(i) \(M_w(x) \leq \frac{1}{w+1} M_w(c+x) = \frac{1}{w+1} M_w(c+x_1, c+x_2, \cdots, c+x_n) \);

(ii) \(M_w\left(\frac{1}{c+x}\right) \geq (\frac{w}{s}+1) M_w\left(\frac{1}{c+x_1}, \frac{1}{c+x_2}, \cdots, \frac{1}{c+x_n}\right) \);

(iii) \(\frac{M_{w+1}\left(\frac{1}{c+x}\right)}{M_w\left(\frac{1}{c+x}\right)} \geq \frac{M_{w+1}\left(\frac{1}{c+x_1}, \frac{1}{c+x_2}, \cdots, \frac{1}{c+x_n}\right)}{M_w\left(\frac{1}{c+x_1}, \frac{1}{c+x_2}, \cdots, \frac{1}{c+x_n}\right)} \).
Proof. A result from [4, Lemma 2.4] gives
\[
\frac{c + x}{\frac{nc}{s} + 1} = \left(\frac{c + x_1}{\frac{nc}{s} + 1}, \frac{c + x_2}{\frac{nc}{s} + 1}, \ldots, \frac{c + x_n}{\frac{nc}{s} + 1} \right) \succ (x_1, x_2, \ldots, x_n) = x. \tag{4.5}
\]

Therefore, Theorem 4.3(i) follows from Lemma 3.1(i), (4.5) and (1.1); Theorem 4.3(ii) follows from Lemma 3.1(iii), (4.5) and (1.1); Theorem 4.3(iii) follows from Lemma 3.2(ii), (4.5) and (1.1).

1.5 Theorem 4.4. Suppose that \(x = (x_1, x_2, \ldots, x_n) \in R^n_+ \) and \(\sum_{i=1}^n x_i = s \).

If \(0 \leq \lambda \leq 1 \) and \(w \geq 0 \), then
(i) \(M_w(x) \leq \frac{1}{n-\lambda} M_w(s - \lambda x) \);
(ii) \(M_w(x) \leq \frac{1}{n+\lambda} M_w(s + \lambda x) \);
(iii) \(M_w(\frac{1}{x}) \geq (n - \lambda) M_w(\frac{1}{s + \lambda x}) \);
(iv) \(M_w(\frac{1}{x}) \geq (n + \lambda) M_w(\frac{1}{s - \lambda x}) \);
(v) \(\frac{M_{w+1}(\frac{1}{x})}{M_w(\frac{1}{x})} \geq \frac{M_{w+1}(\frac{1}{s + \lambda x})}{M_w(\frac{1}{s + \lambda x})} \);
(vi) \(\frac{M_{w+1}(\frac{1}{x})}{M_w(\frac{1}{x})} \geq \frac{M_{w+1}(\frac{1}{s - \lambda x})}{M_w(\frac{1}{s - \lambda x})} \).

Proof. A result due to S.H. Wu [12, Lemma 2] gives
\[
\frac{s - \lambda x}{n - \lambda} = \left(\frac{s - \lambda x_1}{n - \lambda}, \frac{s - \lambda x_2}{n - \lambda}, \ldots, \frac{s - \lambda x_n}{n - \lambda} \right) \prec (x_1, x_2, \ldots, x_n) = x. \tag{4.6}
\]

It is not difficult to verify that
\[
\frac{s + \lambda x}{n + \lambda} = \left(\frac{s + \lambda x_1}{n + \lambda}, \frac{s + \lambda x_2}{n + \lambda}, \ldots, \frac{s + \lambda x_n}{n + \lambda} \right) \prec (x_1, x_2, \ldots, x_n) = x. \tag{4.7}
\]

Therefore, Theorem 4.4 follows from Lemma 3.1(i) and (iii), Lemma 3.2(ii) and (1.1) together with (4.6) and (4.7).

Theorem 4.5. Suppose that \(A = A_1 A_2 \cdots A_{n+1} \) be an \(n \)-dimensional simplex in \(R^n \) (\(n \geq 3 \)). Let \(P \) be an arbitrary point in the interior of \(A \), and \(B_i \) stand for the intersection point of straight line \(A_i P \) and the hyperplane \(\Sigma_i = A_1 A_2 \cdots A_{i-1} A_{i+1} \cdots A_n A_{n+1}, i = 1, 2, \ldots, n, n+1 \). If \(w \geq 0 \), then 1.5
(i) \(M_w\left(\frac{P B_1}{A_1 B_1}, \frac{P B_2}{A_2 B_2}, \ldots, \frac{P B_{n+1}}{A_{n+1} B_{n+1}} \right) \leq \frac{1}{n+1} \);
(ii) \(M_w\left(\frac{A_1 P}{A_1 B_1}, \frac{A_2 P}{A_2 B_2}, \ldots, \frac{A_{n+1} P}{A_{n+1} B_{n+1}} \right) \leq \frac{n}{n+1} \);
(iii) \(M_w\left(\frac{A_1 B_1}{P B_1}, \frac{A_2 B_2}{P B_2}, \ldots, \frac{A_{n+1} B_{n+1}}{P B_{n+1}} \right) \geq n + 1 \);
(iv) \(M_w\left(\frac{A_1 B_1}{A_1 P}, \frac{A_2 B_2}{A_2 P}, \ldots, \frac{A_{n+1} B_{n+1}}{A_{n+1} P} \right) \geq \frac{n+1}{n} \).
Proof. One can easily see that $\sum_{i=1}^{n+1} \frac{P_{B_i}}{\lambda_i} = 1$ and $\sum_{i=1}^{n+1} \frac{A_i P}{\lambda_i B_i} = n$. Therefore, Theorem 4.5 follows from Lemma 3.1(i) and (iii), (1.1) together with the fact that

$$\left(\frac{1}{n+1}, \frac{1}{n+1}, \ldots, \frac{1}{n+1}\right) \prec \left(\frac{PB_1}{A_1 B_1}, \frac{PB_2}{A_2 B_2}, \ldots, \frac{PB_{n+1}}{A_{n+1} B_{n+1}}\right)$$

and

$$\left(\frac{n}{n+1}, \frac{n}{n+1}, \ldots, \frac{n}{n+1}\right) \prec \left(\frac{A_1 P}{A_1 B_1}, \frac{A_2 P}{A_2 B_2}, \ldots, \frac{A_{n+1} P}{A_{n+1} B_{n+1}}\right).$$

Theorem 4.6. Suppose that $A \in M_n(C)$ ($n \geq 2$) is a complex matrix, $\lambda_1, \lambda_2, \ldots, \lambda_n$ and $\sigma_1, \sigma_2, \ldots, \sigma_n$ are the eigenvalues and singular values of A, respectively. If A is a positive definite Hermitian matrix and $w \geq 0$, then

(i) $M_w(\lambda_1, \lambda_2, \ldots, \lambda_n) \leq \frac{\text{tr} A}{n}$;

(ii) $M_w(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \ldots, \frac{1}{\lambda_n}) \geq \frac{\text{tr} A}{n}$;

(iii) $M_w(\lambda_1, \lambda_2, \ldots, \lambda_n) \leq \sqrt[2]{\det A}$;

(iv) $M_w(1 + \lambda_1, 1 + \lambda_2, \ldots, 1 + \lambda_n) \leq \sqrt[2]{\det(I + A)}$;

(v) $M_w(\sigma_1, \sigma_2, \ldots, \sigma_n) \leq M_w(\lambda_1, \lambda_2, \ldots, \lambda_n)$;

(vi) $M_w(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \ldots, \frac{1}{\lambda_n}) \leq \frac{M_{w+1}(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \ldots, \frac{1}{\lambda_n})}{M_w(\frac{1}{\sigma_1}, \frac{1}{\sigma_2}, \ldots, \frac{1}{\sigma_n})}$.

Proof. We clearly see that $\lambda_i > 0$, $\sigma_i > 0$ ($i = 1, 2, \ldots, n$), $\sum_{i=1}^{n} \lambda_i = \text{tr} A$, $\prod_{i=1}^{n} \lambda_i = \det A$ and $\prod_{i=1}^{n} (1 + \lambda_i) = \det(I + A)$. These lead to that

$$\left(\frac{\text{tr} A}{n}, \frac{\text{tr} A}{n}, \ldots, \frac{\text{tr} A}{n}\right) \prec (\lambda_1, \lambda_2, \ldots, \lambda_n),$$

$$\log\left(\sqrt[n]{\det A}, \sqrt[n]{\det A}, \ldots, \sqrt[n]{\det A}\right) \prec \log(\lambda_1, \lambda_2, \ldots, \lambda_n)$$

and

$$\log(\sqrt[2]{\det(I + A)}, \sqrt[2]{\det(I + A)}, \ldots, \sqrt[2]{\det(I + A)}) \prec \log(1 + \lambda_1, 1 + \lambda_2, \ldots, 1 + \lambda_n).$$

(4.11)

A result due to H. Weyl [11] gives

$$\log(\lambda_1, \lambda_2, \ldots, \lambda_n) \prec \log(\sigma_1, \sigma_2, \ldots, \sigma_n).$$

(4.12)

Therefore, Theorem 4.6 follows from Lemma 3.1, 3.2, and (1.1) together with (4.8)-(4.11).
References

Received: February, 2009