Common Fixed Point Theorems for S-Weakly Commuting, S-Compatible and RS-Weakly Commuting Mappings of Complete S-Fuzzy Metric Spaces

M. S. Rathore, Deepak Singh and Naval Singh

deepak.singh.2006@indiatimes.com

Abstract. In this paper we prove common fixed point theorem for S-Weakly commuting, S-Compatible and RS-weakly commuting maps in S-Fuzzy metric spaces.

Mathematics Subject Classification: 54H25, 47H10

Keywords: S-Fuzzy metric spaces, S-Weakly commuting maps, S-Compatible and RS-weakly commuting maps

1. INTRODUCTION

2. PRELIMINARIES

Definition 2.1 [1]. The 3-tuple \((X, S, \ast)\) is said to be a S-fuzzy metric space if \(X\) is an arbitrary set, \(\ast\) a continuous t-norm and \(S\) is a fuzzy set on \(X^3 \times (0, \infty)\), satisfying the following conditions

(i) \(S(x, y, z, t) > 0\),

(ii) \(S(x, y, z, t) = 1\) if and only if \(x = y = z\) (coincidence),

(iii) \(S(x, y, z, t) = S(y, z, x, t) = S(z, y, x, t) = \ldots\) (Symmetry),

(iv) \(S(x, y, z, r + s + t) \geq S(x, y, w, r) \ast S(x, w, z, s) \ast S(w, y, z, t)\) (tetrahedral inequality)

(v) \(S(x, y, z, \cdot) : (0, \infty) \rightarrow [0,1]\) is continuous for all \(x, y, z, w \in X\) and \(r, s, t > 0\).

Definition 2.2 [1]. A sequence \(\{x_n\}\) in a S-fuzzy metric space \((X, S, \ast)\) is a Cauchy sequence if and only if for each \(\varepsilon > 0, t > 0\), there exists \(n_0 \in \mathbb{N}\) such that

\[S(x_n, x_m, x_p, t) > 1 - \varepsilon\]

for all \(n, m, p \geq n_0\).

Definition 2.3 [1]. A sequence \(\{x_n\}\) in a fuzzy metric space \((X, M, \ast)\) converges to \(x\) if and only if for each \(\varepsilon > 0, t > 0\), there exists \(n_0 \in \mathbb{N}\) such that

\[M(x_n, x, t) > 1 - \varepsilon\]

for all \(n \geq n_0\).

Definition 2.4 [1]. A S-fuzzy metric space in which every Cauchy sequence is a convergent sequence, is called a complete S-fuzzy metric space.

Geometrically, \(S(x, y, z, t)\) represents the fuzzy perimeter of the triangle whose vertices are the points \(x, y\) and \(z\) with respect to \(t > 0\).

Definition 2.5 [7]. Let \(A\) and \(B\) be mappings from a metric space \((X, d)\) into itself. Then \(A\) and \(B\) are said to be weakly commuting mappings on \(X\) if

\[d(ABx, BAx) \leq d(Ax, Bx)\]

for all \(x \in X\).

Definition 2.6 [3,4]. Let \(A\) and \(B\) be mappings from a metric space \((X, d)\) into itself. Then \(A\) and \(B\) are said to be compatible mappings on \(X\) if

\[\lim_{n \to \infty} d(ABx_n, BAx_n) = 0\]

where \(\{x_n\}\) is a sequence in \(X\) such that

\[\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Bx_n = t\]

for some point \(t\) in \(X\).

Definition 2.7 [2] Two mappings \(f\) and \(g\) of a fuzzy metric space \((X, M, \ast)\) into itself are said to be weakly commuting if \(M(fgx, gfx, t) \leq M(fx, gx, t)\) for each \(x \in X\).

Definition 2.8 [2]. Self mappings \(F\) and \(G\) of a fuzzy metric space \((X, M, \ast)\) are said to be compatible iff \(M(FGx_n, GFx_n, t) \rightarrow 1\) for all \(t > 0\), whenever \(\{x_n\}\) is a sequence in \(X\) such that \(Gx_n, Fx_n \rightarrow y\) for some \(y\) in \(X\).

Now we define S-weakly commuting maps and S-compatible maps in S-fuzzy metric space \((X, S, \ast)\)

Definition 2.9. Two self maps \(A\) and \(B\) of a S-fuzzy metric space \((X, S, \ast)\) are said to be S-weakly commuting if

\[S(ABx, BAx, y, t) \geq S(Ax, Bx, z, t)\]

where \(y = ABx\) or \(BAx\) and \(z = Ax\) or \(Bx\) for all \(x \in X\).
Definition 2.10. Two self mappings A and B of a S-fuzzy metric space
\((X, S, *)\) are said to be S-compatible if

\[
\lim_{n \to \infty} S(ABx_n, BAx_n, z, t) = 1 \text{ where } z = ABx_n \text{ or } BAx_n, \text{ whenever } \{x_n\} \text{ is a sequence in } X \text{ such that } \lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Bx_n = y, \text{ for some } y \in X.
\]

Clearly, commutativity implies S-weak commutativity and S-weak commutativity implies S-compatibility, but neither implication is reversible always. This can be seen in following examples.

Example 2.1 - Let \(X = [0, 1]\).
Define \(S(x, y, z, t) = \min\{M(x, y, t), M(y, z, t), M(z, x, t)\}\),

\[
M(x, y, t) = \frac{t}{t + d(x, y)} \quad \text{and} \quad d(x, y) = |x - y| \quad \forall \ x, y \in X.
\]

Also define self maps A and B of X by \(Ax = x^2\), \(Bx = x^2/2 \quad \forall \ x \in X\). Then we see that \(AB \neq BA\) and \(S(ABx_n, BAx_n, ABx_n, t) \geq S(Ax_n, Bx_n, Ax_n, t) \quad \forall \ x \in [0, 1]\).
This shows S-weak commutativity does not imply commutativity.

Example 2.2 - Let \(X = \mathbb{R}\)
Define \(S(x, y, z, t) = \min\{M(x, y, t), M(y, z, t), M(z, x, t)\}\) where

\[
M(x, y, t) = \frac{t}{t + d(x, y)} \quad \text{and} \quad d(x, y) = |x - y| \quad \forall \ x, y \in \mathbb{R}.
\]

Also define self maps A and B of X by \(Ax = x^2\), \(Bx = x^3/3 \quad \forall \ x \in \mathbb{R}\) and \(x_n = 1/n, n = 1, 2, 3 \ldots\)
Here \(\lim Ax_n = \lim Bx_n = 0 \in X\).
And \(S(ABx_n, BAx_n, ABx_n, t) \to 1 \text{ as } n \to \infty\). But \(S(ABx, BAx, ABx, t) \neq S(Ax, Bx, Ax, t) \) is not true for all \(x \in \mathbb{R}\) and \(AB \neq BA\).
Thus we see that A and B are S-compatible but neither commutative nor S-weakly commutative.
3. Common fixed point theorems for S-weakly commuting maps and S-compatible maps in complete S-fuzzy metric spaces.

We prove the following theorem for S-weakly commuting maps.

Theorem 3.1. Let A, B, P and T be self maps of a complete S-fuzzy metric space \((X, S, *)\) with t-norm * defined by \(a * b = \min \{a, b\}\), \(a, b \in [0, 1]\) satisfying the conditions

(i) \(A(X) \subseteq T(X), B(X) \subseteq P(X)\),

(ii) One of A, B, P or T is continuous,

(iii) (A, P) and (B, T) are S-weakly commuting pairs of maps,

(iv) for all \(x, y, z \in X, 0 < k < 1, t > 0\)

\[S(Ax, By, z, kt) \geq \min \{S(Px, Ty, z, t), S(Ax, Ty, z, t), S(By, Px, z, t)\} \]

and

(v) \(S(x, y, z, t) \rightarrow 1\) as \(t \rightarrow \infty\)

Then A, B, P and T have a unique common fixed point in X.

Proof: Let \(x_0 \in X\) be arbitrary, construct a sequence \(\{y_n\}\) in X such that

\[y_{2n+1} = Tx_{2n+1} = Ax_{2n} \quad \text{and} \quad y_{2n} = Px_{2n} = Bx_{2n-1}; \quad n = 0, 1, 2, \ldots \]

using (iv), we have

\[S(y_1, y_2, y_m, kt) = S(Ax_0, Bx_1, y_m, kt) \]

\[\geq \min \{S(Px_0, Tx_1, y_m, t), S(Ax_0, Tx_1, y_m, t), S(Bx_1, Px_0, y_m, t)\} \]

\[= \min \{S(y_0, y_1, y_m, t), S(y_1, y_1, y_m, t), S(y_2, y_0, y_m, t)\} \]

\[\geq \min \{S(y_0, y_1, y_m, t), S(y_1, y_2, y_m, t), S(y_0, y_2, y_m, t)\}. \]

This implies that

\[S(y_1, y_2, y_m, kt) \geq S(y_0, y_1, y_m, t) \text{ or } S(y_0, y_2, y_m, t). \]

Further using (iv), we have

\[S(y_2, y_3, y_m, kt) = S(Bx_1, Ax_2, y_m, kt) = S(Ax_2, Bx_1, y_m, kt) \]

\[\geq \min \{S(Px_2, Tx_1, y_m, t), S(Ax_2, Tx_1, y_m, t), S(Bx_1, Px_2, y_m, t)\} \]

\[= \min \{S(y_2, y_1, y_m, t), S(y_3, y_1, y_m, t), S(y_2, y_2, y_m, t)\} \]

\[\geq \min \{S(y_1, y_2, y_m, t), S(y_1, y_3, y_m, t), S(y_2, y_3, y_m, t)\} \]

which implies that

\[S(y_2, y_3, y_m, kt) \geq S(y_1, y_2, y_m, t) \text{ or } S(y_1, y_3, y_m, t). \]

Proceeding in the same way, we get

\[S(y_n, y_{n+1}, y_m, kt) \geq S(y_{n-1}, y_n, y_m, t) \text{ or } S(y_{n-1}, y_{n+1}, y_m, t) \]

\[\geq \min \{S(y_{n-2}, y_{n-1}, y_m, t/k), S(y_{n-2}, y_{n+1}, y_m, t/k)\} \]

\[\geq \ldots \]

\[\geq \min \{S(y_0, y_1, y_m, t/k^{n-1}), S(y_0, y_{n+1}, y_m, t/k^{n-1})\}. \]
i.e. \(S(y_0, y_{n+1}, y_m, t) \geq S(y_0, y_1, y_m, t/k^n) \) or \(S(y_0, y_{n+1}, y_m, t/k^n) \)

Case I

When \(S(y_0, y_{n+1}, y_m, t) \geq S(y_0, y_1, y_m, t/k^n) \).

Then for \(p, q \in \mathbb{N} \) and \(t > 0 \), we have

\[
S(y_n, y_{n+p}, y_{n+p+q}, 3t) \geq S(y_0, y_1, y_{n+p+q}, t/k^n) \cdot S(y_0, y_1, y_{n+p}, t/k^n) \cdot S(y_0, y_{n+2}, y_{n+p+q}, 3t) \cdot S(y_0, y_{n+2}, y_{n+p}, t/k^n) \cdot \ldots \cdot S(y_0, y_{n+p-1}, y_{n+p+q}, t/k^n) \cdot S(y_0, y_{n+p-1}, y_{n+p}, t/k^n)
\]

Taking limit as \(n \to \infty \), we have

\[
\lim_{n \to \infty} S(y_n, y_{n+p}, y_{n+p+q}, 3t) = 1 \cdot 1 \cdot 1 \cdot \ldots \cdot 1 \text{ (2p-1 times)}
\]

which implies that

\[
S(y_n, y_{n+p}, y_{n+p+q}, 3t) \to 1 \text{ as } n \to \infty.
\]

Case II

When \(S(y_0, y_{n+1}, y_m, t) \geq S(y_0, y_{n+1}, y_m, t/k^n) \).

Then on the lines of case I, we have

\[
S(y_0, y_{n+p}, y_{n+p+q}, 3t) \geq S(y_0, y_{n+1}, y_{n+p+q}, t/k^n) \cdot S(y_0, y_{n+2}, y_{n+p+q}, t/k^n) \cdot \ldots \cdot S(y_0, y_{n+p-2}, y_{n+p+q}, t/k^n) \cdot S(y_0, y_{n+p-2}, y_{n+p}, t/k^n) \cdot S(y_0, y_{n+p-1}, y_{n+p+q}, t/k^n) \cdot S(y_0, y_{n+p-1}, y_{n+p}, t/k^n)
\]

Taking limit as \(n \to \infty \), we have

\[
\lim_{n \to \infty} S(y_n, y_{n+p}, y_{n+p+q}, 3t) = 1 \cdot 1 \cdot 1 \cdot \ldots \cdot 1 \text{ (2p-1 times)}
\]

which implies that
\[S(y_n, y_{n+p}, y_{n+p+q}, 3t) \to 1 \text{ as } n \to \infty. \]

Thus in both cases, \(\{y_n\} \) is a Cauchy sequence. By the completeness of \(X \), sequence \(\{y_n\} \) and its subsequences \(\{Ax_{2n}\}, \{Bx_{2n-1}\}, \{Px_{2n}\} \) and \(\{Tx_{2n+1}\} \) converge to some \(u \) in \(X \).

Now if we suppose that \(P \) is continuous then \(PAX_{2n}, PPX_{2n} \to Pu \).

Since \((A,P)\) are \(S \)-weakly commuting, therefore
\[S(APX_{2n}, PAX_{2n}, APX_{2n}, t) \geq S(Ax_{2n}, Px_{2n}, Ax_{2n}, t). \]

On letting \(n \to \infty \), we have
\[S(\lim_{n \to \infty} APX_{2n}, Pu, \lim_{n \to \infty} APX_{2n}, t) \geq S(u, u, u, t) = 1 \]
which implies that \(APX_{2n} \to Pu \). Now using (iv), we have
\[S(APX_{2n}, Bx_{2n+1}, u, kt) \geq \min \{ S(PPX_{2n}, Tx_{2n+1}, u, t), S(APX_{2n}, Tx_{2n+1}, u, t), S(Bx_{2n+1}, PPX_{2n}, u, t) \}. \]

On letting \(n \to \infty \), we have
\[S(Pu, u, u, kt) \geq \min \{ S(Pu, u, u, t), S(Pu, u, u, t), S(u, Pu, u, t) \} \]
or\[S(Pu, u, u, kt) \geq S(Pu, u, u, t) \]
which implies that \(Pu = u \).

Further using (iv), we have
\[S(Au, Bx_{2n+1}, u, kt) \geq \min \{ S(Pu, Tx_{2n+1}, u, t), S(Au, Tx_{2n+1}, u, t), S(Bx_{2n+1}, Pu, u, t) \} \]
on letting \(n \to \infty \), we have
\[S(Au, u, u, kt) \geq \min \{ S(u, u, u, t), S(Au, u, u, t), S(u, u, u, t) \} \]
or\[S(Au, u, u, kt) \geq S(Au, u, u, t) \]
which implies that \(Au = u \).

Since \(A(X) \subseteq T(X) \), there exists \(v \in X \) such that \(u = Tv = Pu \).

Using (iv), we have
\[S(u, Bv, u, kt) = S(Au, Bv, u, kt) \]
\[\geq \min \{ S(Pu, Tv, u, t), S(Au, Tv, u, t), S(Bv, Pu, u, t) \} \]
\[= \min \{ S(u, u, u, t), S(u, u, u, t), S(Bv, u, u, t) \} \]
or\[S(u, Bv, u, kt) \geq S(u, Bv, u, t) \]
which implies that \(Bv = u \). Thus \(u = Bv = Tv \). Since \((T, B) \) are \(S \)-weakly commuting, therefore
\[S(TBv, BTv, Tbv, t) \geq S(Tv, Bv, Tv, t) = 1 \]
which implies that \(TBv = BTv \) and so \(Tu = Bu \).

Using (iv), we have
\[S(u, Tu, u, kt) = S(Au, Bu, u, kt) \]
\[\geq \min \{ S(Pu, Tu, u, t), S(Au, Tu, u, t), S(Bu, Pu, u, t) \} \]
\[= \min \{ S(u, Tu, u, t), S(u, Tu, u, t), S(Tu, u, u, t) \} \]
\[S(u, Tu, u, kt) \geq S(u, Tu, u, t) \]
which implies that $u = Tu = Bu$. Hence $u = Tu = Bu = Au = Pu$.
Show u is a common fixed point of A, B, P and T.
Now to prove uniqueness of u, let w be another common fixed point of A, B, P and T. Then from (iv), we have

$$S(u, w, u, kt) = S(Au, Bw, u, kt) \geq \min\{S(Pu, Tw, u, t), S(Au, Tw, u, t), S(Bw, Pu, u, t)\}$$

$$= \min\{S(u, w, u, t), S(u, w, u, t), S(w, u, u, t)\}$$

or $S(u, w, u, kt) \geq S(u, w, u, t)$

which implies that $u = w$.
Hence u is a unique common fixed point of A, B, P and T.

To prove our next Theorem for S-compatible maps we shall make use of following proposition.

Proposition 3.2. Let A and B be S-compatible self-mappings of a S-fuzzy metric space X.
If $Ay = By$ then $ABy = BAy$.

Proof: Let $Ay = By$ and $\{x_n\}$ be a sequence in X, such that $x_n = y$ for all n.
Then $Ax_n, Bx_n \rightarrow Ay$.
Now by the S-compatibility of A and B, we have $S(ABx_n, BAy, ABy, t) = S(ABx_n, BAx_n, ABx_n, t) \rightarrow 1$, as $n \rightarrow \infty$,
which yields $ABy = BAy$.

Now we prove following theorem for S-compatible maps.

Theorem 3.3. Let A, B, P and T be self maps of a complete S-fuzzy metric space (X, S, \ast) with t-norm \ast defined by $a \ast b = \min\{a, b\}, a, b \in [0, 1]$ satisfying

(i) $A(X) \subseteq T(X), B(X) \subseteq P(X)$,

(ii) One of A, B, P or T is continuous,

(iii) (A, P) and (B, T) are S-compatible pairs of maps,

(iv) for all $x, y, z \in X$, $0 < k < 1, t > 0$

$$S(Ax, By, z, kt) \geq \min\{S(Px, Ty, z, t), S(Ax, Ty, z, t), S(By, Px, z, t), S(Ax, Px, z, t), S(By, Ty, z, t)\}$$

or

$$S(x, y, z, t) \rightarrow 1 \text{ as } t \rightarrow \infty.$$}

Then A, B, P and T have a unique common fixed point in X.

Proof: Let $x_0 \in X$ be arbitrary. Construct a sequence $\{y_n\}$ in X such that

$y_{2n+1} = Ax_{2n}$ and $y_{2n} = Px_{2n} = Bx_{2n-1}$; $n = 0, 1, 2, \ldots$.

Using (iv), we have

$$S(y_1, y_2, y_m, kt) = S(Ax_0, Bx_1, y_m, kt) \geq \min\{S(Px_0, Tx_1, y_m, t), S(Ax_0, Tx_1, y_m, t), S(By_0, Px_0, y_m, t), S(Ax_0, Px_0, y_m, t), S(By_0, Ty_1, y_m, t)\}$$

$$= \min\{S(y_0, y_1, y_m, t), S(y_1, y_1, y_m, t), S(y_2, y_0, y_m, t), S(y_1, y_0, y_m, t), S(y_2, y_1, y_m, t)\}$$

which implies that $u = w$.

Hence u is a unique common fixed point of A, B, P and T.
\[S(y_0, y_1, y_m, t) \leq \min \{ S(y_0, y_1, y_m, t), S(y_1, y_2, y_m, t), S(y_0, y_2, y_m, t) \} \]

which implies that
\[S(y_1, y_2, y_m, kt) \geq S(y_0, y_1, y_m, t) \text{ or } S(y_0, y_2, y_m, t). \]

Further using (iv), we have
\[S(y_2, y_3, y_m, kt) = S(Bx_1, Ax_2, y_m, kt) \]
\[\geq \min \{ S(Px_2, Tx_1, y_m, t), S(Ax_2, Tx_1, y_m, t), S(Bx_1, Px_2, y_m, t), S(Ax_2, Px_2, y_m, t), S(Bx_1, Tx_1, y_m, t) \} \]
\[= \min \{ S(y_2, y_1, y_m, t), S(y_3, y_1, y_m, t), S(y_2, y_2, y_m, t), S(y_3, y_2, y_m, t), S(y_2, y_1, y_m, t) \}. \]

which implies that
\[S(y_2, y_3, y_m, kt) \geq S(y_1, y_2, y_m, t) \text{ or } S(y_1, y_3, y_m, t). \]

Again with the similar process as in Theorem 3.1, we can show \(\{y_n\} \) is a Cauchy sequence. By the completeness of \(X \), sequence \(\{y_n\} \) and its subsequences \(\{Ax_{2n}\}, \{Bx_{2n-1}\}, \{Px_{2n}\} \) and \(\{Tx_{2n+1}\} \) converge to some \(u \) in \(X \). Now if we suppose that \(P \) is continuous then \(PAx_{2n} \to Pu \).

Since \((A,P) \) are S-compatible, therefore
\[\lim_{n \to \infty} S(PAx_{2n}, APx_{2n}, PAx_{2n}, t) = 1, \]
where \(\{x_n\} \) is a sequence such that
\[\lim_{n \to \infty} Ax_{2n} = \lim_{n \to \infty} Px_{2n} = u. \]

Thus, we have \(S(Pu, \lim APx_{2n}, Pu, t) = 1 \)

which implies that \(\lim APx_{2n} = Pu. \)

Now using (iv), we have
\[S(APx_{2n}, Bx_{2n+1}, u, kt) \geq \min \{ S(PPx_{2n}, Tx_{2n+1}, u, t), S(APx_{2n}, Tx_{2n+1}, u, t), S(Bx_{2n+1}, PPx_{2n}, u, t), S(APx_{2n}, PPx_{2n}, u, t), S(Bx_{2n+1}, Tx_{2n+1}, u, t) \}. \]

On letting \(n \to \infty \), we have
\[S(Pu, u, u, kt) \geq \min \{ S(Pu, u, u, t), S(Pu, u, u, t), S(u, Pu, u, t), S(Pu, Pu, u, t), S(u, u, u, t) \} \]
\[= S(Pu, u, u, t) \]

which implies that
\[S(Pu, u, u, kt) \geq S(Pu, u, u, t). \]

Hence \(Pu = u. \)

Further using (iv), we have
\[S(Au, Bx_{2n+1}, u, kt) \geq \min \{ S(Pu, Tx_{2n+1}, u, t), S(Au, Tx_{2n+1}, u, t), S(Bx_{2n+1}, Pu, u, t), S(Au, Pu, u, t), S(Bx_{2n+1}, Tx_{2n+1}, u, t) \}. \]

On letting \(n \to \infty \), we have
Common fixed point theorems

\[S(Au, u, u, kt) \geq \min \{ S(u, u, u, t), S(Au, u, u, t), S(u, u, u, t), S(Au, u, u, t) \} \]

this implies that
\[S(Au, u, u, kt) \geq S(Au, u, u, t) \]

Hence \(Au = u \). Since \(A(X) \subseteq T(X) \), there exists \(v \in X \) such that \(u = Tv = Pu \).

Using (iv), we have
\[S(u, Bv, u, kt) = S(Au, Bv, u, kt) \geq \min \{ S(Pu, Tv, u, t), S(Au, Tv, u, t), S(Bv, Pu, u, t), S(Au, Pu, u, t), S(Bv, Tv, u, t) \} \]

This implies that
\[S(u, Bv, u, kt) \geq S(u, Bv, u, t) \]

which implies that \(Bv = u \). Thus \(u = Bv = Tv \).

By compatibility of \((T, B) \) and from proposition 3.2, we have \(TBv = BTv \) and so \(Tu = Bu \).

Using (iv), we have
\[S(u, Tu, u, kt) = S(Au, Bu, u, kt) \geq \min \{ S(Pu, Tu, u, t), S(Au, Tu, u, t), S(Bu, Pu, u, t), S(Au, Pu, u, t), S(Bu, Tu, u, t) \} \]

which implies that \(Tu = Tu = Bu \). Hence \(u = Tu = Bu = Au = Pu \), shows \(u \) is a common fixed point of \(A, B, P \) and \(T \).

Now to prove uniqueness of \(u \), let \(w \) be another common fixed point of \(A, B, P \) and \(T \).

Then from (iv), we have
\[S(u, w, u, kt) = S(Au, Bw, u, kt) \geq \min \{ S(Pu, Tw, u, t), S(Au, Tw, u, t), S(Bw, Pu, u, t), S(Au, Pu, u, t), S(Bw, Tw, u, t) \} \]

This implies that
\[S(u, w, u, kt) \geq S(u, w, u, t) \]

Hence \(u = w \). Thus \(u \) is a unique common fixed point of \(A, B, P \) and \(T \).

4. Common fixed point theorems for RS-weakly commuting maps in complete S-fuzzy metric spaces

Pant, R.P. [5] introduced the notion of R-weakly commutativity of mappings in metric spaces as follows.
Definition 4.1. Two mappings \(f \) and \(g \) of a metric space \((X, d) \) into itself are said to be \(R \)-weakly commuting, provided there exists some positive real number \(R \) such that
\[
d(fgx, gfx) \leq Rd(fx, gx)
\]
for each \(x \) in \(X \).
Later on Vasuki, R. \[6\] defined \(R \)-weakly commuting maps in fuzzy metric spaces as follows.

Definition 4.2: The mappings \(f \) and \(g \) of a fuzzy metric space \((X, M, *) \) into itself are \(R \)-weakly commuting, provided there exists some positive real number \(R \) such that
\[
M(fgx, gfx, t) \geq M(fx, gx, t/R)
\]
for all \(x \) in \(X \).

Now we define RS-weakly commuting maps in S-fuzzy metric space \((X, S, *) \)

Definition 4.3. Two self maps \(A \) and \(B \) of a \(S \)-fuzzy metric space \((X, S, *) \) are said to be \(RS \)-weakly commuting, if there exists some positive real number \(R \) such that
\[
S(ABx, BAx, y, t) \geq S(Ax, Bx, z, t/R)
\]
where \(y = ABx \) or \(BAx \) and \(z = Ax \) or \(Bx \) for all \(x \in X \).

Obviously, \(S \)-weak commutativity implies \(RS \)-weak commutativity. But convers is not true always.

This can be seen in following example.

Example 4.1 - Let \(X \) be the set of real numbers. Define \(S(x, y, z, t) = \min\{M(x, y, t), M(y, z, t), M(z, x, t)\} \)
\[
t + d(x, y)
\]
also define self maps \(A \) and \(B \) of \(X \) by \(Ax = 2x - 1 \), \(Bx = x^2 \).
Then \(AB \neq BA \) and clearly
\[
S(ABx, BAx, ABx, t) = S(Ax, Bx, Ax, t/R)
\]
for \(R = 2 \) and so
\[
S(ABx, BAx, ABx, t) \geq S(Ax, Bx, Ax, t/R)
\]
is true.
Also it can easily be seen that
\[
S(ABx, BAx, ABx, t) \geq S(Ax, Bx, Ax, t)
\]
is not true.

Vasuki, R. \[6\] proved the following.

Theorem 4.1. Let \((X, M, *) \) be a complete fuzzy metric space and let \(f \) and \(g \) be \(R \)-weakly commuting self mappings of \(X \) satisfying the conditions
\[
M(fx, fy, t) \geq r(M(gx, gy, t))
\]
where \(r : [0, 1] \rightarrow [0, 1] \) is a continuous function such that \(r(t) > t \) for each \(0 < t < 1 \). The sequences \(\{x_n\} \) and \(\{y_n\} \) in \(X \) are such that
\[
x_n \rightarrow x, \quad y_n \rightarrow y, \quad t > 0 \implies M(x_n, y_n, t) \rightarrow M(x, y, t)
\]
If the range of \(g \) contains the range of \(f \) and if either \(f \) or \(g \) is continuous, then \(f \) and \(g \) have a unique common fixed point.

Now we prove the following theorem

Theorem 4.2. Let \((X, S, *) \) be a complete \(S \)-fuzzy metric space and \(A \) and \(B \) are \(RS \)-weakly commuting self maps of \(X \) satisfying
(i) $A(X) \subset B(X)$,
(ii) A or B is continuous,
(iii) $S(Ax, Ay, Az, t) \geq \phi \{ S(Bx, By, Bz, t) \}$

where $\phi : [0, 1] \rightarrow [0, 1]$ is a continuous function such that $\phi(t) > t$ for each $0 < t < 1$ and $\phi(1) = 1$.

Then A and B have a unique common fixed point.

Proof: Let x_0 be an arbitrary point in X. Since $A(X) \subset B(X)$ choose a point x_1 in X such that $Ax_0 = Bx_1$. In general choose x_{n+1} such that $Ax_n = Bx_{n+1}$. Then for $t > 0$

$$S(Ax_n, Ax_{n+1}, A x_{n+p}, t) \geq \phi \{ S(Bx_n, Bx_{n+1}, Bx_{n+p}, t) \} = \phi \{ S(Ax_{n-1}, Ax_n, A x_{n+p-1}, t) \}$$

or $S(Ax_n, Ax_{n+1}, A x_{n+p}, t) > S(Ax_{n-1}, Ax_n, A x_{n+p-1}, t)$, since $\phi(t) > t$ (1)

Thus $\{ S(Ax_n, Ax_{n+1}, A x_{n+p}, t), \ n \geq 0 \}$ is an increasing sequence of positive real numbers in $[0, 1]$ and therefore tends to a limit $L \leq 1$. We claim that $L = 1$. For if $L < 1$, on making $n \rightarrow \infty$ in (1), we have

$L \geq \phi(L) > L$ which is a contradiction. Hence $L = 1$.

Now for $p, q \in \mathbb{N}$ and $t > 0$, we have

$$S(Ax_n, Ax_{n+p}, Ax_{n+p+q}, t) \geq S(Ax_n, Ax_{n+1}, Ax_{n+p+q}, t/3)*S(Ax_n, Ax_{n+1}, Ax_{n+p}, t/3)$$

$$* S(Ax_{n+1}, Ax_{n+p}, Ax_{n+p+q}, t/3)$$

$$\geq S(Ax_n, Ax_{n+1}, Ax_{n+p+q}, t/3)*S(Ax_n, Ax_{n+1}, Ax_{n+p}, t/3)$$

$$* S(Ax_{n+1}, Ax_{n+2}, Ax_{n+p+q}, t/3^2)$$

$$* S(Ax_{n+1}, Ax_{n+2}, Ax_{n+p}, t/3^2)$$

$$\geq S(Ax_n, Ax_{n+1}, Ax_{n+p+q}, t/3) * S(Ax_n, Ax_{n+1}, Ax_{n+p}, t/3)$$

$$* S(Ax_{n+1}, Ax_{n+2}, Ax_{n+p+q}, t/3^2)$$

$$* S(Ax_{n+1}, Ax_{n+2}, Ax_{n+p}, t/3^2)$$

$$\geq S(Ax_n, Ax_{n+1}, Ax_{n+p+q}, t/3) * S(Ax_n, Ax_{n+1}, Ax_{n+p}, t/3)$$

$$* S(Ax_{n+1}, Ax_{n+2}, Ax_{n+p+q}, t/3^2)$$

$$* S(Ax_{n+1}, Ax_{n+2}, Ax_{n+p}, t/3^2)$$

$$\geq S(Ax_n, Ax_{n+1}, Ax_{n+p+q}, t/3) * S(Ax_n, Ax_{n+1}, Ax_{n+p}, t/3)$$

$$* S(Ax_{n+1}, Ax_{n+2}, Ax_{n+p+q}, t/3^2)$$

$$* S(Ax_{n+1}, Ax_{n+2}, Ax_{n+p}, t/3^2)$$

$$\geq S(Ax_n, Ax_{n+1}, Ax_{n+p+q}, t/3) * S(Ax_n, Ax_{n+1}, Ax_{n+p}, t/3)$$

$$* S(Ax_{n+1}, Ax_{n+2}, Ax_{n+p+q}, t/3^2)$$

$$* S(Ax_{n+1}, Ax_{n+2}, Ax_{n+p}, t/3^2)$$

$$\geq S(Ax_n, Ax_{n+1}, Ax_{n+p+q}, t/3) * S(Ax_n, Ax_{n+1}, Ax_{n+p}, t/3)$$

$$* S(Ax_{n+1}, Ax_{n+2}, Ax_{n+p+q}, t/3^2)$$

$$* S(Ax_{n+1}, Ax_{n+2}, Ax_{n+p}, t/3^2)$$

$$\geq S(Ax_n, Ax_{n+1}, Ax_{n+p+q}, t/3) * S(Ax_n, Ax_{n+1}, Ax_{n+p}, t/3)$$

$$* S(Ax_{n+1}, Ax_{n+2}, Ax_{n+p+q}, t/3^2)$$

$$* S(Ax_{n+1}, Ax_{n+2}, Ax_{n+p}, t/3^2)$$

$$\geq \ldots$$

Taking limit $n \rightarrow \infty$, we have

$$\lim_{n \rightarrow \infty} S(Ax_n, Ax_{n+p}, Ax_{n+p+q}, t) \geq 1 * 1 * 1 * \ldots * 1 \quad (2p-1 \text{ times})$$

or

$$\lim_{n \rightarrow \infty} S(Ax_n, Ax_{n+p}, Ax_{n+p+q}, t) = 1$$

Thus $\{Ax_n\}$ is a Cauchy sequence. By the completeness of the space, there is a point z in X, such that $\lim \ Ax_n = z$.

$$n \rightarrow \infty$$
Now let the mapping A be continuous. Then $AAX_n \to Az$ and $ABx_n \to Az$. Since A and B are RS-weakly commuting, we have

$$S(ABx_n, BAX_n, ABx_n, t) \geq S(Ax_n, Bx_n, Ax_n, t/R).$$

On letting $n \to \infty$, we have

$$S(Az, \lim BAX_n, Az, t) \geq S(z, z, z, t/R) = 1.$$

This implies that $\lim BAX_n = Az$.

Suppose $Az \neq z$, then

$$S(z, Az, z, t) = \lim S(Ax_n, AAX_n, Ax_n, t)$$

\[\geq \lim_{n \to \infty} \phi \{S(Bx_n, BAX_n, Bx_n, t)\} \text{ from (iii)} \]

\[= \phi \lim_{n \to \infty} \{S(Bx_n, BAX_n, Bx_n, t)\} \]

\[= \phi \{S(z, Az, z, t)\} > S(z, Az, z, t), \quad \text{since } \phi(t) > t \]

i.e. $S(z, Az, z, t) > S(z, Az, z, t)$

which implies that $Az = z$. Again $A(X) \subset B(X)$, we can find z_1 in X such that $z = Az = Az_1$.

Now using (iii), we have

$$S(AAX_n, Az_1, AAX_n, t) \geq \phi \{S(Bz_1, Bz_1, Bz_1, t)\}.$$

On letting $n \to \infty$, we get

$$S(Az, Az_1, Az, t) \geq \phi \{S(Az, z, Az, t)\} = 1, \quad \text{since } \phi(1) = 1 \text{ and } Az = z$$

which implies that $Az = Az_1$ i.e. $z = Az = Az_1 = Bz_1$.

Also for any $t > 0$

$$S(Az, Bz, Az, t) = S(ABz_1, BAz_1, ABz_1, t) \geq S(Az_1, Bz_1, Az_1, t/R),$$

by RS-weakly commutativity

$$= 1$$

This implies that $Az = Bz$.

Thus z is a common fixed point of A and B.

To prove the uniqueness, let $z' \neq z$ be another common fixed point of A and B. Now

$$S(z, z', z, t) = S(Az, Az', Az, t)$$

\[\geq \phi \{S(Bz, Bz', Bz, t)\} \]

\[= \phi \{S(z, z', z, t)\} \]

or $S(z, z', z, t) > S(z, z', z, t)$, since $\phi(t) > t$

a contradiction. Thus $z = z'$.

Hence A and B have a unique common fixed point.
Common fixed point theorems

References

M. S. Rathore, Government P.G. College Sehore M.P., India

Deepak Singh, Corporate Institute Of Science & Technology, Bhopal-462021, M.P., India

Naval Singh, Govt. Science and Commerce College, Benazir Bhopal-462021, M.P., India

Received: April, 2009