Slightly Fuzzy ω-Continuous Mappings M. Sudha, E. Roja and M. K. Uma Department of Mathematics Sri Sarada College For Women Salem – 636 016 Tamilnadu, India sudhaslm05@yahoo.com #### **Abstract** In this paper slightly fuzzy ω -continuous mappings is introduced and discussions on some interesting properties and characterizations of slightly fuzzy continuous mappings are done. Mathematics Subject Classification: 54A40, 03E72 **Keywords:** Fuzzy ω -closed set, fuzzy ω -continuous mappings, slightly fuzzy ω -continuous mappings, almost* fuzzy ω -continuous mappings, θ *-fuzzy ω -continuous mappings, weakly* fuzzy ω -continuous mappings # 1. Introduction The fuzzy concept has penetrated almost all branches of Mathematics since the introduction of the concept of fuzzy set by Zadeh [10]. Fuzzy sets have applications in many fields such as information [7] and control [9]. The theory of fuzzy topological spaces was introduced and developed by Chang [3]. The concept of slightly fuzzy continuous mappings was introduced by Sudha, Roja and Uma [8]. The concept of ω -continuity in topological spaces was introduced by Sheik John [6]. The motivation of this paper is to introduce slightly fuzzy ω -continuous mappings. Some interesting properties and characterizations of these mappings are discussed with necessary examples. In this paper, almost* fuzzy ω -continuous mappings are introduced and studied. It is also observed that slightly fuzzy ω -continuous mappings preserve fuzzy ω -connectedness and every slightly fuzzy ω -continuous mapping into a fuzzy ω -extremally disconnected space is almost* fuzzy ω -continuous. #### 2. Preliminaries We recall the following definitions which we used in this paper. # **Definition 2.1 [8]** Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping $f:(X,T)\to (Y,S)$ is said to be almost* fuzzy continuous, if for every fuzzy set $\alpha\in I^X$ and every fuzzy open set μ with $f(\alpha)\leq \mu$, there exists a fuzzy open set σ with $\alpha\leq \sigma$ such that $f(\sigma)\leq \inf cl \mu$. # **Definition 2.2** [8] Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping $f:(X,T)\to (Y,S)$ is said to be θ^* -fuzzy continuous if for every fuzzy set $\alpha\in I^X$ and every fuzzy open set μ with $f(\alpha) \le \mu$, there exists a fuzzy open set σ with $\alpha \le \sigma$ such that $f(cl\sigma) \le cl\mu$. # **Definition 2.3** [8] Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping $f:(X,T)\to (Y,S)$ is said to be weakly* fuzzy continuous if for every fuzzy set $\alpha\in I^X$ and every fuzzy open set μ with $f(\alpha)\leq \mu$, there exists a fuzzy open set σ with $\alpha\leq \sigma$ such that $f(\sigma)\leq cl$ μ . # **Definition 2.4 [8]** Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping $f:(X,T)\to (Y,S)$ is said to be slightly fuzzy continuous, if for every fuzzy set $\alpha\in I^X$ and every fuzzy clopen set μ with $f(\alpha)\leq \mu$, there exists a fuzzy open set σ with $\alpha\leq \sigma$ such that $f(\sigma)\leq \mu$. # **Definition 2.5** [5] Let (D, \geq) be a directed set. Let X be an ordinary set. Let f be the collection of all fuzzy points in X. The function $S:D\to f$ is called a fuzzy net in X. In otherwords, a fuzzy net is a pair (S, \geq) such that S is a function $D \to f$ and D directs the domain of D. For D is often denoted by D and hence a net D is often denoted by oft #### **Definition 2.6 [3]** A sequence of fuzzy sets, say $\{A_n; n = 1, 2,...\}$, is eventually contained in a fuzzy set A iff there is an integer m such that, if $n \ge m$, then $A_n \subset A$. # **Definition 2.7 [1]** Let (X, T) and (Y, S) be any two fuzzy topological spaces. For a mapping $f: (X, T) \rightarrow (Y, S)$, the graph $g: X \rightarrow X \times Y$ of f is defined by g(x) = (x, f(x)), for each $x \in X$. # **Definition 2.8 [4]** A fuzzy topological (X, T) is said to be fuzzy connected iff the only fuzzy sets which are both fuzzy open and fuzzy closed are 0 and 1. # **Definition 2.9 [2]** A fuzzy topological space (X, T) is said to be fuzzy extremally disconnected if the fuzzy closure of every fuzzy open set is fuzzy open. # 3. Some properties and characterizations of slightly fuzzy ω -continuous mappings In this section we investigate some properties of slightly fuzzy ω -continuous mappings and we also obtain characterizations of these mappings. #### **Definition 3.1** Let (X, T) be a topological space. A fuzzy set $\lambda \in I^X$ is called a fuzzy ω -closed set in (X, T) if cl (λ) $\leq \mu$ whenever $\lambda \leq \mu$ and μ is fuzzy semi-open in (X, T). The complement of a fuzzy ω -closed set in (X, T) is fuzzy ω -open. #### Notation 3.1 - (a) ω -cl (λ) denotes fuzzy ω -closure of λ . - (b) ω -int (λ) denotes fuzzy ω -interior of λ . #### **Definition 3.2** A mapping $f:(X,T) \rightarrow (Y,S)$ is called - (a) fuzzy ω -continuous if $f^{-1}(\lambda)$ is fuzzy ω -closed in (X, T) for every fuzzy closed set λ in (Y, S). - (b) fuzzy ω -irresolute if f $^{-1}$ (λ) is fuzzy ω -closed in (X, T) for every fuzzy ω -closed set λ in (Y, S). #### **Definition 3.3** Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping $f:(X,T)\to(Y,S)$ is said to be almost* fuzzy ω -continuous if for every fuzzy set $\alpha\in I$ and every fuzzy open set μ with $f(\alpha)\leq \mu$, there exists a fuzzy ω -open set σ with $\alpha\leq \sigma$ such that $f(\sigma)\leq \inf(cl(\mu))$. #### **Definition 3.4** Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping $f:(X,T)\to(Y,S)$ is said to be θ^* -fuzzy ω -continuous if for every fuzzy set $\alpha\in I$ and every fuzzy open set μ with $f(\alpha)\leq \mu$, there exists a fuzzy ω -open set σ with $\alpha\leq \sigma$ such that $f(cl\sigma)\leq cl(\mu)$. #### **Definition 3.5** Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping $f:(X,T)\to(Y,S)$ is said to be weakly* fuzzy ω -continuous if for every fuzzy set $\alpha\in I^X$ and every fuzzy open set μ with $f(\alpha)\leq \mu$, there exists a fuzzy ω -open set σ with $\alpha\leq \sigma$ such that $f(\sigma)\leq (cl(\mu)$. #### **Definition 3.6** Let (X, T) and (Y, S) be any two fuzzy topological spaces. A mapping $f:(X,T)\to(Y,S)$ is said to be slightly fuzzy ω -continuous if for every fuzzy set $\alpha\in I^X$ and every fuzzy clopen set μ with $f(\alpha)\leq \mu$, there exists a fuzzy ω -open set σ with $\alpha\leq \sigma$ such that $f(\sigma)\leq \mu$. #### Remark 3.1 Every weakly fuzzy ω -continuous mapping is slightly fuzzy ω -continuous obviously. Hence fuzzy ω -continuity \Rightarrow almost* fuzzy ω -continuity \Rightarrow 0*-fuzzy ω -continuity \Rightarrow weak* fuzzy ω -continuity \Rightarrow slight fuzzy ω -continuity. But none is reversible as shown in the following examples. # Example 3.1 Let $X = \{a, b, c\}$. Define $T_1 = \{0, 1, \lambda_1, \lambda_2\}$, $T_2 = \{0, 1, \mu, \gamma, \delta_1, \delta_2\}$ where $\lambda_1, \lambda_2, \mu, \gamma, \delta_1, \delta_2 : X \rightarrow [0, 1]$ are such that λ_1 (a) = 0.3, λ_1 (b) = 0.4, λ_1 (c) = 0.5, λ_2 (a) = 0.7, λ_2 (b) = 0.6, λ_2 (c) = 0.5, μ (a) = 0.5, μ (b) = 0.5, μ (c) = 0.5, γ (a) = 1, γ (b) = 0.5, γ (c) = 0.5, γ (a) = 0.5, γ (c) = 0.5, γ (c) = 0.5, γ (d) = 0.5, γ (e) = 0.5, γ (e) = 0.5, γ (e) = 0.5, γ (e) = 0.5, γ (f) = 0.5, γ (f) = 0.5, γ (g) $f(\alpha) \le \delta_1$ where δ_1 is a fuzzy open set in (X, T_2) . But λ is a fuzzy ω -open set in (X, T_1) with $\alpha \le \lambda$ such that $f(\lambda) \not\le cl(\delta_1)$. Hence f is not weakly* fuzzy ω -continuous. # Example 3.2 Let $X=\{a,b,c\}$. Define $T_1=\{0,1,\delta_1,\delta_2\}$ and $T_2=\{0,1,\mu,\gamma\}$ where $\delta_1,\ \delta_2\ \mu,\ \gamma: X\to [0,1]$ are such that $\delta_1\ (a)=0.3,$ $\delta_1\ (b)=0,\ \delta_1\ (c)=0.5,\ \delta_2\ (a)0.7,\ \delta_2\ (b)=1,\ \delta_2\ (c)=0.5,$ $\mu\ (a)=0.3,\ \mu\ (b)=0.3,\ \mu\ (c)=0.3$ and $\gamma\ (a)=1,\ \gamma\ (b)=0.5,$ $\gamma\ (c)=0.5$. Clearly (X,T_1) and (X,T_2) are fuzzy topological spaces. Define $f:(X,T_1)\to (X,T_2)$ as $f(a)=b,\ f(b)=a$ and f(c)=c. Let $\lambda,\ \alpha:X\to [0,1]$ be any fuzzy sets such that $\alpha\ (a)=0,\alpha\ (b)=0,\alpha\ (c)=0.1$ and $\lambda\ (a)=0.5,\lambda\ (b)=0.5,\lambda\ (c)=0.5$. Then for every fuzzy open set ρ in (X,T_2) with $f(\alpha)\leq\rho,\lambda$ is a fuzzy ω -open set in (X,T_1) with $\alpha\leq\lambda$ such that $f(\lambda)\leq cl\ (\rho)$. Hence f is weakly* fuzzy ω -continuous. $f(\alpha) \le \mu$ where μ is a fuzzy open set in (X, T_2) . But λ is a fuzzy ω -open set in (X, T_1) with $\alpha \le \lambda$ such that $f(cl(\lambda)) \le cl(\mu)$. Hence f is not θ *-fuzzy ω -continuous. # Example 3.3 Let $X = \{a, b, c\}$. Define $T_1 = \{0, 1, \lambda_1, \lambda_2\}$ and $T_2 = \{0, 1, \rho\}$ where λ_1 , λ_2 , $\rho: X \rightarrow [0, 1]$ are such that λ_1 (a) = 0.3, λ_1 (b) = 0.4, λ_1 (c) = 0.5, λ_2 (a) = 0.7, λ_2 (b) = 0.6, λ_2 (c) = 0.5 and ρ (a) = 0, ρ (b) = 0, ρ (c) = 0.5. Clearly (X, T_1) and (X, T_2) are fuzzy topological spaces. Define $f: (X, T_1) \rightarrow (X, T_2)$ as f(a) = b, f(b) = a, f(c) = c. Let α , $\lambda: X \rightarrow [0, 1]$ be any fuzzy sets such that $\alpha(a) = 0$, $\alpha(b) = 0$, $\alpha(c) = 0.2$ and $\lambda(a) = 0.5$, $\lambda(b) = 0.5$, $\lambda(c) = 0.5$. Then for every fuzzy open set ρ in (X, T_2) with $f(\alpha) \le \rho$, λ is a fuzzy ω -open set in (X, T_1) with $\alpha \le \lambda$ such that $f(cl(\lambda)) \le cl(\rho)$. **Therefore f is \theta^*-fuzzy \omega-continuous**. λ is a fuzzy ω -open set in (X, T_1) with $\alpha \leq \lambda$ such that f (λ) $\not\leq$ int (cl (ρ)). Therefore f is not almost* fuzzy ω -continuous. # Example 3.4 Let $X = \{a, b\}$. Define $T_1 = \{0, 1, \lambda_1, \lambda_2, \lambda_3\}$ and $T_2 = \{0, 1, \mu_1, \mu_2\}$ where $\lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2 : X \rightarrow [0, 1]$ are such that λ_1 (a) = 0.9, λ_1 (b) = 0.7, λ_2 (a) = 1, λ_2 (b) = 0.9, λ_3 (a) = 0.11, λ_3 (b) = 0.31, μ_1 (a) = 0, μ_1 (b) = 0.2 and μ_2 (a) = 0.75, μ_2 (b) = 0.75. Clearly (X, X) and (X, X) are fuzzy topological spaces. Let $f: (X, X_1) \rightarrow (X, X_2)$ be the identify function. Let $\alpha, \lambda: X \rightarrow [0,1]$ be any fuzzy sets such that α (a) = 0, α (b) = 0.1 and λ (a) = 0.7, λ (b) = 0.4. For the fuzzy open set μ_1 in (X, X) with X0 such that X1 is a fuzzy X2 open set in (X3, X3, X3 such that X3 such that X4 is a fuzzy X3 open set in (X5, X7, X4 with X5 int (X6, X7, X8 is a fuzzy X4 open set in (X6, X7, X8 such that X9 int (X9, X9 int (X9, X1) with X9 int (X9, X1) with X1 is a fuzzy X2 open set in (X3, X4. Hence f is almost* fuzzy ω-continuous. For the fuzzy open μ_1 in (X, T_2), f^{-1} (μ_1) is not fuzzy ω -open. Therefore f is not fuzzy ω -continuous. # **Proposition 3.1** Let (X, T_1) and (Y, T_2) be any two fuzzy topological spaces. For a mapping $f: (X, T_1) \rightarrow (X, T_2)$ the following conditions are equivalent: - (a) f is slightly fuzzy ω -continuous. - (b) Inverse image of every fuzzy ω -clopen set of (Y, T_2) is a fuzzy ω -open set of (X, T_1) . - (c) Inverse image of every fuzzy ω -clopen set of (Y, T₂) is a fuzzy ω -clopen set of (X, T₁). - (d) For each fuzzy set $\alpha \in I^X$ and for every fuzzy net $\{ S_n, n \in D \}$ which converges to α , the fuzzy net $\{ f(S_n), n \in D \}$ is eventually in each fuzzy ω -clopen set λ with $f(\alpha) \leq \lambda$. - **Proof** (a) \Rightarrow (b) Let ρ be a fuzzy ω -clopen set of (Y, T_2) and let $\lambda \in I^X$ be any fuzzy set such that $\lambda \leq f^1(\rho)$. Now, ρ is a fuzzy ω -clopen set with $f(\lambda) \leq \rho$. Hence by (a), there exists a fuzzy ω -open set μ of (X, T_1) with $\lambda \leq \mu$ such that $f(\mu) \leq \rho$. Hence $f^1(\rho)$ is a fuzzy ω -open set of (X, T_1) . - (**b**) \Rightarrow (**c**) Let μ be a fuzzy ω-clopen set of (Y, T₂). Now, 1μ is a fuzzy ω-clopen set of (Y, T₂). Therefore by (b), $f^{-1}(1 \mu) = 1 f^{-1}(\mu)$ is a fuzzy ω-open set of (X, T₁). That is, $f^{-1}(\mu)$ is a fuzzy ω-closed set of (X, T₁). By (b), $f^{-1}(\mu)$ is a fuzzy ω-open set of (X, T₁). Thus $f^{-1}(\mu)$ is a fuzzy ω-clopen set of (X, T₁). - (c) \Rightarrow (d) Let { S_n , $n \in D$ } be a fuzzy net converging to a fuzzy set α and let β be a fuzzy ω -clopen set with $f(\alpha) \leq \beta$. By (c), there exists a fuzzy ω -open set λ with $\alpha \leq \lambda$ such that $f(\lambda) \leq \beta$. Since the net { S_n , $n \in D$ } converges to α implies $S_n \leq \alpha$, now, $S_n \leq \alpha \leq \lambda$. Thus $f(S_n) \leq f(\lambda) \leq \beta$. Hence { $f(S_n)$, $n \in D$ } is eventually in β . - (**d**) \Rightarrow (**a**) Suppose that f is not slightly fuzzy ω -continuous. Then there does not exist a fuzzy ω -open set λ with $\alpha \leq \lambda$, such that $f(\lambda) \leq \mu$ and hence $f(S_n) \le \mu$. This implies that the fuzzy net $\{f(S_n), n \in D\}$ is not eventually in a fuzzy ω -clopen set μ with $f(\alpha) \le \mu$, which is a contradiction. Hence f is slightly fuzzy ω -continuous. # **Proposition 3.2** Let (X, T) be any fuzzy topological space and let A be a subspace of X. Then the inclusion map $j: (A, T/A) \rightarrow (X, T)$ is slightly fuzzy ω -continuous. # **Proposition 3.3** Let (X, T), (Y, S) and (Z, R) be any three fuzzy topological spaces. Let $f:(X, T) \to (Y, S)$ and $g:(Y, S) \to (Z, R)$ be slightly fuzzy ω -continuous mappings. Then their composition gof is slightly fuzzy ω -continuous. # **Proposition 3.4** Let (X, T), (Y, S) and (Z, R) be any three fuzzy topological spaces. Let $f:(X,T)\to (Y,S)$ be a surjective fuzzy ω -open and fuzzy ω -irresolute and let $g:(Y,S)\to (Z,R)$ be any mapping. Then gof: (X, T) \to (Z, R) is slightly fuzzy ω -continuous iff g is slightly fuzzy ω -continuous. #### **Proof** Suppose that gof is slightly fuzzy ω -continuous. Let λ be a fuzzy ω -clopen set of (Z,R). Then by Proposition 3.1, $(gof)^{-1}(\lambda)$ is a fuzzy ω -open in (X,T). That is, $f^{-1}(g^{-1}(\lambda))$ is fuzzy ω -open. Since f is fuzzy ω -open, $f(f^{-1}(g^{-1}(\lambda)))$ is fuzzy ω -open in (Y,S). That is, $g^{-1}(\lambda)$ is fuzzy ω -open in (Y,S). Therefore by Proposition 3.1, g is slightly fuzzy ω -continuous. Conversely let μ be a fuzzy ω -continuous, $g^{-1}(\mu)$ is fuzzy ω -open in (Y,S). Since g is slightly fuzzy ω -continuous, $g^{-1}(\mu) = (gof)^{-1}(\mu)$ is fuzzy ω -open in (X,T). Therefore by Proposition 3.1, g is slightly fuzzy ω -continuous. # **Proposition 3.5** Every restriction of a slightly fuzzy ω -continuous mapping is slightly fuzzy ω -continuous. #### **Proposition 3.6** Let (X, T) and (Y, S) be any two fuzzy topological spaces. Let $f:(X, T) \to (Y, S)$ be a mapping. Then the graph of $f, g: X \to X \times Y$ is slightly fuzzy ω -continuous iff f is slightly fuzzy ω -continuous. # Proof Suppose that $f:(X,T)\to (Y,S)$ is slightly fuzzy ω -continuous and let $g:X\to X\times Y$ be the graph of f. Let $\lambda\times\mu$ be a fuzzy ω -clopen set of $X\times Y$. Then $$g^{-1}(\lambda \times \mu)(x)$$ = $(\lambda \times \mu)g(x)$ = $(\lambda \times \mu)(x, f(x))$ = $\min(\lambda(x), \mu(f(x))$ = $(\lambda \wedge f^{-1}(\mu))(x)$ Therefore $g^{-1}(\lambda \times \mu)$ = $\lambda \wedge f^{-1}(\mu)$. Since g^{-1} ($\lambda \times \mu$) is a fuzzy ω -open set of (X, T), by Proposition 3.1, g is slightly fuzzy ω -continuous. Conversely let λ be fuzzy ω -clopen in (Y, S). Then $1 \times \lambda$ is fuzzy ω -clopen in X \times Y. Since g is slightly fuzzy ω -continuous, by Proposition 3.1, $g^{-1}(1\times\lambda)$ is fuzzy ω -open in (X, T). Also $g^{-1}(1\times\lambda) = f^{-1}(\lambda)$. Therefore $f^{-1}(\lambda)$ is fuzzy ω -open in (X, T). Hence f is slightly fuzzy ω -continuous. # **Proposition 3.7** Let (X, T), (Y, S) and (Z, R) be any three fuzzy topological spaces. Let $f:(X, T) \rightarrow (Y, S)$ be slightly fuzzy ω -continuous. Then the mapping $g:(X, T) \rightarrow (Z, R)$ where R = S/Z is slightly fuzzy ω -continuous. # **Proposition 3.8** Let (X, T), (Y, S) and (Z, R) be any three fuzzy topological spaces and let Y \subset Z be a subspace of Z. Then the mapping h : (X, T) \rightarrow (Z, R) obtained by expanding the range of the slightly fuzzy ω -continuous mapping f : (X, T) \rightarrow (Y, S) is slightly fuzzy ω -continuous. # **Proposition 3.9** Let h: $X \to \prod_{\alpha \in I} X_{\alpha}$ be a slightly fuzzy ω -continuous mapping. For each $\alpha \in I$, define $f_{\alpha}: X \to X_{\alpha}$ by setting $f_{\alpha}(\lambda) = (h(\lambda))_{\alpha}$. Then f_{α} is slightly fuzzy ω -continuous, for every $\alpha \in I$. #### **Proof** Let $\delta \in I^x$ and let μ be any fuzzy ω -clopen set in X_α . Let $h(\delta) \leq \mu$. Then $f_\alpha(\delta) = (h(\delta))_\alpha \leq \mu$. Since h is slightly fuzzy ω -continuous, there exists an ω -open set λ with $\delta \leq \lambda$ such that $$\begin{array}{ccc} h(\lambda) \leq \mu \\ \Rightarrow & (h(\lambda))_{\alpha} \leq \mu \\ \Rightarrow & f_{\alpha}(\lambda) \leq \mu. \end{array}$$ Hence f_{α} is slightly fuzzy ω -continuous. #### **Proposition 3.10** Let (X, T), (X, T_1) and (X, T_2) be any three fuzzy topological spaces and let $p_i: X_1 \times X_2 \to X_i$ (i = 1, 2) be the projections of $X_1 \times X_2$ onto X_i . If $f: X \to X_1 \times X_2$ is a slightly fuzzy ω -continuous mapping then p_i of is also slightly fuzzy ω -continuous. #### **Proposition 3.11** Let (X, T) and (Y, S) be any two fuzzy topological spaces such that elements of S are both fuzzy ω -open and fuzzy ω -closed. If $f:(X,T)\to(Y,S)$ is slightly fuzzy ω -continuous then f is fuzzy ω -continuous. #### **Proof** Proof follows from (a) \Rightarrow (b) of Proposition 3.1. #### **Definition 3.8** A fuzzy topological space (X, T) is said to be fuzzy ω -connected iff the only fuzzy sets which are both fuzzy ω -open and fuzzy ω -closed are 0 and 1. # **Proposition 3.12** Every mapping from a fuzzy topological space to a fuzzy ω -connected space is slightly fuzzy ω -continuous. # **Proposition 3.13** A slightly fuzzy ω -continuous image of a fuzzy ω -connected space is fuzzy ω -connected. #### **Proof** Let (X, T) be a fuzzy ω -connected space and (Y, S) be any fuzzy topological space. Let $f:(X,T)\to (Y,S)$ be a slightly fuzzy ω -continuous mapping. Suppose that (Y, S) is fuzzy ω -disconnected. Let λ be a proper fuzzy ω -clopen set of (Y, S). Since f is slightly fuzzy ω -continuous, by Proposition 3.1, $f^{-1}(\lambda)$ is a proper fuzzy ω -clopen set of (X, T), which is a contradiction. Hence Y is fuzzy ω -connected. #### **Definition 3.9** Let (X, T) be a fuzzy topological space. (X, T) is called fuzzy ω -extremally disconnected if the fuzzy ω -closure of every fuzzy ω -open set is fuzzy ω -open. # **Proposition 3.14** Let (X, T) be a fuzzy topological space and (Y, S) be a fuzzy ω -extremally disconnected space. If $f:(X,T)\to (Y,S)$ is a slightly fuzzy ω -continuous mapping then f is almost* fuzzy ω -continuous. #### Proof Let μ be a fuzzy ω -open set of (Y, S) and $\lambda \in I^X$ with f (λ) $\leq \mu$. Since (Y, S) is fuzzy ω -extremally disconnected, ω -cl (μ) is fuzzy ω -open and therefore fuzzy ω -clopen. Now, f (λ) $\leq \omega$ -cl (μ) \leq cl (μ) and since f is slightly fuzzy ω -continuous, there exists a fuzzy ω -open set σ with $\lambda \leq \sigma$ such that f (σ) \leq cl (μ). Therefore f is almost* fuzzy ω -continuous. # Acknowledgement The authors express their sincere thanks to the referee for his valuable comments regarding the betterment of the paper. # References - 1. K.K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1981), 14-32. - 2. G. Balasubramanian, Fuzzy disconnectedness and its stronger forms, Indian J. Pure Appl. Math., 24 (1993), 27-30. - 3. C.L. Chang, Fuzzy topological spaces, J.Math. Anal. Appl., 24(1968), 182-190. - 4. U.V. Fatteh and D.S. Bassan, Fuzzy connectedness and its stronger forms, J.Math.Anal.Appl., 101 (1985), 449 464. - 5. Pu Pao-Ming and Liu. Ying-Ming, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence*, J.Math. Anal. Appl., 76 (1980), 571-599. - 6. M. Sheik John, A study on generalization of closed sets and continuous maps in topological and bitopological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 2002. - 7. M. Smets, The degree of belief in a fuzzy event, Inform. Sci., 25 (1981), 1-19. - 8. M. Sudha, E. Roja and M.K. Uma, Slightly fuzzy continuous mappings, East Asian Mathematics Journal, 25 (2009), 1-8. - 9. M. Sugeno, An introductory survey of fuzzy control, Inform. Sci., 36(1985), 59-83. - 10. L.A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353. Received: July, 2010