Ideal on Supra Topological Space

Shyamapada Modak and Sukalyan Mistry

Department of Mathematics
University of Gourbanga
Mokdumpur, Malda-732103
West Bengal, India
spmmodak2000@yahoo.co.in

Abstract. In this paper we introduce the ideal on supra topological space and we shall discuss the properties of this space. In this space we introduce two operators \(\mu^\nu \) and \(\psi_\mu \). A generalized set has also been introduced in this space with the help of \(\psi_\mu \) operator.

Mathematics Subject Classification: 54A05, 54C10

Keywords: supra topological space, \(\mu^\nu \) - operator, \(\psi_\mu \) - operator, supra compatible, \(\psi_\mu \) - C set

1. Introduction

The concept of ideal in topological space was first introduced by Kuratowski[5] and Vaidyanathswamy[14]. They also have defined local function in ideal topological space. Further Hamlett and Jankovic in [3] and [4] studied the properties of ideal topological spaces and they have introduced another operator called \(\psi \) operator. They have also obtained a new topology from original ideal topological space. Using the local function, they defined a Kuratowski Closure operator in new topological space. Further, they showed that interior operator of the new topological space can be obtained by \(\psi \) - operator. Modak and Bandyopadhyay[9] in 2007 have defined generalized open sets using \(\psi \) operator. More recently Al-Omri and Noiri[1] have defined the ideal m-space and introduced two operators as like similar to the local function and \(\psi \) operator.

Different types of generalized open sets like semi-open[6], preopen[7], semi-peropen[2], \(\alpha \)-open[12] already are there in literature and these generalized sets have a common property which is closed under arbitrary union. Mashhour et al[8] put all
of the sets in a pocket and defined a generalized space which is supra topological space. In this space we have introduced ideal and defined two set operators, μ-local function and ψ_μ operator. Further we have discussed the properties of these two operators. Finally we have introduced μ-codense ideal, μ-compatible ideal and ψ_μ-C set with the help of ψ_π operator and discussed the properties of such notions.

2. Preliminaries

In this section we have discussed some definitions and results which are relevant of this paper.

Definition 2.1.[5] A nonempty collection I of subsets of X is called an ideal on X if:
(i). $A \in I$ and $B \subseteq A$ implies $B \in I$ (heredity);
(ii). $A \in I$ and $B \in I$ implies $A \cup B \in I$ (finite additivity).

Definition 2.2.[8] A subfamily μ of the power set $\wp(X)$ of a nonempty set X is called a supra topology on X if μ satisfies the following conditions:
1. μ contains \emptyset and X,
2. μ is closed under the arbitrary union.
The pair (X, μ) is called a supra topological space.

In this respect, the member of μ is called supra open set in (X, μ). The complement of supra open set is called supra closed set.

Definition 2.3.[13] Let (X, μ) be a supra topological space and $A \subseteq X$. Then supra interior and supra closure of A in (X, μ) defined as $\bigcup\{U : U \subseteq A, \ U \in \mu\}$ and $\bigcap\{F : A \subseteq F, \ X - F \in \mu\}$ respectively.

The supra interior and supra closure of A in (X, μ) are denoted as $\text{Int}^\mu(A)$ and $\text{Cl}^\mu(A)$[13] respectively.

From definition, $\text{Int}^\mu(A)$ is a supra open set and $\text{Cl}^\mu(A)$ is a supra closed set.

Definition 2.4. Let (X, μ) be a supra topological space and $M \subseteq X$. Then M is said to a supra neighbourhood of a point x of X if for some supra open set $U \in \mu, x \in U \subseteq M$.

The properties of $\text{Int}^\mu(A)$ and $\text{Cl}^\mu(A)$ have been discussed here which are relevant in this paper.

Theorem 2.1. Let (X, μ) be a supra topological space and $A \subseteq X$. Then
(i). $\text{Int}^\mu(A) \subseteq A$.
(ii). $A \in \mu$ if and only if $\text{Int}^\mu(A) = A$.
(iii). $\text{Cl}^\mu(A) \supseteq A$.
(iv). A is a supra closed set if and only if $\text{Cl}^\mu(A) = A$.
(v). $x \in \text{Cl}^\mu(A)$ if and only if every supra open set U_x containing $x, U_x \cap A \neq \emptyset$.

Proof.(i). Proof is obvious from the definition of supra interior.
(ii). Since arbitrary union of supra open sets is again a supra open set, then proof is obvious.

(iii). Proof is obvious from the definition of supra closure.

(iv). If A is a supra closed set, then smallest supra closed set containing A is A. Hence $\text{Cl}_\mu(A) = A$.

(v). Let $x \in \text{Cl}_\mu(A)$. If possible suppose that $U_x \cap A = \emptyset$, where U_x is a supra open set containing x. Then $A \subset (X - U_x)$ and $X - U_x$ is a supra closed set containing A. Therefore $x \in (X - U_x)$, a contradiction. Conversely supposed that $x \notin \text{Cl}_\mu(A)$, for every supra open set U_x containing x. If possible suppose that $x \notin \text{Cl}_\mu(A)$, then $x \in X - \text{Cl}_\mu(A)$. Then there is a $U_x \in \mu$ such that $U_x \subset (X - \text{Cl}_\mu(A))$, i.e., $U_x \subset (X - \text{Cl}_\mu(A)) \subset (X - A)$. Hence $U_x \cap A = \emptyset$, a contradiction. So $x \in \text{Cl}_\mu(A)$.

Kuratowski in [5] has shown that $\text{int}A = X - \text{cl}(X - A)$ in topological space where ‘int’ and ‘cl’ denote the interior and closure operator in topological space. Following are the similar result in supra topological space (X, μ).

Theorem 2.2. Let (X, μ) be a supra topological space and $A \subset X$. Then $\text{Int}_\mu(A) = X - \text{Cl}_\mu(X - A)$.

Proof. Let $x \in \text{Int}_\mu(A)$. Then there is $U \in \mu$, such that $x \in U \subset A$. Hence $x \notin X - U$, i.e., $x \notin \text{Cl}_\mu(X - U)$, since $X - U$ is a supra closed set. So $x \notin \text{Cl}_\mu(X - A)$ (from Definition 2.3., $\text{Cl}_\mu(X - A) \subset \text{Cl}_\mu(X - U)$) and hence $x \in X - \text{Cl}_\mu(X - A)$.

Conversely suppose that $x \in X - \text{Cl}_\mu(X - A)$. So $x \notin \text{Cl}_\mu(X - A)$, then there is a supra open set U_x containing x, such that $U_x \cap (X - A) = \emptyset$. So $U_x \subset A$. Therefore $x \in \text{Int}_\mu(A)$. Hence the result.

3. $(\cdot)^\mu$ operator

In [3] and [4] Hamlett and Jankovic have considered the local function in ideal topological space and they have obtained a new topology. In this section we shall introduce similar type of local function in supra topological space. Before starting the discussion we shall consider the following concept.

A supra topological space (X, μ) with an ideal I on X is called an ideal supra topological space and denoted as (X, μ, I).

At first we define following:

Definition 3.1. Let (X, μ, I) be an ideal supra topological space. A set operator $(\cdot)^\mu: \wp(X) \to \wp(X)$, is called the μ-local function of I on X with respect to μ, is defined as: $(A)^\mu(I, \mu) = \{ x \in X: U \cap A \notin I, \text{ for every } U \in \mu(x) \}$, where $\mu(x) = \{ U \in \mu: x \in U \}$.

This is simply called μ-local function and simply denoted as A^μ.

We have discussed the properties of μ-local function in following theorem:
Theorem 3.1. Let \((X, \mu, I)\) be an ideal supra topological space, and let \(A, B, A_1, A_2, \ldots, A_i, \ldots\) be subsets of \(X\). Then

(i) \(\phi^\mu = \phi\).
(ii) \(A \subseteq B\) implies \(A^\mu \subseteq B^\mu\).
(iii) for another ideal \(J \supseteq I\) on \(X\), \(A^\mu(J) \subseteq A^\mu(I)\).
(iv) \(A^\mu \subseteq \text{Cl}^\mu(A)\).
(v) \(A^\mu\) is a supra closed set.
(vi) \((A^\mu)^\mu \subseteq A^\mu\).
(vii) \(A^\mu \cup B^\mu \subseteq (A \cup B)^\mu\).
(viii) \(\cap_i A_i^\mu \subseteq (\cap_i A_i)^\mu\).
(ix) \((A \cap B)^\mu \subseteq A^\mu \cap B^\mu\).
(x) for \(V \in \mu, (V \cap (V \cap A)^\mu) \subseteq V \cap A^\mu\).
(xi) for \(I \in \mu\), \((A \cup I)^\mu = A^\mu = (A - I)^\mu\).

Proof. (i). Proof is obvious from the definition of \(\mu\)-local function.
(ii). Let \(x \in A^\mu\). Then for every \(U \in \mu(x), U \cap A \notin I\). Since \(U \cap A \subseteq U \cap B\), then \(U \cap B \notin I\). This implies that \(x \in B^\mu\).
(iii). Let \(x \in A^\mu(J)\). Then for every \(U \in \mu(x), U \cap A \notin J\). This implies that \(U \cap A \notin I\), hence \(A^\mu(J) \subseteq A^\mu(I)\).
(iv). Let \(x \in A^\mu\). Then for every \(U \in \mu(x), U \cap A \notin I\). This implies that \(U \cap A \neq \phi\).
Hence \(x \in \text{Cl}^\mu(A)\).
(v). From definition of supra neighbourhood, each supra neighbourhood \(M\) of \(x\) contains a \(U \in \mu(x)\). Now if \(A \cap M \notin I\) then for \(A \cap U \subseteq A \cap M\), \(A \cap U \notin I\). It follows that \(X - A^\mu\) is the union of supra open sets. We know that the arbitrary union of supra open sets is a supra open set. So \(X - A^\mu\) is a supra open set and hence \(A^\mu\) is a supra closed set.
(vi). From (iv), \((A^\mu)^\mu \subseteq \text{Cl}^\mu(A^\mu) = A^\mu\), since \(A^\mu\) is a supra closed set.
(vii). We know that \(A \subseteq (A \cup B)\) and \(B \subseteq (A \cup B)\). Then from (ii), \(A^\mu \subseteq (A \cup B)^\mu\) and \(B^\mu \subseteq (A \cup B)^\mu\). Hence \(A^\mu \cup B^\mu \subseteq (A \cup B)^\mu\).
(viii). Proof is obvious from (vii).
(ix). We know that \(A \cap B \subseteq A\) and \(A \cap B \subseteq B\), then from (ii), \((A \cap B)^\mu \subseteq A^\mu\) and \((A \cap B)^\mu \subseteq B^\mu\). Hence \((A \cap B)^\mu \subseteq A^\mu \cap B^\mu\).
(x). Since \(V \cap A \subseteq A\), then \((V \cap A)^\mu \subseteq A^\mu\). So \(V \cap (V \cap A)^\mu \subseteq V \cap A^\mu\).
(xi). Since \(A \subseteq (A \cup I)\), then
\[A^\mu \subseteq (A \cup I)^\mu\] \[\text{-------------------(i).}\]
Let \(x \in (A \cup I)^\mu\). Then for every \(U \in \mu(x), U \cap (A \cup I) \notin I\). This implies that \(U \cap A \notin I\) (If possible suppose that \(U \cap A \in I\). Again \(U \cap I \in I\) implies \(U \cap I \notin I\) and hence \(U \cap (A \cup I) \notin I\;\text{, a contradiction}\). Hence \(x \in A^\mu\) and
\((A \cup I)^\mu \subseteq A^\mu\] \[\text{-------------------(ii).}\]
From (i) and (ii) we have
\[A^\mu = (A \cup I)^\mu\] \[\text{-------------------(ii).}\]
Since \((A - I) \subset A\), then
\[(A - I)^\mu \subset A^\mu \] \text{-------------------(iv).}

For reverse inclusion, let \(x \in A^\mu\). We claim that \(x \in (A - I)^\mu\), if not, then there is a \(U \in \mu(x)\), \(U \cap (A - I) \in I\). Given that \(I \in I\), then \(U \cup (U \cap (A - I)) \in I\). This implies that
\(I \cup (U \cap A) \in I\). So, \(U \cap A \in I\), a contradiction to the fact that \(x \in A^\mu\). Hence
\[A^\mu \subset (A - I)^\mu \] \text{-------------------(v).}

From (iv) and (v) we have
\[A^\mu = (A - I)^\mu \] \text{-------------------(vi).}

Following example shows that \((A \cup B)^\mu = (A \cup B)^\mu\) does not hold in general.

Example 3.1. Let \(X = \{a, b, c, d\}\), \(\mu = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, I = \{\emptyset, \{c\}\}\). Then supra open sets containing ‘a’ are: \(X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\); supra open sets containing ‘b’ are: \(X, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\); supra open sets containing ‘c’ are: \(X, \{c\}, \{a, c\}, \{b, c\}, \{a, c, d\}, \{b, c, d\}\); supra open sets containing ‘d’ are: \(X, \{d\}, \{a, d\}, \{a, b, d\}, \{a, c, d\}\). Consider \(A = \{a, c\}\) and \(B = \{b, c\}\), then \(A^\mu = \{a\}\) and \(B^\mu = \{b\}\). Now \((A \cup B)^\mu = \{a, b, c\}^\mu = \{a, b, c, d\}\). Hence \((A \cup B)^\mu \neq (A \cup B)^\mu\).

Here \(A^\mu \cup B^\mu \neq (A \cup B)^\mu\), so we are not able to define a closure operator with the help of supra local function.

4. \(\psi_\mu\) operator

In this section we shall introduce another set operator \(\psi_\mu\) in \((X, \mu, I)\). This operator is, as like similar of \(\psi\) operator [10],[3] in ideal topological space.

Definition 4.1. Let \((X, \mu, I)\) be an ideal supra topological space. An operator \(\psi_\mu : \wp(X) \rightarrow \mu\) is defined as follows for every \(A \in \wp(X)\), \(\psi_\mu(A) = \{x \in X: \text{there exists a } U \in \mu(x) \text{ such that } U - A \in I\}\).

We observe that \(\psi_\mu(A) = X - (X - A)^\mu\).

The behaviors of the operator \(\psi_\mu\) has been discussed in the following theorem:

Theorem 4.1. Let \((X, \mu, I)\) be an ideal supra topological space.

(i). If \(A \subset X\), then \(\psi_\mu(A) \supset \text{Int}^I(A)\).

(ii). If \(A \subset X\), then \(\psi_\mu(A)\) is supra open.

(iii). If \(A \subset B\), then \(\psi_\mu(A) \subset \psi_\mu(B)\).

(iv). If \(A, B \in \wp(X)\), then \(\psi_\mu(A) \cup \psi_\mu(B) \subset \psi_\mu(A \cup B)\).

(v). If \(A, B \in \wp(X)\), then \(\psi_\mu(A \cap B) \subset \psi_\mu(A) \cap \psi_\mu(B)\).

(vi). If \(U \in \mu\), then \(U \subset \psi_\mu(U)\).

(vii). If \(A \subset X\), then \(\psi_\mu(A) \subset \psi_\mu(\psi_\mu(A))\).
If \(A \subseteq X \), then \(\psi_\mu(A) = \psi_\mu(\psi_\mu(A)) \) if and only if \((X - A)^{\mu_*} = ((X - A)^{\mu})^{\mu} \).

If \(A \in I \), then \(\psi_\mu(A - I) = \psi_\mu(A) \).

If \(A \subseteq X \), \(I \in I \), then \(\psi_\mu(A \cup I) = \psi_\mu(A) \).

If \((A - B) \cup (B - A) \in I \), then \(\psi_\mu(A) = \psi_\mu(B) \).

Proof.

(i). From definition of \(\psi_\mu \) operator, \(\psi_\mu(A) = X - (X - A)^{\mu} \). Then \(\psi_\mu(A) = X - (X - A)^{\mu} \supseteq X - \text{Cl}_\mu(X - A) \) from Theorem 3.1.(iv). Hence \(\psi_\mu(A) \supseteq \text{Int}_\mu(A) \) (using Theorem 2.2.).

(ii). Since \((X - A)^{\mu} \) is a supra closed set (from Theorem 3.1(v)), then \(X - (X - A)^{\mu} \) is a supra open set. Hence \(\psi_\mu(A) \) is supra open.

(iii). Given that \(A \subseteq B \), then \((X - A) \supseteq (X - B) \). Then from Theorem 3.1(ii), \((X - A)^{\mu} \supseteq (X - B)^{\mu} \) and hence \(\psi_\mu(A) \subseteq \psi_\mu(B) \).

(iv). Proof is obvious from above property.

(v). Since \(A \cap B \subseteq A \) and \(A \cap B \subseteq B \), then from (iii), \(\psi_\mu(A \cap B) \subseteq \psi_\mu(A) \cap \psi_\mu(B) \).

(vi). Let \(U \in \mu \). Then \((X - U) \) is a supra closed set and hence \(\text{Cl}_\mu(X - U) = (X - U) \). This implies that \((X - U)^{\mu} \subset \text{Cl}_\mu(X - U) = (X - U) \). Hence \(U \subset X - (X - U)^{\mu} \), so \(U \subset \psi_\mu(U) \).

(vii). From (iii), \(\psi_\mu(A) \in \mu \). Again from (vi), \(\psi_\mu(A) \subset \psi_\mu(\psi_\mu(A)) \).

(viii). Let \(\psi_\mu(A) = \psi_\mu(\psi_\mu(A)) \). Then \(X - (X - A)^{\mu} = \psi_\mu(\psi_\mu(X - (X - A)^{\mu})) = X - ((X - (X - A)^{\mu})^{\mu}) = X - (X - A)^{\mu} \). This implies that \((X - A)^{\mu} = ((X - A)^{\mu})^{\mu} \).

Conversely suppose that \((X - A)^{\mu} = ((X - A)^{\mu})^{\mu} \) hold. Then \(X - (X - A)^{\mu} = X - ((X - A)^{\mu})^{\mu} \) and \(X - (X - A)^{\mu} = X - (X - (X - A)^{\mu})^{\mu} = X - (X - \psi_\mu(A))^{\mu} \).

Hence \(\psi_\mu(A) = \psi_\mu(\psi_\mu(A)) \).

(ix). We know that \(\psi_\mu(A) = X - (X - A)^{\mu} = X - X^{\mu} \) (from Theorem 3.1.(xi)).

(x). We know that \(X - (X - (A - I))^{\mu} = X - (X - (X - A))^{\mu} = X - (X - A)^{\mu} \) (from Theorem 3.1.(xi)). So \(\psi_\mu(A - I) = \psi_\mu(A) \).

(xi). We know that \(X - (X - (A \cup I))^{\mu} = X - ((X - A) \cup I)^{\mu} = X - (X - A)^{\mu} \) (using the Theorem 3.1.(xi)). Thus \(\psi_\mu(A \cup I) = \psi_\mu(A) \).

(xii). Given that \((A - B) \cup (B - A) \in I \), and let \(A - B = I_1 \), \(B - A = I_2 \). We observe that \(I_1 \) and \(I_2 \in I \) by heredity. Also observe that \(B = (A - I_1) \cup I_2 \). Thus \(\psi_\mu(A) = \psi_\mu(A - I_1) = \psi_\mu((A - I_1) \cup I_2) = \psi_\mu(B) \).

We know that \(U \subset \psi_\mu(U) \), for \(U \in \mu \). But we give an example of a set \(A \) which is not supra open set but satisfies \(A \subseteq \psi_\mu(A) \).

Example 4.1. Let \(X = \{a, b, c, d\} \), \(\mu = \{ \phi, X, \{a\}, \{a,c,d\}, \{b,c,d\} \} \), \(I = \{ \phi, \{c\} \} \). Then for \(A = \{a,b,d\} \), \(\psi_\mu(A) = X - \{c\}^{\mu} = X - \phi = X \). Here \(A \subseteq \psi_\mu(A) \), but \(A \) is not a supra open set.

In the following example we shall show that \(\psi_\mu(A \cap B) = \psi_\mu(A) \cap \psi_\mu(B) \) does not hold in general.
Example 4.2. Consider the Example 3.1. Here we consider \(A = \{b,d\} \) and \(B = \{a,d\} \), then \(\psi_\mu(A) = X - \{a,c\}^\mu = X - \{a\} = \{b,c,d\} \) and \(\psi_\mu(B) = X - \{b,c\}^\mu = X - \{b\} = \{a,c,d\} \). Now \(\psi_\mu(\{d\}) = X - \{a,b,c\}^\mu = X - \{a,b,c,d\} = \phi \).

Here we are not able to define an interior operator with the help of \(\psi_\mu \) operator because \(\psi_\mu(A \cap B) \neq \psi_\mu(A) \cap \psi_\mu(B) \) in general.

5. \(\mu \)-codense Ideal

The study of ideal got new dimension when codense ideal \([4]\) has been incorporated in ideal topological space. In this section we introduce similar concept in ideal supra topological space.

Definition 5.1. An ideal \(I \) in a space \((X, \mu, I)\) is called \(\mu \)-codense ideal if \(\mu \cap I = \{\phi\} \).

Following theorems are related to \(\mu \)-codense ideal.

Theorem 5.1. Let \((X, \mu, I)\) be an ideal supra topological space and \(I \) is \(\mu \)-codense with \(\mu \). Then \(X = X^{\mu} \).

Proof.

It is obvious that \(X^{\mu} \subseteq X \). For converse, suppose \(x \in X \) but \(x \notin X^{\mu} \). Then there exists \(U_x \in \mu(x) \) such that \(U_x \cap X \in I \). That is \(U_x \in I \), a contradiction to the fact that \(\mu \cap I = \{\phi\} \). Hence \(X = X^{\mu} \).

Theorem 5.2. Let \((X, \mu, I)\) be an ideal supra topological space. Then following conditions are equivalent:

(i) \(\mu \cap I = \{\phi\} \).

(ii) \(\psi_\mu(\phi) = \phi \).

(iii) if \(i \in I \), then \(\psi_\mu(i) = \phi \).

Proof.

(i) \(\Rightarrow \) (ii). Given that \(\mu \cap I = \{\phi\} \), then \(\psi_\mu(\phi) = X - (X - \phi)^\mu = X - X^{\mu} = \phi \) (by Theorem 5.1).

(ii) \(\Rightarrow \) (iii). \(\psi_\mu(i) = X - (X - i)^\mu = X - X^{\mu} \) (by Theorem 3.1.(xi)) = \(X - X^{\mu} = \phi \) (by Theorem 5.1).

(iii) \(\Rightarrow \) (i). Suppose that \(A \in \mu \cap I \), then \(A \in I \) and by (iii), \(\psi_\mu(A) = \phi \). Again \(A \in \mu \), then by Theorem 4.1.(vi) we have \(A \subseteq \psi_\mu(A) = \phi \). Hence \(\mu \cap I = \{\phi\} \).

6. \(\mu \)-compatible Ideal

In this section we shall discuss a special type of ideal and its various properties. This special type of ideal is:

Definition 6.1. Let \((X, \mu, I)\) be an ideal supra topological space. We say the \(\mu \)-structure \(\mu \) is \(\mu \)-compatible with the ideal \(I \), denoted \(\mu \sim_\pi I \), if the following holds
for every $A \subseteq X$, if for every $x \in A$ there exists $U \in \mu(x)$ such that $U \cap A \in I$, then $A \in I$.

Theorem 6.1. Let (X, μ, I) be an ideal supra topological space. Then $\mu \sim I$ if and only if $\psi_\mu(A) - A \in I$ for every $A \subseteq X$.

Proof. Suppose $\mu \sim I$. Observe that $x \in \psi_\mu(A) - A$ if and only if $x \notin A$ and $x \notin (X - A)^\mu$ if and only if $x \notin A$ and there exists $U_x \in \mu(x)$ such that $U_x - A \in I$ if and only if there exists $U_x \in \mu(x)$ such that $x \in U_x - A \in I$. Now, for each $x \in \psi_\mu(A) - A$ and $U_x \in \mu(x)$, $U_x \cap (\psi_\mu(A) - A) \in I$ by heredity and hence $\psi_\mu(A) - A \in I$, since $\mu \sim I$.

Conversely suppose that the condition holds. Let $A \subseteq X$ and assume that for each $x \in A$ there exists $U_x \in \mu(x)$ such that $U_x \cap A \in I$.

From above Theorem we get following corollary:

Corollary 6.1. Let (X, μ, I) be an ideal supra topological space with $\mu \sim I$. Then $\psi_\mu(A) \subseteq \psi_\mu(\psi_\mu(A))$ for every $A \subseteq X$.

Proof. We know that $\psi_\mu(A) \subseteq \psi_\mu(\psi_\mu(A))$.

Newcomb in [11] has defined $A = B[\text{mod } I]$ if $(A - B) \cup (B - A) \in I$. Further he discussed various properties of $A = B[\text{mod } I]$.

Here we observe that if $A = B[\text{mod } I]$, then $\psi_\mu(A) = \psi_\mu(B)$.

Now we define Baire set in (X, μ, I).

Definition 6.2. Let (X, μ, I) be an ideal supra topological space. A subset A of X is called a Baire set with respect to μ and I, denoted $A \in \mathcal{B}_r(X, \mu, I)$, if there exists a supra open set $U \in \mu$ such that $A \subseteq U \subseteq A \cup I$.

Theorem 6.2. Let (X, μ, I) be an ideal supra topological space with $\mu \sim I$. If $U, V \in \mu$ and $\psi_\mu(U) = \psi_\mu(V)$, then $U = V[\text{mod } I]$.

Proof. Since $U \in \mu$, we have $U \subseteq \psi_\mu(U)$ and hence $U - V \subseteq \psi_\mu(U) - V = \psi_\mu(V)$ and $V \in I$ by Theorem 6.1. Similarly $V - U \in I$ and hence $U = V[\text{mod } I]$.

It is obvious that $A = B[\text{mod } I]$ is an equivalence relation. In this respect following theorem is remarkable:

Theorem 6.3. Let (X, μ, I) be an ideal supra topological space with $\mu \sim I$. If $A, B \in \mathcal{B}(X, \mu, I)$, and $\psi_\mu(A) = \psi_\mu(B)$, then $A = B[\text{mod } I]$.

Proof. Let $U, V \in \mu$ such that $A = U[\text{mod } I]$ and $B = V[\text{mod } I]$. Now $\psi_\mu(A) = \psi_\mu(B)$ and $\psi_\mu(B) = \psi_\mu(V)$ by Theorem 4.1.(xii). Since $\psi_\mu(A) = \psi_\mu(U)$ implies that $\psi_\mu(U) = \psi_\mu(V)$, hence $U = V[\text{mod } I]$ by Theorem 6.2. Hence $A = B[\text{mod } I]$ by transitivity.

Theorem 6.4. Let (X, μ, I) be an ideal supra topological space.

(i) If $B \in \mathcal{B}(X, \mu, I) - I$, then there exists $A \in \mu - \{\phi\}$ such that $B = A[\text{mod } I]$.
(ii). Let \(\mu \cap I = \{ \phi \} \), then \(B \in B_r(X, \mu, I) - I \) if and only if there exist \(A \in \mu - \{ \phi \} \) such that \(B = A[\mod I] \).

Proof. Let \(B \in B_r(X, \mu, I) - I \). Then \(B \in B_r(X, \mu, I) \). Now if there does not exist \(A \in \mu - \{ \phi \} \) such that \(B = A[\mod I] \), we have \(B = \phi[\mod I] \). This implies that \(B \in I \) which is a contradiction.

(ii). Here we prove converse part only. Let \(A \in \mu - \{ \phi \} \) such that \(B = A[\mod I] \).

Then \(A = (B - J) \cup I \), where \(J = B - A \), \(I = A - B \in I \). If \(B \in I \), then \(A \in I \) by heredity and additivity, which contradict to \(\mu \cap I = \phi \).

7. \(\psi_\mu \)-C sets

Modak and Bandyopadhyay in [9] have introduced a generalized set with the help of \(\psi \)-operator in ideal topological space \((X, \mu, I)\). In this section we shall introduce a set with the help of \(\psi_\mu \) in \((X, \mu, I)\) space. Further we shall discuss the properties of this type of sets.

Definition 7.1. Let \((X, \mu, I)\) be an ideal supra topological space. A subset \(A \) of \(X \) is called a \(\psi_\mu \)-C set if \(A \subseteq Cl_\mu(\psi_\mu(A)) \).

The collection of all \(\psi_\mu \)-C sets in \((X, \mu, I)\) is denoted by \(\psi_\mu(X, \mu) \).

Theorem 7.1. Let \((X, \mu, I)\) be an ideal supra topological space. If \(A \in \mu \), then \(A \in \psi_\mu(X, \mu) \).

Proof. From Theorem 4.1.(vi) it follows that \(\mu \subseteq \psi_\mu(X, \mu) \).

Now we give an example which shows that the reverse inclusion is not true.

Example 7.1. Consider the Example 4.1. and we get \(A \in \psi_\mu(X, \mu) \) but \(A \notin \mu \).

We give an example which shows that any supra closed in \((X, \mu, I)\) may not be a \(\psi_\mu \)-C set.

In the following example, by \(C(\mu) \) we denote the family of all supra closed sets in \((X, \mu)\).

Example 7.2. We consider the Example 3.1. Here \(A = \{ d \} \in C(\mu) \). Then \(\psi_\mu(A) = X - \{ a, b, c \} \sim = X - X = \phi \). Therefore \(A \in C(\mu) \) but \(A \notin \psi_\mu(X, \mu) \).

Theorem 7.2. Let \(\{ A_\alpha : \alpha \in \Delta \} \) be a collection of nonempty \(\psi_\mu \)-C sets in an ideal supra topological space \((X, \mu, I)\), then \(\cup_{\alpha \in \Delta} A_\alpha \in \psi_\mu(X, \mu) \).

Proof. For each \(\alpha \in \Delta \), \(A_\alpha \subseteq Cl_\mu(\psi_\mu(A_\alpha)) \subseteq Cl_\mu(\psi_\mu(\cup_{\alpha \in \Delta} A_\alpha)) \). This implies that \(\cup_{\alpha \in \Delta} A_\alpha \subseteq Cl_\mu(\psi_\mu(\cup_{\alpha \in \Delta} A_\alpha)) \). Thus \(\cup_{\alpha \in \Delta} A_\alpha \in \psi_\mu(X, \mu) \).

The following example shows that the intersection of two \(\psi_\mu \)-C sets in \((X, \mu, I)\) may not be a \(\psi_\mu \)-C set.

Example 7.3. Consider the Example 4.2. Here we consider \(A = \{ b, d \} \) and \(B = \{ a, d \} \), then \(\psi_\mu(A) = X - \{ a, c \} \sim = X - \{ a \} = \{ b, c, d \} \) and \(\psi_\mu(B) = X - \{ b, c \} \sim = X - \{ b \} = \{ a, c, d \} \). So \(A, B \in \psi_\mu(X, \mu) \), but \(\psi_\mu(\{ d \}) = X - \{ a, b, c \} \sim = X - \{ a, b, c, d \} = \phi \), and \(\{ d \} \notin \psi_\mu(X, \mu) \).
References

Received: July, 2011