Hybrid Descent-Like Halpern Iteration Methods for Two Nonexpansive Mappings and Semigroups on Two Sets

Nguyen Buong
Vietnamese Academy of Science and Technology
Institute of Information Technology
18, Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
nbuong@ioit.ac.vn

Nguyen Duc Lang
University of Science, Thainguyen University, Vietnam
nguyenduclang2002@yahoo.com

Abstract

In this paper, we introduce some new iteration methods based on the hybrid method in mathematical programming, the Mann’s iterative method and the Halpern’s method for finding a fixed point of a nonexpansive mapping and a common fixed point of a nonexpansive semigroup Hilbert spaces.

Mathematics Subject Classification: 41A65, 47H17, 47H20

Keywords: Metric projection, Fixed point, Nonexpansive Mappings and Semigroups

1. Introduction

Let \(H \) be a real Hilbert space with the scalar product and the norm denoted by the symbols \(\langle \cdot, \cdot \rangle \) and \(\| \cdot \| \), respectively, and let \(C \) be a nonempty closed and convex subset of \(H \). Denote by \(P_C(x) \) the metric projection from \(x \in H \) onto \(C \). Let \(T \) be a nonexpansive mapping on \(C \), i.e., \(T : C \to C \) and
\[\|Tx - Ty\| \leq \|x - y\| \text{ for all } x, y \in C.\] We use \(F(T)\) to denote the set of fixed points of \(T\), i.e., \(F(T) = \{x \in C : x = Tx\}\). We know that \(F(T)\) is nonempty, if \(C\) is bounded, for more details see [1].

Let \(\{T(t) : t > 0\}\) be a nonexpansive semigroup on \(C\), that is,

1. for each \(t > 0\), \(T(t)\) is a nonexpansive mapping on \(C\);
2. \(T(0)x = x\) for all \(x \in C\);
3. \(T(t_1 + t_2) = T(t_1) \circ T(t_2)\) for all \(t_1, t_2 > 0\); and
4. for each \(x \in C\), the mapping \(T(\cdot)x\) from \((0, \infty)\) into \(C\) is continuous.

Denote by \(\mathcal{F} = \cap_{t > 0} F(T(t))\) the set of common fixed points for the semigroup \(\{T(t) : t > 0\}\). We know that \(\mathcal{F}\) is a closed convex subset in \(H\) and \(\mathcal{F} \neq \emptyset\) if \(C\) is compact (see, [2]).

For finding a fixed point of a nonexpansive mapping \(T\) on \(C\), in 1953, Mann [3] proposed the following method:

\[
x_{n+1} = \alpha_n x_n + (1 - \alpha_n) Tx_n, \quad (1.1)
\]

that converges only weakly, in general (see [4] for an example). In 1967, Halpern [5] firstly proposed the following iteration process:

\[
x_{n+1} = \beta_n u + (1 - \beta_n) Tx_n, \quad n \geq 0, \quad (1.2)
\]

where \(u, x_0\) are two fixed elements in \(C\) and \(\{\beta_n\} \subset (0, 1)\). He pointed out that the conditions \(\lim_{n \to \infty} \beta_n = 0\) and \(\sum_{n=0}^{\infty} \beta_n = \infty\) are necessary in the sense that, if the iteration (1.2) converges to a fixed point of \(T\), then these conditions must be satisfied. Further, the iteration method was investigated by Lions [6], Reich [7], Wittmann [8] and Song [9]. Recently, Alber [10] proposed the following descent-like method

\[
x_{n+1} = P_C(x_n - \mu_n [x_n - Tx_n]), \quad n \geq 0, \quad (1.3)
\]

and proved that if \(\{\mu_n\} : \mu_n > 0, \mu_n \to 0\), as \(n \to \infty\) and \(\{x_n\}\) is bounded, then:

(i) there exists a weak accumulation point \(\bar{x} \in C\) of \(\{x_n\}\);
(ii) all weak accumulation points of \(\{x_n\}\) belong to \(F(T)\); and
(iii) if \(F(T)\) is a singleton, i.e., \(F(T) = \{\bar{x}\}\), then \(\{x_n\}\) converges weakly to \(\bar{x}\).
To obtain strong convergence for (1.1), Nakajo and Takahashi [11] introduced the hybrid Mann’s iteration method:

$$x_0 \in C,$$
$$y_n = \alpha_n x_n + (1 - \alpha_n) T x_n,$$
$$C_n = \{ z \in C : \| y_n - z \| \leq \| x_n - z \| \},$$
$$Q_n = \{ z \in C : \langle x_n - z, x_0 - x_n \rangle \geq 0 \},$$
$$x_{n+1} = P_{C_n \cap Q_n}(x_0),$$

(1.4)

where \(\{ \alpha_n \} \subset [0,a] \) for some \(a \in [0,1) \). They showed that \(\{ x_n \} \) defined by (1.4) converges strongly to \(P_{F(T)}(x_0) \) as \(n \to \infty \). Recently, Yanes and Xu [12] adapted the iteration process (1.2) as follows:

$$x_0 \in C \text{ any element,}$$
$$y_n = \beta_n x_0 + (1 - \beta_n) T x_n,$$
$$C_n = \{ z \in C : \| y_n - z \|^2 \leq \| x_n - z \|^2$$
$$+ \beta_n(\| x_0 \|^2 + 2 \langle x_n - x_0, z \rangle) \},$$
$$Q_n = \{ z \in C : \langle x_n - z, x_0 - x_n \rangle \geq 0 \},$$
$$x_{n+1} = P_{C_n \cap Q_n}(x_0),$$

(1.5)

They proved that if \(T \) is a nonexpansive mapping on a closed convex subset \(C \) with \(F(T) \neq \emptyset \) and the sequence \(\{ \beta_n \} \subset (0,1) \) is chosen such that \(\lim_{n \to \infty} \beta_n = 0 \), then the sequence \(\{ x_n \} \) defined by (1.5) converges strongly to \(P_{F(T)}(x_0) \) as \(n \to \infty \).

For finding an element \(p \in F \), Nakajo and Takahashi [11] also introduced an iteration procedure as follows:

$$x_0 \in C \text{ any element,}$$
$$y_n = \alpha_n x_n + (1 - \alpha_n) \frac{1}{t_n} \int_{0}^{t_n} T(s)x_n ds,$$
$$C_n = \{ z \in C : \| y_n - z \| \leq \| x_n - z \| \},$$
$$Q_n = \{ z \in C : \langle x_n - z, x_0 - x_n \rangle \geq 0 \},$$
$$x_{n+1} = P_{C_n \cap Q_n}(x_0), n \geq 0,$$

(1.6)

where \(\alpha_n \in [0,a] \) for some \(a \in [0,1) \) and \(\{ t_n \} \) is a positive real number divergent sequence. Under the conditions on \(\{ \alpha_n \} \) and \(\{ t_n \} \), the sequence \(\{ x_n \} \) defined by (1.6) converges strongly to \(P_F(x_0) \).
If $C \equiv H$, then C_n and Q_n in (1.4)-(1.6) are two halfspaces. So, the projection x_{n+1} onto $C_n \cap Q_n$ in these methods can be described by an explicit formula [13]. Clearly, if C is a proper subset of H, then C_n and Q_n in (1.4)-(1.6) are not two halfspaces. Then, the following big problem is posed: how to construct the closed convex subsets C_n and Q_n in (1.4)-(1.6) in a similar form as in [13]? This problem is solved very recently in [14] and [15]. In this works, C_n and Q_n are replaced by two halfspaces and y_n is the right hand side of (1.3) with a modification.

In this paper, using the idea, we introduce the following new iteration processes:

$x_0 \in H$ any element,

$z_n = \alpha_n P_C(x_n) + (1 - \alpha_n) P_C TP_C(x_n)$,

$y_n = \beta_n x_0 + (1 - \beta_n) P_C T z_n$,

$H_n = \{ z \in H : \| y_n - z \|^2 \leq \| x_n - z \|^2$

$+ \beta_n (\| x_0 \|^2 + 2 \langle x_n - x_0, z \rangle) \}$,

$W_n = \{ z \in H : \langle x_n - z, x_0 - x_n \rangle \geq 0 \}$,

$x_{n+1} = P_{H_n \cap W_n}(x_0), n \geq 0$;

and

$x_0 \in H$ any element,

$z_n = \alpha_n P_C(x_n) + (1 - \alpha_n) \frac{1}{t_n} \int_0^{t_n} T(s) P_C(x_n) ds$,

$y_n = \beta_n x_0 + (1 - \beta_n) \frac{1}{t_n} \int_0^{t_n} T(s) z_n ds$,

$H_n = \{ z \in H : \| y_n - z \|^2 \leq \| x_n - z \|^2$

$+ \beta_n (\| x_0 \|^2 + 2 \langle x_n - x_0, z \rangle) \}$,

$W_n = \{ z \in H : \langle x_n - z, x_0 - x_n \rangle \geq 0 \}$,

$x_{n+1} = P_{H_n \cap W_n}(x_0), n \geq 0$;

for a nonexpansive mapping $T : C \rightarrow H$ and a nonexpansive semigroup $\{ T(t) : t > 0 \}$ on C, respectively. We shall prove the strong convergence of the sequences $\{ x_n \}, \{ y_n \}$ and $\{ z_n \}$ defined by (1.7) and (1.8) to a fixed point of T and a common fixed point of the nonexpansive semigroup $\{ T(t) : t > 0 \}$, respectively.

Later, the symbols \rightharpoonup and \rightarrow denote weak and strong convergences, respectively.

2. Strong convergence to a fixed point of nonexpansive mappings
We formulate the following facts needed in the proof of our results.

Lemma 2.1 [16]. Let H be a real Hilbert space H. There holds the following identity: $\|x - y\|^2 = \|x\|^2 - \|y\|^2 - 2\langle x - y, y \rangle$.

Lemma 2.2 [12]. Let C be a nonempty closed convex subset of a real Hilbert space H. For any $x \in H$, there exists a unique $z \in C$ such that $\|z - x\| \leq \|y - x\|$ for all $y \in C$, and $z = P_C(x)$ if and only if $\langle z - x, y - z \rangle \geq 0$ for all $y \in C$, where P_C is the metric projection of H on C.

Lemma 2.3. (Demiclosedness principle) [17]. If C is a nonempty closed convex subset of a real Hilbert space H, T is a nonexpansive mapping on C, $\{x_n\}$ is a sequence in C such that $x_n \to x$ and $x_n - Tx_n \to 0$, then $x - Tx = 0$.

Lemma 2.4 [17]. Every Hilbert space H has Randon-Riesz property or Kadec-Klee property, that is, for a sequence $\{x_n\} \subset H$ with $x_n \to x$ and $\|x_n\| \to \|x\|$, then there holds $x_n \to x$.

Now, we are in a position to prove the following result.

Theorem 2.5. Let C be a nonempty closed convex subset in a real Hilbert space H and let $T : C \to H$ be a nonexpansive mapping such that $F(T) \neq \emptyset$. Assume that $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in $[0,1]$ such that $\alpha_n \to 1$ and $\beta_n \to 0$. Then, the sequences $\{x_n\}, \{y_n\}$ and $\{z_n\}$ defined by (1.7) converge strongly to the same point $u_0 = P_{F(T)}(x_0)$, as $n \to \infty$.

Proof. First, note that

$$\|y_n - z\|^2 \leq \|x_n - z\|^2 + \beta_n(\|x_0\|^2 + 2\langle x_n - x_0, z \rangle)$$

is equivalent to

$$(1 - \beta_n)\|y_n - x_n\|^2 - \beta_n\|y_n - x_n\|^2 \leq \|x_n - y_n, x_n\| - \frac{1}{2}\|y_n - x_n\|^2 + \frac{\beta_n}{2}\|x_0\|^2.$$

Thus, H_n is a halfspace. It is clear that $F(T_1) = F(T_1P_C) := \{p \in H : T_1P_C(p) = p\}$ for any mapping T_1 from C into C. Taking $T_1 = P_CT$ and using Lemma 2.6 in [15] with $S = P_CT$, we have that $F(T) = F(P_CTPC)$. Hence, by the convexity of $\|\cdot\|^2$ and the nonexpansive property of P_C, we obtain for any $p \in F(T)$ that $p = P_CTPC(p)$, and hence

$$\|z_n - p\|^2 = \|\alpha_nP_C(x_n) - p + (1 - \alpha_n)P_CTPC(x_n)\|^2$$

$$= \|\alpha_n(P_C(x_n) - P_C(p)) + (1 - \alpha_n)[P_CTPC(x_n) - P_CTPC(p)]\|^2$$

$$\leq \alpha_n\|x_n - p\|^2 + (1 - \alpha_n)\|P_C(x_n) - P_C(p)\|^2$$

$$\leq \|x_n - p\|^2.$$
By the similar argument and Lemma 2.1 with \(x = x_0 - p \) and \(y = x_n - p \), we also obtain

\[
\|y_n - p\|^2 = \|\beta_n x_0 + (1 - \beta_n)P_C T z_n - p\|^2 \\
\leq \beta_n \|x_0 - p\|^2 + (1 - \beta_n)\|P_C T z_n - P_C T p\|^2 \\
\leq \beta_n \|x_0 - p\|^2 + (1 - \beta_n)\|z_n - p\|^2 \\
\leq \beta_n \|x_0 - p\|^2 + (1 - \beta_n)\|x_n - p\|^2 \\
= \|x_n - p\|^2 + \beta_n(\|x_0 - p\|^2 - \|x_n - p\|^2) \\
= \|x_n - p\|^2 + \beta_n(\|x_0\|^2 + 2(x_n - x_0, p)).
\]

Therefore, \(p \in H_n \) for all \(n \geq 0 \). It means that \(F(T) \subset H_n \) for all \(n \geq 0 \).

Next, we show by mathematical induction that \(F(T) \subset H_n \cap W_n \) for each \(n \geq 0 \). For \(n = 0 \), we have \(W_0 = H \), and hence \(F(T) \subset H_0 \cap W_0 \). Suppose that \(x_i \) is given and \(F(T) \subset H_i \cap W_i \) for some \(i > 0 \). There exists a unique element \(x_{i+1} \in H_i \cap W_i \) such that \(x_{i+1} = P_{H_i \cap W_i}(x_0) \). Therefore, by Lemma 2.2,

\[
\langle x_{i+1} - x_0, p - x_{i+1} \rangle \geq 0
\]

for each \(p \in H_i \cap W_i \). Since \(F(T) \subset H_i \cap W_i \), we get \(F(T) \subset W_{i+1} \). So, we have \(F(T) \subset H_{i+1} \cap W_{i+1} \).

Further, since \(F(T) \) is a nonempty closed convex subset of \(H \), there exists a unique element \(u_0 \in F(T) \) such that \(u_0 = P_{F(T)}(x_0) \). From \(x_{n+1} = P_{H_n \cap W_n}(x_0) \), we obtain

\[
\|x_{n+1} - x_0\| \leq \|z - x_0\|
\]

for every \(z \in H_n \cap W_n \). As \(u_0 \in F(T) \subset W_n \), we get

\[
\|x_{n+1} - x_0\| \leq \|u_0 - x_0\| \quad n \geq 0. \tag{2.1}
\]

This implies that \(\{x_n\} \) is bounded. So, \(\{P_C T P_C(x_n)\}, \{z_n\} \) and \(\{T z_n\} \) are also bounded.

Now, we show that

\[
\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0. \tag{2.2}
\]

From the definition of \(W_n \) and Lemma 2.2, it follows that \(x_n = P_{W_n}(x_0) \). As \(x_{n+1} \in H_n \cap W_n \), we have

\[
\|x_{n+1} - x_0\| \geq \|x_n - x_0\| \quad n \geq 0.
\]

Therefore, \(\{\|x_n - x_0\|\} \) is a nondecreasing and bounded sequence. So, there exists \(\lim_{n \to \infty} \|x_n - x_0\| = c \). On the other hand, from \(x_{n+1} \in W_n \), we have
Thus, (2.2) is followed from the last inequality and \(\lim_{n \to \infty} \|x_n - x_0\| = c \).

Since \(\alpha_n \to 1 \) and \(\{x_n\} \) are bounded, we have from (1.7) that

\[
\lim_{n \to \infty} \|z_n - P_C(x_n)\| = \lim_{n \to \infty} (1 - \alpha_n)\|P_C(x_n) - P_CTP_C(x_n)\| = 0. \tag{2.3}
\]

On the other hand, since \(x_{n+1} \in H_n \) we have that

\[
\|y_n - x_{n+1}\|^2 \leq \|x_n - x_{n+1}\|^2 + \beta_n(\|x_0\| + 2\langle x_n - x_0, x_{n+1} \rangle).
\]

Therefore, from (2.2), the boundedness of \(\{x_n\} \), \(\beta_n \to 0 \) and the last inequality, it follows that

\[
\lim_{n \to \infty} \|y_n - x_{n+1}\| = 0. \tag{2.4}
\]

This together with (2.2) implies that

\[
\lim_{n \to \infty} \|y_n - x_n\| = 0. \tag{2.5}
\]

Noticing that \(P_C T z_n = y_n - \beta_n(x_n - P_C T z_n) + \beta_n(x_n - x_0) \), we have

\[
\|x_n - P_C T z_n\| \leq \|x_n - y_n\| + \beta_n\|x_n - P_C T z_n\| + \beta_n\|x_n - x_0\|.
\]

From (2.1) and the last inequality, it follows that

\[
\|x_n - P_C T z_n\| \leq \frac{1}{1 - \beta_n}\left(\|x_n - y_n\| + \beta_n\|u_0 - x_0\|\right).
\]

By \(\beta_n \to 0 \) (\(\beta_n \leq 1 - \beta \) for some \(\beta \in (0, 1) \)), (2.5) and the last inequality, we obtain

\[
\lim_{n \to \infty} \|x_n - P_C T z_n\| = 0. \tag{2.6}
\]

Further, we have that \(P_C T z_n = P_C P_C T z_n \), and hence

\[
\|z_n - P_C T z_n\| \leq \|z_n - P_C(x_n)\| + \|P_C(x_n) - P_C P_C(T z_n)\|
\]

\[
\leq \|z_n - P_C(x_n)\| + \|x_n - P_C T z_n\|.
\]

So, from (2.3), (2.6) and the last inequality, it follows that

\[
\lim_{n \to \infty} \|z_n - P_C T z_n\| = 0. \tag{2.7}
\]
Since \(\{x_n\}\) is bounded, there exists a subsequence \(\{x_{n_j}\}\) of \(\{x_n\}\) that converges weakly to some element \(p \in H\) as \(j \to \infty\). From (2.6) and (2.7), we also have that \(\{z_{n_j}\}\) converges weakly to \(p\). Since \(\{z_n\} \subset C\), we obtain that \(p \in C\).

By Lemmas 2.3 and (2.7), \(p \in F(T)\) by Lemma 2.6 in [15] with \(S\) replaced by \(T\).

Now, from (2.1) and the weakly lower semicontinuity of the norm it implies that

\[
\|x_0 - u_0\| \leq \liminf_{j \to \infty} \|x_0 - x_{n_j}\| \leq \limsup_{j \to \infty} \|x_0 - x_{n_j}\| \leq \|x_0 - u_0\|.
\]

Thus, we obtain \(\lim_{j \to \infty} \|x_0 - x_{n_j}\| = \|x_0 - u_0\| = \|x_0 - p\|\). This implies \(x_{k_j} \to p = u_0\) by Lemma 2.4. By the uniqueness of the projection \(u_0 = T(x_0)\), we have that \(x_n \to u_0\). From (2.5) and (2.6)-(2.7), we also get \(y_n \to u_0\) and \(z_n \to u_0\), respectively. This completes the proof.

Corollary 2.6. Let \(C\) be a nonempty closed convex subset in a real Hilbert space \(H\) and let \(T : C \to H\) be a nonexpansive mapping such that \(F(T) \neq \emptyset\). Assume that \(\{\beta_n\}\) is a sequence in \([0,1]\) such that such that \(\beta_n \to 0\). Then, the sequences \(\{x_n\}\) and \(\{y_n\}\), defined by

\[
x_0 \in H \text{ any element},
\]

\[
y_n = \beta_n x_0 + (1 - \beta_n) PC TP_C(x_n),
\]

\[
H_n = \{z \in H : \|y_n - z\|^2 \leq \|x_n - z\|^2 + \beta_n(\|x_0\| + 2\langle x_n - x_0, z \rangle)\},
\]

\[
W_n = \{z \in H : \langle x_n - z, x_0 - x_n \rangle \geq 0\},
\]

\[
x_{n+1} = P_{H_n \cap W_n}(x_0), n \geq 0,
\]

converge strongly to the same point \(u_0 = T(x_0)\), as \(n \to \infty\).

Proof. By putting \(\alpha_n \equiv 1\) in Theorem 2.5, we obtain the conclusion.

Corollary 2.7. Let \(C\) be a nonempty closed convex subset in a real Hilbert space \(H\) and let \(T : C \to H\) be a nonexpansive mapping such that \(F(T) \neq \emptyset\). Assume that \(\{\alpha_n\}\) is a sequence in \([0,1]\) such that \(\alpha_n \to 1\). Then, the sequences \(\{x_n\}\) and \(\{y_n\}\), defined by

\[
x_0 \in H \text{ any element},
\]

\[
y_n = PC T(\alpha_n PC(x_n) + (1 - \alpha_n) PC TP_C(x_n)),
\]

\[
H_n = \{z \in H : \|y_n - z\| \leq \|x_n - z\|\},
\]

\[
W_n = \{z \in H : \langle x_n - z, x_0 - x_n \rangle \geq 0\},
\]

\[
x_{n+1} = P_{H_n \cap W_n}(x_0), n \geq 0,
\]

converge strongly to the same point \(u_0 = T(x_0)\), as \(n \to \infty\).
Hybrid descent-like halpern iteration methods

converge strongly to the same point \(u_0 = P_{F(T)}(x_0) \), as \(n \to \infty \).

Proof. By putting \(\beta_n \equiv 0 \) in Theorem 2.5, we obtain the conclusion.

3. Strong convergence to a common fixed point of nonexpansive semigroups

We need the following Lemma in the proof of our result.

Lemma 3.1 [18]. Let \(C \) be a nonempty bounded closed convex subset in a real Hilbert space \(H \) and let \(\{ T(t) : t > 0 \} \) be a nonexpansive semigroup on \(C \). Then, for any \(h > 0 \)

\[
\limsup_{t \to \infty} \sup_{y \in C} \left\| T(h) \left(\frac{1}{t} \int_0^t T(s)y\,ds \right) - \frac{1}{t} \int_0^t T(s)y\,ds \right\| = 0.
\]

Now, we prove the following result.

Theorem 3.2. Let \(C \) be a nonempty closed convex subset in a real Hilbert space \(H \) and let \(\{ T(t) : t > 0 \} \) be a nonexpansive semigroup on \(C \) such that \(\mathcal{F} = \cap_{t > 0} F(T(t)) \neq \emptyset \). Assume that \(\{ \alpha_n \} \) and \(\{ \beta_n \} \) are sequences in \([0,1]\) such that \(\alpha_n \to 1 \) and \(\beta_n \to 0 \), and \(\{ t_n \} \) is a positive real divergent sequence. Then, the sequences \(\{ x_n \}, \{ z_n \} \) and \(\{ y_n \} \), defined by (1.8), converge strongly to the same point \(u_0 = P_{F(x_0)} \), as \(n \to \infty \).

Proof. For each \(p \in \mathcal{F} \), we have

\[
p = P_C(p) = T(s)P_C(p)
\]

for each \(s > 0 \) and hence from (1.8) and the convexity of \(\| \cdot \|^2 \) we obtain that

\[
\| z_n - p \|^2 = \left\| \alpha_n(P_C(x_n) - p) + (1 - \alpha_n) \left(\frac{1}{t_n} \int_0^{t_n} T(s)P_C(x_n)\,ds - p \right) \right\|^2
\]

\[
= \left\| \alpha_n(P_C(x_n) - P_C(p)) + (1 - \alpha_n) \left(\frac{1}{t_n} \int_0^{t_n} [T(s)P_C(x_n) - T(s)P_C(p)]\,ds \right) \right\|^2
\]

\[
\leq \alpha_n \| x_n - p \|^2 + (1 - \alpha_n) \left(\frac{1}{t_n} \int_0^{t_n} \| T(s)P_C(x_n) - T(s)P_C(p) \| \,ds \right)^2
\]

\[
\leq \alpha_n \| x_n - p \|^2 + (1 - \alpha_n) \| P_C(x_n) - P_C(p) \|^2
\]

\[
\leq \| x_n - p \|^2.
\]
By the similar argument, we also obtain

\[
\|y_n - p\|^2 = \|\beta_n(x_0 - p) + (1 - \beta_n)\left(\frac{1}{t_n} \int_0^{t_n} T(s)z_n ds - p\right)\|^2 \\
\leq \beta_n\|x_0 - p\|^2 + (1 - \beta_n)\left(\frac{1}{t_n} \int_0^{t_n} [T(s)z_n - T(s)p] ds\right)^2 \\
\leq \beta_n\|x_0 - p\|^2 + (1 - \beta_n)\|z_n - p\|^2 \\
= \|x_n - p\|^2 + \beta_n(\|x_0 - p\|^2 - \|x_n - p\|^2) \\
\leq \|x_n - p\|^2 + \beta_n(\|x_0\|^2 + 2\langle x_n - x_0, p \rangle).
\]

Therefore, \(p \in H_n \) for \(n \geq 0 \). It means that \(F \subset H_n \) for \(n \geq 0 \). As in the proof of Theorem 2.5, we can obtain the following properties:

(i) \(F \subset H_n \cap W_n \),

\[
\|x_{n+1} - x_0\| \leq \|u_0 - x_0\|, \quad u_0 = P_F(x_0)
\]

for \(n \geq 0 \). This implies that \(\{x_n\} \) is bounded. So,

\[
\left\{ \frac{1}{t_n} \int_0^{t_n} T(s)P_C(x_n) ds \right\}, \{z_n\} \quad \text{and} \quad \left\{ \frac{1}{t_n} \int_0^{t_n} T(s)z_n ds \right\}
\]

are also bounded.

(ii)

\[
\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0. \tag{3.2}
\]

\[
\lim_{n \to \infty} \|z_n - P_C(x_n)\| = 0. \tag{3.3}
\]

\[
\lim_{n \to \infty} \|y_n - x_{k+1}\| = 0. \tag{3.4}
\]

\[
\lim_{n \to \infty} \|y_n - x_n\| = 0. \tag{3.5}
\]

\[
\lim_{n \to \infty} \left\| x_n - \frac{1}{t_n} \int_0^{t_n} T(s)z_n ds \right\| = \lim_{n \to \infty} \left\| z_n - \frac{1}{t_n} \int_0^{t_n} T(s)z_n ds \right\| = 0. \tag{3.6}
\]

Since \(\{x_n\} \) is bounded, there exists a subsequence \(\{x_{n_j}\} \) of \(\{x_n\} \) that converges weakly to some element \(p \in H \) as \(j \to \infty \). So, by (3.6), the subsequence \(\{z_{n_j}\} \) also converges weakly to \(p \) and hence \(p \in C \).
On the other hand, for each $h > 0$, we have that
\[
\|T(h)z_n - z_n\| \leq \left\| T(h)z_n - T(h)\left(\frac{1}{t_n} \int_0^{t_n} T(s)z_n ds\right)\right\| \\
+ \left\| T(h)\left(\frac{1}{t_n} \int_0^{t_n} T(s)z_n ds\right) - \frac{1}{t_n} \int_0^{t_n} T(s)z_n ds\right\| \\
+ \frac{1}{t_n} \int_0^{t_n} T(s)z_n ds - z_n \right\| \\
\leq 2 \left\| \frac{1}{t_n} \int_0^{t_n} T(s)z_n ds - z_n \right\| \\
+ \left\| T(h)\left(\frac{1}{t_n} \int_0^{t_n} T(s)z_n ds\right) - \frac{1}{t_n} \int_0^{t_n} T(s)z_n ds\right\|.
\]
(3.7)

Let $C_0 = \{ z \in C : \|z - u_0\| \leq 2\|x_0 - u_0\| \}$. Since $u_0 = P_F(x_0) \in C$, we have from (1.8) and (3.1) that
\[
\|z_n - u_0\| = \left\| \alpha_n(P_C(x_n) - u_0) + (1 - \alpha_n)\left[\frac{1}{t_n} \int_0^{t_n} T(s)P_C(x_n) ds - u_0\right]\right\| \\
= \left\| \alpha_n[P_C(x_n) - P_C(u_0)] \right\| \\
+ (1 - \alpha_n)\left[\frac{1}{t_n} \int_0^{t_n} T(s)P_C(x_n) ds - \frac{1}{t_n} \int_0^{t_n} T(s)P_C(u_0) ds \right] \\
\leq \alpha_n\|x_n - u_0\| + (1 - \alpha_n)\left\| \frac{1}{t_n} \int_0^{t_n} [T(s)P_C(x_n) - T(s)P_C(u_0)] ds \right\| \\
\leq \|x_n - x_0\| + \|x_0 - u_0\| \\
\leq 2\|x_0 - u_0\|.
\]

So, C_0 is a nonempty bounded closed convex subset. It is easy to verify that and $\{T(t) : t > 0\}$ is a nonexpansive semigroup on C_0. By Lemma 3.1, we get
\[
\lim_{n \to \infty} \left\| T(h)\left(\frac{1}{t_n} \int_0^{t_n} T(s)z_n ds\right) - \frac{1}{t_n} \int_0^{t_n} T(s)z_n ds\right\| = 0
\]
for every fixed $h > 0$ and hence by (3.6)-(3.7) we obtain that
\[
\lim_{n \to \infty} \|T(h)z_n - z_n\| = 0
\]
for each $h > 0$. By Lemma 2.3, $p \in F(T(h))$ for all $h > 0$. It means that $p \in F$. As in the proof of Theorem 2.5, by using (3.1)-(3.6), we also obtain that the sequences $\{x_n\}, \{y_n\}$ and $\{z_n\}$, defined by (1.8), converge strongly to u_0 as $n \to \infty$. This completes the proof.
Corollary 3.3. Let C be a nonempty closed convex subset in a real Hilbert space H and let $\{T(t) : t > 0\}$ be a nonexpansive semigroup on C such that $\mathcal{F} = \cap_{t>0} F(T(t)) \neq \emptyset$. Assume that $\{\beta_n\}$ is a sequence in $[0,1]$ such that $\beta_n \to 0$. Then, the sequences $\{x_n\}$ and $\{y_n\}$, defined by

$$
x_0 \in H \quad \text{any element,}
$$
$$
y_n = \beta_n x_0 + (1 - \beta_n) \frac{1}{t_n} \int_{0}^{t_n} T(s) P_C(x_n) ds,
$$
$$
H_n = \{z \in H : \|y_n - z\|^2 \leq \|x_n - z\|^2 \\
+ \beta_n (\|x_0\| + 2 \langle x_n - x_0, z \rangle)\},
$$
$$
W_n = \{z \in H : \langle x_n - z, x_0 - x_n \rangle \geq 0\},
$$
$$
x_{n+1} = P_{H_n \cap W_n}(x_0), n \geq 0,
$$

converge strongly to the same point $u_0 = P_{\mathcal{F}}(x_0)$, as $n \to \infty$.

Proof. By putting $\alpha_n \equiv 1$ in Theorem 3.2, we obtain the conclusion.

Corollary 3.4. Let C be a nonempty closed convex subset in a real Hilbert space H and let $\{T(t) : t > 0\}$ be a nonexpansive semigroup on C such that $\mathcal{F} = \cap_{t>0} F(T(t)) \neq \emptyset$. Assume that $\{\alpha_n\}$ is a sequence in $[0,1]$ such that $\alpha_n \to 1$. Then, the sequences $\{x_n\}$ and $\{y_n\}$, defined by

$$
x_0 \in H \quad \text{any element,}
$$
$$
y_n = \frac{1}{t_n} \int_{0}^{t_n} T(s) \left[\alpha_n P_C(x_n) + (1 - \alpha_n) \frac{1}{t_n} \int_{0}^{t_n} T(s) P_C(x_n) ds \right] ds,
$$
$$
H_n = \{z \in H : \|y_n - z\| \leq \|x_n - z\|\},
$$
$$
W_n = \{z \in H : \langle x_n - z, x_0 - x_n \rangle \geq 0\},
$$
$$
x_{n+1} = P_{H_n \cap W_n}(x_0), n \geq 0,
$$

converge strongly to the same point $u_0 = P_{\mathcal{F}}(x_0)$, as $n \to \infty$.

Proof. By putting $\beta_n \equiv 0$ in Theorem 3.2, we obtain the conclusion.

This work was supported by the Vietnamese National Foundation for Science and Technology Development.

References

Received: January, 2012