Some Properties of Operator Classes

\((M,k), (M,k)^*, (A,k)\) and \((A,k)^*\)

Fahri Marevci

Faculty of Education
University of Prishtina, Prishtinë 10000, Kosovë
fahrimarevci@hotmail.com

Muhib Lohaj

Department of Mathematics and Computer Sciences
Avenue Mother Teresa Nr. 5
University of Prishtina, Prishtinë 10000, Kosovë
muhib_lohaj@yahoo.com

Abstract

In this paper we will define a new classes of operators, which we denote by \((A,k)\) and \((A,k)^*\). We give some relations between classes \((M,k), (M,k)^*, (A,k)\) and \((A,k)^*\). Also, some spectral characterizations of \((A,k), (A,k)^*\) classes of operators are given.

Mathematics Subject Classification: 47B20, 47B37

Keywords: Hilbert space, operator classes \((M,k), (M,k)^*, (A,k)\) and \((A,k)^*\).

1. Introduction

Let us denote by \(H\) the complex Hilbert space and \(B(H)\) the space of all
bounded linear operators defined in Hilbert space \(H \). In the following we will mention some known classes of operators defined in Hilbert space \(H \). Let \(T \) be an operator in \(B(H) \). The operator \(T \) is called normal if it satisfies the following condition \(T^*T = TT^* \). The operator \(T \) is called quasi-normal if \(T(T^*T) = (T^*T)T \), it is hyponormal if \(T^*T \geq TT^* \), which is equivalent to the condition \(\|Tx\| \geq \|T^*x\| \), for all \(x \) in \(H \). We say that an operator \(T \) is quasi-hyponormal if the following condition \(T^{*2}T^2 \geq (T^*T)^2 \) holds and the last one is equivalent with \(\|T^2x\| \geq \|T^*Tx\| \), for all \(x \) in \(H \). We say that an operator \(T \) is of \((M,k)\) class if \(TT^* \geq (T^*T)^k \), for \(k \geq 2 \), which is equivalent to the condition \(\|Tx\| \geq \|T^*x\|^k \), for all \(x \) in \(H \) and \(k \geq 2 \). It is known that the \((M,2)\) class coincides with the class of quasi-hyponormal operators. But, the class of hyponormal operators does not coincide with \((M,k)\), for any \(k \) (see [3]). We say that an operator \(T \) is of \((M,k)^*\) class if \(T^{*k}T^k \geq (T^*T)^k \), for \(k \geq 1 \), which is equivalent to the condition \(\|T^kx\| \geq \|T^{*k}x\|^k \), for all \(x \) in \(H \) and \(k \geq 1 \) (see [4]). It is known that the \((M,1)^*\) class coincides with the class of hyponormal operators. We will define a new classes of operators which we denote by \((A,k)\) respectively \((A,k)^*\). The operator \(T \) is of \((A,k)\) class if \(\|T^kx\|^2 \geq \|T^*Tx\|^k \), for all unit vectors \(x \) in \(H \) and \(k \geq 2 \). We observe that the \((A,2)\) class coincides with the class of quasi-hyponormal operators. The operator \(T \) is of \((A,k)^*\) class if \(\|T^kx\|^2 \geq \|TT^*x\|^k \), for all unit vectors \(x \) in \(H \) and \(k \geq 1 \). We see that the \((A,2)^*\) class coincides with the \((M,2)^*\) class. The spectrum, the point spectrum, the approximate point spectrum, the joint point spectrum and joint approximate point spectrum of an operator \(T \) are denoted by \(\sigma(T) \), \(\sigma_p(T) \), \(\sigma_{ap}(T) \), \(\sigma_{jp}(T) \), \(\sigma_{ja}(T) \), respectively. We give some relations between classes \((M,k),(M,k)^*,(A,k)\) and \((A,k)^*\). For example, we show that every operator \(T \) from the \((M,k),(k \geq 3)\) class, belongs to the \((A,k)\) class and every operator \(T \) from the \((M,k)^*\) class belongs to the \((A,k)^*\) class. Also, some spectral characterizations of \((A,k)\) \(((A,k)^*)\) class of operators are
Properties of operator classes

Theorem A. (Hölder-McCarthy inequality [2]). Let A be a positive operator. Then the following inequalities hold for all x in H

\[\langle A'x, x \rangle \leq \langle Ax, x \rangle^{2(1-r)}, \text{ for } 0 < r \leq 1\]
\[\langle A'x, x \rangle \geq \langle Ax, x \rangle^{2(1-r)}, \text{ for } r \geq 1.\]

Theorem B. (11). Let $\lambda \neq 0$, and $\{x_n\}$ be a sequence of vectors. Then the following assertions are equivalent

i) $(T - \lambda)x_n \to 0$ and $(T^* - \bar{\lambda})x_n \to 0.$

ii) $(|T| - |\lambda|)x_n \to 0$ and $(U - e^{i\theta})x_n \to 0.$

iii) $(|T^*| - |\lambda|)x_n \to 0$ and $(U - e^{-i\theta})x_n \to 0.$

2. Operator classes (M,k) and (A,k) in Hilbert space

In this section we will show some properties of (M,k) and (A,k) classes.

Proposition 2.1. For each positive integer $k \geq 2$ an operator T belongs to the (M,k) class if and only if

\[T^{*k}T^k + 2\lambda(T^*T)^k + \lambda^2 T^{*k}T^k \geq 0,\]

holds for all $\lambda \in R$.

Proof. Let $\lambda \in R$ and $x \in H$ be given. Then $T \in (M,k)$, if and only if

\[\left\| (T^*T)^{\frac{k}{2}} x \right\| \leq \left\| T^k x \right\| \iff 4 \left\| (T^*T)^{\frac{k}{2}} x \right\|^2 - 4 \left\| T^k x \right\|^2 \leq 0\]

\[\iff \left\| T^k x \right\|^2 + 2\lambda \left\| (T^*T)^{\frac{k}{2}} x \right\|^2 + \lambda^2 \left\| T^k x \right\|^2 \geq 0\]

\[\iff \langle (T^k x, T^k x) + 2\lambda \langle (T^*T)^{\frac{k}{2}} x, (T^*T)^{\frac{k}{2}} x \rangle + \lambda^2 \langle T^k x, T^k x \rangle \geq 0\]

\[\iff \langle (T^{*k}T^k + 2\lambda(T^*T)^k + \lambda^2 T^{*k}T^k) x, x \rangle \geq 0\]

\[\iff T^{*k}T^k + 2\lambda(T^*T)^k + \lambda^2 T^{*k}T^k \geq 0.\]

The proof is completed.\[\blacksquare\]
Corollary 2.1. If \(k = 2 \), we get the following relation \(T^2T^2 \geq (T^*T)^2 \) if and only if \(T^2T^2 + 2\lambda(T^*T)^2 + \lambda^2T^*T^2 \geq 0 \), for all \(\lambda \in R \), which is the definition of the quasi-hyponormal operator.

Proposition 2.2. If the operator \(T \) belongs to the \((M, k)\) class, where \(k \geq 2 \), then it belongs to the \((A, k)\) class.

Proof. Let \(T \in (M, k) \), then for every unit vectors \(x \in H \) we have
\[
\|T^k x\|^4 = \langle T^k x, T^k x \rangle^2 = \langle T^{2k} T^k x, x \rangle^2 \\
\geq \langle (T^*T)^k x, x \rangle^2, \text{ because } T \in (M, k) \\
\geq \langle (T^*T)^2 x, x \rangle^k \text{ (Hölder-McCarthy inequality)} \\
= \langle T^*T x, T^*T x \rangle^k = \|T^*T x\|^{2k}.
\]
Thus \(\|T^k x\|^4 \geq \|T^*T x\|^{2k} \), respectively \(T \in (A, k) \). Therefore the proof is completed.

Corollary 2.2. If the operator \(T \) belongs to the \((M, k)\)' class, where \(k \geq 1 \), then \(T \) belongs to the \((A, k+1)\) class.

Proof. This proof follows from theorem 3.8 in [3] and proposition 2.2.

Proposition 2.3. Let \(T \) be an operator in \((A, k)\). Then the following relation
\[
0 \neq \lambda \in \sigma_p(T) \Rightarrow \tilde{\lambda} \in \sigma_p(T^*),
\]
holds.

Proof. Let \(T \in (A, k) \), \(\lambda \in \sigma_p(T), \lambda \neq 0 \) and let \(x \in H \) a unit vector such that \(Tx = \lambda x \). Then we have
\[
\|T^* T x\| \leq \|T^k x\|^2 \\
\|T^* T x\| = |\lambda|^k \|T^* x\|^2 \\
\|T^k x\|^2 = |\lambda|^{2k}.
\]
Now from relation (1), (2) and (3) it follows that
\[
\|T^* x\| \leq |\lambda|
\]
Hence
\[
\|T^* x - \tilde{\lambda} x\|^2 = \langle T^* x - \tilde{\lambda} x, T^* x - \tilde{\lambda} x \rangle = \langle T^* x, T^* x \rangle - \langle T^* x, \tilde{\lambda} x \rangle - \langle \tilde{\lambda} x, T^* x \rangle + \langle \tilde{\lambda} x, \tilde{\lambda} x \rangle \\
= \|T^* x\|^2 - \tilde{\lambda} \langle x, Tx \rangle - \tilde{\lambda} \langle Tx, x \rangle + |\lambda|^2 \langle x, x \rangle \\
\leq |\lambda|^2 - |\lambda|^2 \|x\|^2 - |\lambda|^2 \|x\|^2 + |\lambda|^2 \|x\|^2 = |\lambda|^2 - |\lambda|^2 - |\lambda|^2 + |\lambda|^2 = 0.
\]
Therefore we have \(T^* x = \tilde{\lambda} x \), consequently \(\tilde{\lambda} \in \sigma_p(T^*) \).
Lemma 2.1. If T is a bilateral weighted shift operator, with weighted sequence ω_n, $(Te_n = \omega_n e_{n+1})$, then T is in (A,k) class if and only if

$$|\omega_n| \cdot |\omega_{n+1}| \cdots |\omega_{n+k-1}| \geq |\omega_n|^k, \quad n \in \mathbb{Z} \text{ and } k \geq 2.$$

Proof. The proof follows immediately from the definition of (A,k) class. \blacksquare

Lemma 2.2. If T is a regular bilateral weighted shift operator, with weighted sequence $\omega_n \neq 0$, $(Te_n = \omega_n e_{n+1})$, then $T^{-1} \in (A,k)$ if and only if

$$|\omega_{n-1}| \cdot |\omega_{n-2}| \cdots |\omega_{n-k}|, \quad n \in \mathbb{Z}, |\omega_n| \neq 0 \text{ and } k \geq 2.$$

Proof. The proof follows immediately from the definition of (A,k) class. \blacksquare

By the following example we show that there exists an operator T which belongs to the (A,k) class but its inverse T^{-1} is not element of (A,k).

Example 2.1. Let T is a regular bilateral weighted shift operator, with weighted sequence (ω_n) given as follows

$$\omega_n = \begin{cases}
\frac{1}{2}, & \text{for } n \leq -1 \\
1, & \text{for } n = 0 \\
\frac{1}{2}, & \text{for } n = 1 \\
2, & \text{for } n = 2 \\
\frac{1}{2}, & \text{for } n = 3 \\
16, & \text{for } n \geq 4
\end{cases}.$$

From lemma 2.1 and lemma 2.2, after some calculations it follows that $T \in (A,3)$, but $T^{-1} \notin (A,3)$.

Theorem 2.1. Let $T \in (A,k)$ and let $T^n, (n > k)$ be a compact operator, then it follows that T is compact too.

Proof. Let $T \in (A,k)$, $k \geq 2$ and let $\frac{T^{n+k}x}{\|T^{n+k}x\|}$ be a unit vector in Hilbert space H. Then we have

$$\left\|T^*T \left(\frac{T^{n+k}x}{\|T^{n+k}x\|}\right)\right\|^k \leq \|T^nx\|^2 \cdot \left\|T^{n-k}x\right\|^{-2}.$$

(5)
Let \((x_n) \in H\) be weakly convergent sequence with limit 0 in \(H\). From compactness of \(T^n\) and inequality (5) we get the following relation
\[
\left\| T^{n-k} x_m \right\| \leq \left\| T^k x_m \right\|^2 \to 0, n \to \infty.
\]
So, the operator \(T^{n-k}\) is a compact operator from which follows that \(T^{n-1}\) is also compact, respectively \(T^n\) is a compact operator. Now, if we repeat this procedure, we conclude the \(T\) is a compact operator.

Proposition 2.4. Let \(T \in (A,k)\) be a regular operator, for \(k \geq 2\). Then the approximate point spectrum lies in the disc
\[
\sigma_{ap} \subseteq \{ \lambda \in C : \frac{1}{\|T\|^{k-1} \sqrt{(T^T)^{-1} T}} \leq |\lambda| \leq \|T\| \}.
\]

Proof. Let \(T \in (A,k)\) be a regular operator, for \(k \geq 2\). Then for every unit vector \(x\) in \(H\), we have
\[
\|x\|^k = \left\| (T^T)^{-1} (T^T)x \right\|^k \leq \left\| (T^T)^{-1} \right\|^k \cdot \left\| T^T x \right\|^k \leq \left\| (T^T)^{-1} \right\|^k \cdot \left\| T^k x \right\|^2 \leq \left\| (T^T)^{-1} \right\|^k \cdot \left\| T^k \right\|^2.
\]

\[
\|Tx\| \geq \frac{1}{\|T^k\| \sqrt{\|T^T\|^{-1}}} \geq \frac{1}{\|T\|^{k-1} \sqrt{\|T^T\|}}.
\]

(6)

Now, assume that \(\lambda \in \sigma_{ap}\). Then there exists a sequence \((x_n)\), \(\|x_n\| = 1\), such that \(\| (T - \lambda)x_n \| \to 0\), when \(n \to \infty\). Therefore by (6) we have
\[
\|Tx_n - \lambda x_n\| \geq \|Tx_n\| - |\lambda| \|x_n\| \geq \frac{1}{\|T\|^{k-1} \sqrt{(T^T)^{-1}}} - |\lambda|.
\]

(7)

Now, when \(n \to \infty\), from relation (7) we have
\[
|\lambda| \geq \frac{1}{\|T\|^{k-1} \sqrt{(T^T)^{-1}}}.
\]

respectively \(\sigma_{ap} \subseteq \{ \lambda \in C : \frac{1}{\|T\|^{k-1} \sqrt{(T^T)^{-1}}} \leq |\lambda| \leq \|T\| \} .
\]

Corollary 2.3. Let \(T\) be a regular quasi-hyponormal operator. Then the following relation
Properties of operator classes

\[\sigma_{ap} \subseteq \left\{ \lambda \in \mathbb{C} : \frac{1}{\|T\| \cdot \|T^*T\|^{-1}} \leq |\lambda| \leq \|T\| \right\} \]

holds.

Proposition 2.5. If the operator \(T \in B(H) \) satisfies condition \(|T^k|^\frac{4}{k} \geq |T|^4 \), for \(k \geq 2 \), then operator \(T \) belongs to the \((A,k)\) class.

Proof. Assume that the operator \(T \) satisfies the condition

\[|T^k|^\frac{4}{k} \geq |T|^4 , \text{ for } k \geq 2 . \]

Then, for every unit vector \(x \in H \), we have

\[\left\| T^k x \right\|^4 = \langle T^k x, T^k x \rangle^2 = \langle T^{2k} x, x \rangle^2 \]

\[\geq \langle T^k x, x \rangle^k \quad (\text{Hölder-McCarthy inequality}) \]

\[\geq \langle |T|^4 x, x \rangle^k = \langle (T^*T)^2 x, x \rangle^k = \langle T^*T x, T^*T x \rangle^k = \|T^*T\|^2 \cdot \|T\|^4 . \]

Thus \(\left\| T^k x \right\|^4 \geq \|T^*T\|^2 \), for \(k \geq 2 \), respectively \(T \in (A,k) \). Therefore the proof is completed. ■

Corollary 2.4. If the operator \(T \in B(H) \) satisfies condition \(|T^2|^2 \geq |T|^4 \), then it is quasi-hyponormal.

Theorema 2.2. If \(T \in B(H) \) belongs to the class \((A,k), k \geq 2 \) and \(\lambda \neq 0 \), then for a sequence of unit vectors \(\{ x_n \} \), \((T - \lambda)x_n \to 0 \) implies

\[(T^* - \bar{\lambda})x_n \to 0, \quad \sigma_p(T) - \{0\} = \sigma_{sp}(T) - \{0\} \quad \text{and} \quad \sigma_{ap}(T) - \{0\} = \sigma_{sp}(T) - \{0\} . \]

Proof. We only need to prove that \((T^* - \bar{\lambda})x_n \to 0 \) by Theorem B. By the assumption \((T - \lambda)x_n \to 0 \) and \((T^k - \lambda^k)x_n \to 0 \), we have

\[\|Tx_n\| \to |\lambda| \quad \text{and} \quad \|T^k x_n\| \to |\lambda|^k . \]
Since $T \in B(H)$ belongs to the (A,k) class, then we have

$$\|T^2 x_n\| = \|T^* T x_n\| \leq \|T^4 x_n\|^4 \Rightarrow (\lambda^4)^{\frac{4}{k}} = |\lambda|^4.$$

Thus

$$\|T^4 x_n\| \Rightarrow |\alpha| \leq |\lambda|^4.$$

Relation (9)

Now, from relation (9) we have:

$$\|\left(T^2 - |\lambda|^2\right)x_n\|^2 = \langle \left(T^2 - |\lambda|^2\right)x_n, \left(T^2 - |\lambda|^2\right)x_n \rangle$$

$$= \langle T^2 x_n, T^2 x_n \rangle - \langle T^2 x_n, |\lambda|^2 x_n \rangle - \langle |\lambda|^2 x_n, T^2 x_n \rangle + \langle |\lambda|^2 x_n, |\lambda|^2 x_n \rangle$$

$$= \|T^2 x_n\|^2 - |\lambda|^4 \langle T x_n, T x_n \rangle - |\lambda|^4 \langle T x_n, T x_n \rangle + |\lambda|^4 \langle x_n, x_n \rangle,$$

$$= \|T^2 x_n\|^2 - 2|\lambda|^4 \|T x_n\|^2 + |\lambda|^4$$

$$\Rightarrow |\alpha| - 2|\lambda|^2 \|T x_n\|^2 + |\lambda|^4 \leq |\lambda|^4 - 2|\lambda|^4 + |\lambda|^4 = 0.$$

respectively

$$\|\left(T^2 - |\lambda|^2\right)x_n\|^2 \Rightarrow 0.$$

Relation (10)

From the relation (10) we have

$$\left(\left|T\right| - |\lambda|\right)x_n = \left(\left|T\right| + |\lambda|\right)^{-1} \cdot \left(\left|T\right|^2 - |\lambda|^2\right)x_n \Rightarrow 0.$$

Thus

$$\left(U - e^{i\theta}\right)\lambda x_n = U\left(\left|\lambda\right| - |T|\right)x_n + \left(U\left|T\right| - e^{i\theta}|\lambda|\right)x_n \Rightarrow 0.$$

So, that $\left(T^*-\lambda\right)x_n \Rightarrow 0$, by Theorem B. Therefore the proof is completed.

3. Operator classes $(M,k)^*$ and $(A,k)^*$ in Hilbert space

In this section we will show some properties of $(M,k)^*$ and $(A,k)^*$ classes.

Proposition 3.1. If the operator T belongs to the class $(A,1)^*$, then it is hyponormal operator.

Proof. Let $T \in (A,1)^*$, then for every unit vectors $x \in H$ we have
Properties of operator classes

\[\|T^k x\|^2 \geq \|TT^* x\| \]

\[\langle Tx, Tx \rangle \geq \langle TT^* x, TT^* x \rangle \frac{1}{2} \]

\[\langle Tx, Tx \rangle - \langle TT^* x, TT^* x \rangle \frac{1}{2} \geq 0 \]

\[\langle T^k x, x \rangle - \langle (TT^*)^k x, x \rangle \frac{1}{2} \geq 0, \text{(Hölder-McCarthy inequality)} \]

\[\langle (T^k - TT^*) x, x \rangle \geq 0. \]

Thus \(T^k T \geq TT^* \), respectively \(T \) is hyponormal operator. ■

Corollary 3.1. If the operator \(T \) belongs to the \((A,1)^*\) class, then it belongs to the \((M,1)^*\) class.

Proposition 3.2. If the operator \(T \) belongs to the \((M,k)^*\) class, for \(k \geq 3 \), then it belongs to the \((A,k)^*\) class.

Proof. Let \(T \in (M,k)^* \), then for every unit vectors \(x \in H \) we have :

\[\|T^k x\|^2 = \langle T^k x, T^k x \rangle = \langle (T^* T)^k x, x \rangle \]

\[\geq \langle (TT^*)^k x, x \rangle, \text{ because } T \in (M,k)^* \]

\[\geq \langle (TT^*)^2 x, x \rangle^k \text{ (Hölder-McCarthy inequality)} \]

\[= \langle TT^* x, TT^* x \rangle^k = \|TT^* x\|^2^k. \]

Thus \(T \in (A,k)^* \). Therefore the proof is completed. ■

Corollary 3.2. If the operator \(T \) have dense range in Hilbert space and belongs to the \((M,k+1)^*\) class, for \(k \geq 2 \), then it belongs to the \((A,k)^*\) class.

Proof. This proof follows from theorem 3.8 in [3] and proposition 3.2. ■

Lemma 3.1. If \(T \) is bilateral weighted shift operator, with weighted sequence \(\omega_n \), \((Te_n = \omega_n e_{n+1}) \), then it is \((A,k)^*\) class if and only if

\[|\omega_n| \cdot |\omega_{n+1}| \cdots |\omega_{n+k-1}| \geq |\omega_{n+1}|^k, \quad n \in \mathbb{Z} \text{ and } k \geq 1. \]
Proof. This follows immediately from the definition of \((A,k)^*\) class.

Example 3.1. Let \(T\) is a bilateral weighted shift operator, with weighted sequence \((\omega_n)\) given as follows

\[
\omega_n = \begin{cases}
\frac{1}{5} & \text{per } n \leq -1 \\
\frac{5}{1} & \text{per } n = 0 \\
\frac{1}{5} & \text{per } n = 1 \\
25 & \text{per } n \geq 2
\end{cases}
\]

From lemma 2.1 and lemma 3.1, after some calculation it follows that \(T \in (A,3)^*\), but \(T \not\in (A,3)\).

Example 3.2. Let \(T\) is a bilateral weighted shift operator, with weighted sequence \((\omega_n)\) given as follows

\[
\omega_n = \begin{cases}
\frac{1}{2} & \text{for } n \leq -1 \\
1 & \text{for } n = 0 \\
\frac{1}{2} & \text{for } n = 1 \\
2 & \text{for } n = 2 \\
\frac{1}{4} & \text{for } n = 3 \\
16 & \text{for } n \geq 4
\end{cases}
\]

From lemma 2.1 and lemma 3.1, after some calculation it follows that \(T \in (A,3)\), but \(T \not\in (A,3)^*\).

Lemma 3.2. If \(T\) is a regular bilateral weighted shift operator, with weighted sequence \(\omega_n \neq 0, (Te_n = \omega_n e_{n+1})\), then \(T^{-1} \in (A,k)^*\) if and only if

\[
|\omega_n| \geq |\omega_{n-1}| \cdot |\omega_{n-2}| \ldots |\omega_{n-k}|, \quad n \in \mathbb{Z}, |\omega_n| \neq 0 \text{ and } k \geq 1.
\]

Proof. This follows immediately from the definition of \((A,k)^*\) class.

Proposition 3.3. Let \(T \in (A,k)^*\) be a regular operator, for \(k \geq 1\). Then the approximate point spectrum lies in the disc...
Properties of operator classes

\[\sigma_{ap} \subseteq \left\{ \lambda \in C : \frac{1}{\|T\|^{k-1} \sqrt{\|(TT^*)^{-1}\|^k}} \leq |\lambda| \leq \|T\| \right\}. \]

Proof. The proof of the Proposition is similar to that of Proposition 2.4. ■

Proposition 3.4. If the operator \(T \in B(H) \) satisfies condition \(\|T^k\|^4 \geq \|T^*\|^4 \), for \(k \geq 2 \), then operator \(T \) belongs to the \((A,k)^*\) class.

Proof. The proof of the Proposition is similar to that of Proposition 2.5. ■

Theorem 3.1. If \(T \in (A,k)^* \), then \(T \) is normaloid for every positive integer \(k \geq 1 \).

Proof. Suppose \(T \) belongs to the \((A,k)^*\) class, for \(k \geq 1 \). Then we have

\[\|TT^*x\|^k \leq \|T^k\|^2, \|x\| = 1 \]

\[\sup_{||x||=1} \|TT^*x\|^k \leq \sup_{||x||=1} \|T^k\|^2 \]

\[\|TT^*\|^k \leq \|T\|^k. \]

Now, since \(\|T\|^2 = \|T^*\|^2 = \|T^*T\| = \|TT^*\| \), we have \(\|T\|^{2k} \leq \|T^k\|^2 \), respectively \(\|T\|^k \leq \|T^*\| \). Therefore

\[\|T^k\| = \|T\|^k. \] (11)

Now, we prove the equality (11) for \(k + 1 \). Since \(\frac{TT^*x}{\|TT^*x\|} \) is a unit vector, then we have

\[\|TT^*T^*x\|^k \leq \|T^kT^*x\|^2 \cdot \|TT^*x\|^{k-2} \Rightarrow \|TT^*\|^2 \leq \|T^k\|^2 \cdot \|T^*\|^2 \Rightarrow \|TT^*\|^{2k} \leq \|T^k\|^{2k} \cdot \|T^*\|^{2k} \Rightarrow \]

\[\|T\|^{2k+2} \leq \|T^k\|^2 \Rightarrow \|T\|^{k+1} \leq \|T^k\| \leq \|T\|^{k+1}. \]

Therefore
\[\|T^{k+1}\| = \|T\|^{k+1}. \]
(12)

Now from the relation (12) it follows that \(\|T^k\| = \|T\|^k \), for every positive integer \(k \geq 1 \). Therefore

\[
r(T) = \lim_{k \to \infty} \left(\|T^K\|^{\frac{1}{k}} \right) = \lim_{k \to \infty} \|T\|^\frac{1}{k} = \|T\|,
\]
and the proof is completed. ■

In the following we denote by \((QD)(P_n) \) the class of quasi-diagonal operator with respect to the sequence \((P_n)_{n \in N} \) of orthogonal projections such that \(P_n \to 1 \), strongly (see [7]).

Theorem 3.2. If \(T^*T = \lambda I + K \), were \(\lambda \in \mathbb{C} \), \(K \) is a compact operator, and \(T^* \) is a quasi-normal, then \(TT^* = \beta I - K'' \) for some complex number \(\beta \) and some compact operator \(K'' \).

Proof. For \(\alpha > \|T^*T\| = \|T\|^2 \) we have

\[
(\alpha I - T^*T)^{-1} = \frac{1}{\alpha} + \frac{1}{\alpha} T^* (\alpha I - TT^*)^{-1} T
\]

\[
(\alpha I - T^*T)^{-1} = \frac{1}{\alpha} + \frac{1}{\alpha} (\alpha I - TT^*)^{-1} T^* T.
\]
(13)

Since \(T^*T \) is a Fredholm operator and \(\text{ind} T^*T = 0 \), it follows that there exist a compact operator \(K \), such that \(T^*T + K \) is an invertible operator. Now by (13), we have

\[
(\alpha I - T^*T)^{-1} = \frac{1}{\alpha} + \frac{1}{\alpha} (\alpha I - TT^*)^{-1} (T^*T + K) - \frac{1}{\alpha} (\alpha I - TT^*)^{-1} K
\]

were \(K_1 = -\frac{1}{\alpha} (\alpha I - TT^*)^{-1} K \) is a compact operator,

\[
(\alpha I - T^*T)^{-1} = \frac{1}{\alpha} + \frac{1}{\alpha} (\alpha I - TT^*)^{-1} (T^*T + K) + K_1
\]

\[
\frac{1}{\alpha} (\alpha I - TT^*)^{-1} = \left[(\alpha I - T^*T)^{-1} - K_1 - \frac{I}{\alpha} \right] (T^*T + K)^{-1}
\]

\[
(\alpha I - TT^*)^{-1} = \alpha \left[(\alpha I - T^*T)^{-1} - K_1 - \frac{I}{\alpha} \right] (T^*T + K)^{-1}.
\]

So, \((\alpha I - TT^*)^{-1} \in (QD)(P_n) \), for every sequence \((P_n)_{n \in N} \) of orthogonal
Properties of operator classes

projections, for which $P_n \to 1$ strongly. Therefore $\alpha I - TT^* = \gamma I + K''$ (see [7]), respectively $TT^* = (\alpha - \gamma)I - K'' = \beta I - K^*$. ■

Proposition 3.5. Let $T \in (A,k)^*$ and T^k be a compact operator for some $k \geq 1$, then T is compact too.

Proof. From the fact that $T \in (A,k)^*$ for $k \geq 1$, we have

$$\|TT^*x\| \leq \|T^k x\|^2,$$

for every $x \in H, \|x\| = 1$ and $k \geq 1$. (14)

Let $(x_n) \in H$ be weakly convergent sequence with limit 0 in H. From compactness of T^k and relation (14) we get the following relation

$$\|TT^*x_n\| \leq \|T^k x_n\|^2 \to 0, n \to \infty$$

From the last relation it follows that TT^* is a compact operator, respectively T is a compact operator. ■

REFERENCES

Received: January, 2012